organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-[(5-Carb­­oxy-1,3-phenyl­ene)bis­­(­­oxy)]di­benzoic acid

aSecond Department of Neurosurgery, Bethune Third Hospital (China–Japan Union Hospital), Jilin University, People's Republic of China, bRadiological Department, Tumor Hospital of Jilin Province, People's Republic of China, and cState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: tiange@mail.jlu.edu.cn

(Received 2 March 2012; accepted 21 March 2012; online 31 March 2012)

In the title compound, C21H14O8, the central benzene ring makes dihedral angles of 77.8 (6) and 75.9 (5)° with the outer benzene rings. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds involving carboxyl groups, forming one-dimensional ladders. Two-dimensional layers are formed by inter­penetration of these one-dimensional ladders.

Related literature

For general background, see: Moulton & Zaworotko,(2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Kitagawa et al.,(2001[Kitagawa, S., Kitaura, R. & Noro, S. (2001). Angew. Chem. Int. Ed. 43, 2334-2375.]); Lee et al.,(2009[Lee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450-1459.]); Robin & Fromm, (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]). For the preparation of title compound, see: Neogi et al.(2009[Neogi, S., Sharma, M. K., Das, M. C. & Bharadwaj, P. K. (2009). Polyhedron, 28, 3923-3928.]). For related structa­res, see: Lama et al.(2010[Lama, P., Aijaz, A., Sanudo, E. C. & Bharadwaj, P. K. (2010). Cryst. Growth Des. 10, 283-290.]); Pan et al. (2007[Pan, Z. R., Zheng, H. G., Wang, T. W., Song, Y., Li, Y. Z., GuoZ, J. & Batten, S. R. (2007). Inorg. Chem. 47, 9528-9536.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14O8

  • Mr = 394.32

  • Monoclinic, C 2/c

  • a = 17.235 (3) Å

  • b = 13.419 (3) Å

  • c = 15.586 (3) Å

  • β = 96.24 (3)°

  • V = 3583.3 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.33 × 0.29 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.316, Tmax = 0.622

  • 16922 measured reflections

  • 4073 independent reflections

  • 2862 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.09

  • 4073 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H6⋯O4i 0.82 1.87 2.6919 (16) 176.4
O6—H3⋯O8ii 0.82 1.85 2.6615 (18) 169.9
O7—H8⋯O5iii 0.82 1.82 2.6307 (18) 167.2
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x+1, -y+2, z+{\script{1\over 2}}]; (iii) [x-1, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXP97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a new kind of functional molecular materials, metal-organic frameworks have received extensive attention for their potential applications in gas storage, catalysis, optoelectronics, sensors, magnetism, luminescence, porous materials and so on. (Moulton & Zaworotko, 2001; Kitagawa et al., 2001; Lee et al., 2009). Organic molecules with O– and N-donors can be used as organic linkers in these coordination polymers (Robin & Fromm, 2006). In fact, there are many organic ligands which are linked by ether bond (Lama et al. 2010; Pan et al., 2007). Here, we report the crystal structure of the title compound.

In the crystal structure, two benzene rings, β(composed of C8—C13) and γ (composed of C15—C20) are connected to the center ring (α, composed of C1—C6) by ether bond. The dihedral angle between α and β is 77.8 (6)°, and between α and γ is 75.9 (5)° (Fig. 1). Strong intermolecular O—H···O hydrogen bonds are formed between the carboxylic acid groups of neighboring molecules (Table 1), which link the molecules to one-dimensional supra-molecular ladder (Fig. 2). The interpenetration among the one-dimensional molecular ladders which are parallel produce two-dimensional layer (Fig. 3).

Related literature top

For general background, see: Moulton & Zaworotko,(2001); Kitagawa et al.,(2001); Lee et al.,(2009); Robin & Fromm, (2006). For the preparation of title compound, see: Neogi et al.(2009). For related structares, see: Lama et al.(2010); Pan et al. (2007).

Experimental top

The title compound was synthesized by a modified literature method (Neogi et al.2009). Methyl 3,5-dihydroxylbenzoate (1.68 g,10 mmol) was dissolved in DMF (50 ml). To this solution was added K2CO3 (7 g,51 mmol) and 4-fluorobenzonitrile (2.4 g,20 mmol). The mixture was heated under reflux for 2 days. The resulting solution was poured in 250 ml ice-cold water and kept over-night. The yellow compound was filtered and washed several times with water. The yellow compound (3.73 g, 10 mmol) was allowed to reflux with 6 N NaOH solution (50 ml) for 12 h, cooled to room temperature and acidified with HCl (6 N). Colorless crystalline product was obtained and isolated by filtration, washed with water and dried in vacuum. Zn(NO3)2 (0.075 g,0.25 mmol), 4,4'-(5-carboxy-1,3-phenylene)bis(oxy)dibenzoic acid (0.098 g,0.25 mmol), were mixed in water (5 ml). The mixture were placed in a 25 ml Teflon-lined stainless steel autoclave and heated autogenously under pressure for 2 d at 393 K. After cooling to room temperature, the block-shaped colourless crystals were obtained.

Refinement top

All hydrogen atoms bonded to O and C were fixed in ideal positions, with C—H = 0.93 (aromatic) and O—H = 0.82 Å, and treated as riding on their parent atoms with Uiso(H)=0.08 Å2.

Structure description top

As a new kind of functional molecular materials, metal-organic frameworks have received extensive attention for their potential applications in gas storage, catalysis, optoelectronics, sensors, magnetism, luminescence, porous materials and so on. (Moulton & Zaworotko, 2001; Kitagawa et al., 2001; Lee et al., 2009). Organic molecules with O– and N-donors can be used as organic linkers in these coordination polymers (Robin & Fromm, 2006). In fact, there are many organic ligands which are linked by ether bond (Lama et al. 2010; Pan et al., 2007). Here, we report the crystal structure of the title compound.

In the crystal structure, two benzene rings, β(composed of C8—C13) and γ (composed of C15—C20) are connected to the center ring (α, composed of C1—C6) by ether bond. The dihedral angle between α and β is 77.8 (6)°, and between α and γ is 75.9 (5)° (Fig. 1). Strong intermolecular O—H···O hydrogen bonds are formed between the carboxylic acid groups of neighboring molecules (Table 1), which link the molecules to one-dimensional supra-molecular ladder (Fig. 2). The interpenetration among the one-dimensional molecular ladders which are parallel produce two-dimensional layer (Fig. 3).

For general background, see: Moulton & Zaworotko,(2001); Kitagawa et al.,(2001); Lee et al.,(2009); Robin & Fromm, (2006). For the preparation of title compound, see: Neogi et al.(2009). For related structares, see: Lama et al.(2010); Pan et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXP97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of title compound, showing one ladder of molecules connected by O—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The interpenetration among the one-dimensional ladders, showing two-dimensional layer. H atoms not involved in hydrogen bonding have been omitted for clarity.
4,4'-[(5-Carboxy-1,3-phenylene)bis(oxy)]dibenzoic acid top
Crystal data top
C21H14O8F(000) = 1632
Mr = 394.32Dx = 1.462 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4073 reflections
a = 17.235 (3) Åθ = 3.0–27.5°
b = 13.419 (3) ŵ = 0.11 mm1
c = 15.586 (3) ÅT = 293 K
β = 96.24 (3)°Block, colourless
V = 3583.3 (12) Å30.33 × 0.29 × 0.25 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4073 independent reflections
Radiation source: fine-focus sealed tube2862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2222
Tmin = 0.316, Tmax = 0.622k = 1717
16922 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.3436P]
where P = (Fo2 + 2Fc2)/3
4073 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H14O8V = 3583.3 (12) Å3
Mr = 394.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.235 (3) ŵ = 0.11 mm1
b = 13.419 (3) ÅT = 293 K
c = 15.586 (3) Å0.33 × 0.29 × 0.25 mm
β = 96.24 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4073 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2862 reflections with I > 2σ(I)
Tmin = 0.316, Tmax = 0.622Rint = 0.046
16922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
4073 reflectionsΔρmin = 0.22 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16748 (7)0.89288 (12)0.11510 (7)0.0630 (4)
O20.07879 (6)0.73896 (9)0.14922 (7)0.0404 (3)
O30.06065 (6)0.88133 (11)0.15033 (7)0.0503 (4)
H60.06240.89640.20110.080*
O40.06498 (6)0.92236 (9)0.18120 (7)0.0386 (3)
O50.44526 (7)1.12170 (10)0.10342 (8)0.0533 (3)
O60.48890 (7)0.96517 (11)0.10924 (10)0.0622 (4)
H30.52600.99160.13790.080*
O70.42509 (6)0.81151 (10)0.31119 (8)0.0517 (3)
H80.46530.83890.33200.080*
O80.38899 (7)0.96958 (10)0.28672 (8)0.0510 (3)
C10.10101 (8)0.87058 (14)0.07678 (10)0.0383 (4)
C20.04339 (9)0.82152 (13)0.12950 (10)0.0389 (4)
H11A0.05090.80570.18610.080*
C30.02518 (8)0.79647 (12)0.09712 (10)0.0335 (4)
C40.03815 (8)0.82052 (12)0.01343 (10)0.0338 (4)
H9A0.08520.80470.00740.080*
C50.02053 (8)0.86866 (12)0.03845 (9)0.0305 (3)
C60.09117 (8)0.89385 (12)0.00791 (9)0.0340 (4)
H13A0.13050.92540.04350.080*
C70.01100 (8)0.89365 (12)0.13006 (10)0.0318 (3)
C80.23310 (9)0.92824 (16)0.06384 (10)0.0457 (5)
C90.24061 (9)1.02836 (17)0.04567 (12)0.0520 (5)
H3A0.20111.07270.06520.080*
C100.30817 (10)1.06221 (15)0.00240 (12)0.0475 (4)
H2A0.31391.12960.01540.080*
C110.36696 (8)0.99590 (14)0.03100 (10)0.0379 (4)
C120.35866 (10)0.89573 (15)0.01005 (12)0.0491 (5)
H6A0.39840.85120.02820.080*
C130.29151 (10)0.86173 (16)0.03783 (11)0.0510 (5)
H5A0.28600.79460.05220.080*
C140.43795 (9)1.03153 (14)0.08419 (11)0.0393 (4)
C150.15218 (8)0.77687 (12)0.17470 (9)0.0310 (3)
C160.20659 (9)0.70800 (13)0.21092 (11)0.0396 (4)
H17A0.19380.64080.21310.080*
C170.27973 (9)0.74089 (13)0.24351 (11)0.0407 (4)
H16A0.31660.69520.26730.080*
C180.29914 (8)0.84138 (13)0.24126 (10)0.0340 (4)
C190.24389 (9)0.90878 (13)0.20428 (10)0.0380 (4)
H20A0.25650.97610.20230.080*
C200.17048 (9)0.87698 (13)0.17049 (10)0.0367 (4)
H19A0.13400.92230.14530.080*
C210.37538 (9)0.87785 (13)0.28147 (10)0.0376 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (6)0.1242 (13)0.0339 (6)0.0307 (7)0.0050 (5)0.0151 (7)
O20.0226 (5)0.0450 (7)0.0501 (7)0.0008 (5)0.0117 (5)0.0106 (5)
O30.0275 (6)0.0879 (10)0.0359 (6)0.0055 (6)0.0051 (5)0.0026 (6)
O40.0332 (6)0.0474 (7)0.0347 (6)0.0087 (5)0.0009 (5)0.0024 (5)
O50.0394 (7)0.0487 (9)0.0676 (9)0.0075 (6)0.0131 (6)0.0023 (6)
O60.0382 (7)0.0610 (10)0.0805 (9)0.0024 (7)0.0247 (6)0.0065 (7)
O70.0291 (6)0.0479 (8)0.0730 (9)0.0008 (5)0.0179 (6)0.0011 (6)
O80.0401 (7)0.0423 (8)0.0657 (8)0.0062 (6)0.0167 (6)0.0016 (6)
C10.0226 (7)0.0587 (12)0.0329 (8)0.0054 (7)0.0002 (6)0.0002 (8)
C20.0266 (8)0.0567 (12)0.0317 (8)0.0007 (7)0.0045 (6)0.0038 (7)
C30.0207 (7)0.0385 (9)0.0386 (8)0.0009 (6)0.0088 (6)0.0009 (7)
C40.0215 (7)0.0412 (10)0.0378 (8)0.0012 (6)0.0016 (6)0.0027 (7)
C50.0242 (7)0.0348 (9)0.0316 (7)0.0010 (6)0.0014 (6)0.0048 (6)
C60.0242 (7)0.0442 (10)0.0320 (8)0.0050 (7)0.0036 (6)0.0010 (7)
C70.0254 (7)0.0353 (9)0.0340 (8)0.0012 (6)0.0000 (6)0.0043 (6)
C80.0257 (8)0.0812 (15)0.0303 (8)0.0177 (9)0.0038 (7)0.0046 (9)
C90.0272 (8)0.0777 (15)0.0488 (10)0.0032 (9)0.0062 (7)0.0007 (10)
C100.0311 (9)0.0559 (12)0.0537 (11)0.0020 (8)0.0039 (8)0.0007 (9)
C110.0259 (8)0.0483 (11)0.0383 (8)0.0064 (7)0.0018 (6)0.0044 (8)
C120.0402 (9)0.0508 (12)0.0537 (11)0.0071 (8)0.0072 (8)0.0019 (9)
C130.0452 (10)0.0584 (13)0.0481 (10)0.0179 (9)0.0011 (9)0.0028 (9)
C140.0264 (8)0.0454 (11)0.0444 (9)0.0010 (7)0.0031 (7)0.0028 (8)
C150.0211 (7)0.0401 (9)0.0307 (7)0.0023 (6)0.0026 (6)0.0010 (7)
C160.0287 (8)0.0352 (10)0.0518 (10)0.0024 (7)0.0098 (7)0.0023 (7)
C170.0260 (8)0.0401 (10)0.0526 (10)0.0063 (7)0.0106 (7)0.0001 (8)
C180.0246 (7)0.0408 (10)0.0353 (8)0.0009 (7)0.0033 (6)0.0021 (7)
C190.0325 (8)0.0379 (10)0.0412 (9)0.0015 (7)0.0065 (7)0.0004 (7)
C200.0289 (8)0.0396 (10)0.0394 (8)0.0070 (7)0.0065 (7)0.0021 (7)
C210.0265 (8)0.0438 (11)0.0406 (9)0.0007 (7)0.0043 (7)0.0004 (7)
Geometric parameters (Å, º) top
O1—C11.3811 (18)C8—C131.373 (3)
O1—C81.395 (2)C8—C91.376 (3)
O2—C151.3810 (17)C9—C101.391 (2)
O2—C31.3949 (18)C9—H3A0.9300
O3—C71.3179 (17)C10—C111.385 (2)
O3—H60.8200C10—H2A0.9300
O4—C71.2199 (19)C11—C121.387 (3)
O5—C141.250 (2)C11—C141.481 (2)
O6—C141.281 (2)C12—C131.384 (2)
O6—H30.8200C12—H6A0.9300
O7—C211.286 (2)C13—H5A0.9300
O7—H80.8200C15—C201.383 (2)
O8—C211.254 (2)C15—C161.392 (2)
C1—C61.385 (2)C16—C171.379 (2)
C1—C21.385 (2)C16—H17A0.9300
C2—C31.376 (2)C17—C181.391 (2)
C2—H11A0.9300C17—H16A0.9300
C3—C41.385 (2)C18—C191.392 (2)
C4—C51.384 (2)C18—C211.476 (2)
C4—H9A0.9300C19—C201.384 (2)
C5—C61.396 (2)C19—H20A0.9300
C5—C71.493 (2)C20—H19A0.9300
C6—H13A0.9300
C1—O1—C8119.01 (12)C9—C10—H2A119.9
C15—O2—C3119.45 (12)C10—C11—C12119.59 (16)
C7—O3—H6109.5C10—C11—C14120.24 (17)
C14—O6—H3109.5C12—C11—C14120.17 (15)
C21—O7—H8109.5C13—C12—C11120.33 (18)
O1—C1—C6123.82 (14)C13—C12—H6A119.8
O1—C1—C2114.92 (13)C11—C12—H6A119.8
C6—C1—C2121.25 (14)C8—C13—C12119.21 (19)
C3—C2—C1119.18 (14)C8—C13—H5A120.4
C3—C2—H11A120.4C12—C13—H5A120.4
C1—C2—H11A120.4O5—C14—O6123.49 (16)
C2—C3—C4121.42 (14)O5—C14—C11120.18 (15)
C2—C3—O2117.55 (13)O6—C14—C11116.32 (16)
C4—C3—O2120.84 (13)O2—C15—C20123.41 (14)
C5—C4—C3118.45 (13)O2—C15—C16115.32 (14)
C5—C4—H9A120.8C20—C15—C16121.14 (14)
C3—C4—H9A120.8C17—C16—C15119.03 (16)
C4—C5—C6121.50 (14)C17—C16—H17A120.5
C4—C5—C7120.94 (13)C15—C16—H17A120.5
C6—C5—C7117.54 (14)C16—C17—C18120.92 (15)
C1—C6—C5118.17 (14)C16—C17—H16A119.5
C1—C6—H13A120.9C18—C17—H16A119.5
C5—C6—H13A120.9C17—C18—C19119.00 (14)
O4—C7—O3123.42 (14)C17—C18—C21121.08 (14)
O4—C7—C5122.71 (13)C19—C18—C21119.84 (15)
O3—C7—C5113.86 (13)C20—C19—C18120.88 (16)
C13—C8—C9121.61 (16)C20—C19—H20A119.6
C13—C8—O1118.08 (19)C18—C19—H20A119.6
C9—C8—O1120.15 (18)C15—C20—C19119.02 (15)
C8—C9—C10118.97 (17)C15—C20—H19A120.5
C8—C9—H3A120.5C19—C20—H19A120.5
C10—C9—H3A120.5O8—C21—O7122.91 (15)
C11—C10—C9120.25 (19)O8—C21—C18120.30 (14)
C11—C10—H2A119.9O7—C21—C18116.78 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O4i0.821.872.6919 (16)176.4
O6—H3···O8ii0.821.852.6615 (18)169.9
O7—H8···O5iii0.821.822.6307 (18)167.2
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y+2, z+1/2; (iii) x1, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H14O8
Mr394.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.235 (3), 13.419 (3), 15.586 (3)
β (°) 96.24 (3)
V3)3583.3 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.29 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.316, 0.622
No. of measured, independent and
observed [I > 2σ(I)] reflections
16922, 4073, 2862
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.09
No. of reflections4073
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXP97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O4i0.821.872.6919 (16)176.4
O6—H3···O8ii0.821.852.6615 (18)169.9
O7—H8···O5iii0.821.822.6307 (18)167.2
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y+2, z+1/2; (iii) x1, y+2, z1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2001). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef Google Scholar
First citationLama, P., Aijaz, A., Sanudo, E. C. & Bharadwaj, P. K. (2010). Cryst. Growth Des. 10, 283–290.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450–1459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeogi, S., Sharma, M. K., Das, M. C. & Bharadwaj, P. K. (2009). Polyhedron, 28, 3923–3928.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Z. R., Zheng, H. G., Wang, T. W., Song, Y., Li, Y. Z., GuoZ, J. & Batten, S. R. (2007). Inorg. Chem. 47, 9528–9536.  Web of Science CSD CrossRef Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds