organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[(2-Hy­dr­oxy-3-meth­­oxy­benzyl­­idene)amino]­benzoic acid

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, dDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, and eDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 6 March 2012; accepted 9 March 2012; online 14 March 2012)

In the title compound, C15H13NO4, the dihedral angle between the substituted benzene rings is 9.9 (8)°. Part of the mol­ecule (the salicylaldimine segment) is disordered over two sets of sites, with a refined site-occupancy ratio of 0.550 (14):0.450 (14). Intra­molecular O—H⋯N hydrogen bonds form S(6) ring motifs. In the crystal, pairs of O—H⋯O hydrogen bonds link mol­ecules into centrosymmetric dimers with R22(8) ring motifs. The crystal packing also features C—H⋯π inter­actions.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to Schiff base ligands and their complexes, see, for example, Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.], 2012[Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68, m182.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO4

  • Mr = 271.26

  • Triclinic, [P \overline 1]

  • a = 5.2738 (9) Å

  • b = 10.978 (2) Å

  • c = 12.084 (2) Å

  • α = 107.044 (10)°

  • β = 100.776 (11)°

  • γ = 97.539 (10)°

  • V = 644.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.19 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.991

  • 8775 measured reflections

  • 2308 independent reflections

  • 1253 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.258

  • S = 1.05

  • 2308 reflections

  • 279 parameters

  • 405 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C14 and C9A–C14A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.96 1.69 2.638 (4) 169
O3—H3⋯N1 0.82 1.92 2.64 (2) 147
C15A—H15ECg1ii 0.96 2.90 3.757 (11) 139
C15A—H15ECg2ii 0.96 2.83 3.680 (12) 139
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structure of Schiff base ligands (Kargar et al., 2011; Kia et al., 2010; Kargar et al., 2012), we determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially bidentate N,O-donor Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges.

The intramolecular O—H···N hydrogen bonds make S(6) ring motifs (Bernstein et al., 1995). The dihedral angle between the substituted benzene rings is 9.9 (8)°. Pairs of the centrosymmetric intermolecular O—H···O hydrogen bonds link molecules into dimers with R22(8) ring motifs (Fig. 2). A part of the molecule was disordered over two positions with a refined site occupancy ratio 0.55 (1)/0.45 (1). The crystal packing was further stabilized by the intermolecular C—H···π interactions (Table 2).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff base ligands and their complexes, see, for example, Kargar et al. (2011, 2012); Kia et al. (2010).

Experimental top

The title compound was synthesized by adding 3-methoxyosalicylaldehyde (2 mmol) to a solution of 3-carboxyaniline (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Pale yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The O-bound hydrogen atoms were positioned by a rotating O—H group model and constrained to the parent atoms with Uiso (H) = 1.5 Ueq (O). The rest of the hydrogen atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was applied to the methyl group. Since the crystal was very small and not optimal for diffraction the Data/Parameter ratio was not good. The similarity restraints (SIMU, DELU, and SAME) were applied to model the disorder.

Structure description top

In continuation of our work on the crystal structure of Schiff base ligands (Kargar et al., 2011; Kia et al., 2010; Kargar et al., 2012), we determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially bidentate N,O-donor Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges.

The intramolecular O—H···N hydrogen bonds make S(6) ring motifs (Bernstein et al., 1995). The dihedral angle between the substituted benzene rings is 9.9 (8)°. Pairs of the centrosymmetric intermolecular O—H···O hydrogen bonds link molecules into dimers with R22(8) ring motifs (Fig. 2). A part of the molecule was disordered over two positions with a refined site occupancy ratio 0.55 (1)/0.45 (1). The crystal packing was further stabilized by the intermolecular C—H···π interactions (Table 2).

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff base ligands and their complexes, see, for example, Kargar et al. (2011, 2012); Kia et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The major component of the disordered part was used. The dashed line shows the intramolecular H-bonding.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the c-axis showing linking of dimers with R22(8) ring motifs. Only the hydrogen atoms involved the H-bonding and the major component are shown.
(E)-3-[(2-Hydroxy-3-methoxybenzylidene)amino]benzoic acid top
Crystal data top
C15H13NO4Z = 2
Mr = 271.26F(000) = 284
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2738 (9) ÅCell parameters from 1456 reflections
b = 10.978 (2) Åθ = 2.8–28.8°
c = 12.084 (2) ŵ = 0.10 mm1
α = 107.044 (10)°T = 296 K
β = 100.776 (11)°Block, pale-yellow
γ = 97.539 (10)°0.19 × 0.12 × 0.09 mm
V = 644.1 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2308 independent reflections
Radiation source: fine-focus sealed tube1253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.981, Tmax = 0.991k = 1313
8775 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.258H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1461P)2 + 0.0613P]
where P = (Fo2 + 2Fc2)/3
2308 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.59 e Å3
405 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H13NO4γ = 97.539 (10)°
Mr = 271.26V = 644.1 (2) Å3
Triclinic, P1Z = 2
a = 5.2738 (9) ÅMo Kα radiation
b = 10.978 (2) ŵ = 0.10 mm1
c = 12.084 (2) ÅT = 296 K
α = 107.044 (10)°0.19 × 0.12 × 0.09 mm
β = 100.776 (11)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1253 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.047
8775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.081405 restraints
wR(F2) = 0.258H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
2308 reflectionsΔρmin = 0.28 e Å3
279 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2047 (6)0.0156 (3)0.3825 (3)0.0503 (9)
C20.3579 (6)0.0263 (3)0.2901 (3)0.0469 (8)
C30.3065 (7)0.1382 (3)0.1929 (3)0.0605 (10)
H3A0.17550.20780.18500.073*
C40.4508 (7)0.1461 (3)0.1075 (3)0.0659 (11)
H4A0.41740.22120.04210.079*
C50.6418 (7)0.0437 (3)0.1192 (3)0.0537 (9)
H5A0.73890.05050.06160.064*
C60.6948 (6)0.0696 (3)0.2142 (3)0.0461 (8)
C70.5508 (6)0.0785 (3)0.3021 (3)0.0472 (8)
H7A0.58470.15370.36750.057*
O10.0350 (5)0.1160 (2)0.3720 (2)0.0663 (8)
O20.2431 (5)0.0872 (2)0.4652 (2)0.0699 (8)
H20.13310.08700.52020.105*
N10.868 (3)0.1754 (14)0.215 (2)0.038 (3)0.550 (14)
C80.997 (2)0.2711 (10)0.3133 (11)0.051 (3)0.550 (14)
H8A0.96240.27150.38610.061*0.550 (14)
C91.192 (2)0.3752 (9)0.3088 (10)0.054 (4)0.550 (14)
C101.307 (8)0.363 (2)0.213 (3)0.044 (5)0.550 (14)
C111.473 (4)0.4714 (14)0.2060 (17)0.058 (5)0.550 (14)
C121.552 (7)0.5805 (19)0.305 (3)0.062 (6)0.550 (14)
H12A1.67240.64970.30340.075*0.550 (14)
C131.459 (2)0.5914 (9)0.4063 (10)0.075 (3)0.550 (14)
H13A1.51520.66650.47220.090*0.550 (14)
C141.281 (2)0.4882 (9)0.4072 (9)0.073 (3)0.550 (14)
H14A1.21840.49400.47520.088*0.550 (14)
C151.752 (2)0.5546 (13)0.0982 (14)0.080 (4)0.550 (14)
H15A1.81460.52500.02720.121*0.550 (14)
H15B1.89720.58070.16670.121*0.550 (14)
H15C1.66960.62730.09640.121*0.550 (14)
O31.207 (2)0.2641 (12)0.1078 (10)0.065 (3)0.550 (14)
H31.08960.21270.11540.097*0.550 (14)
O41.565 (2)0.4519 (10)0.1044 (8)0.080 (3)0.550 (14)
N1A0.929 (4)0.1671 (17)0.222 (3)0.038 (3)0.450 (14)
C8A0.922 (2)0.2889 (10)0.2830 (11)0.038 (3)0.450 (14)
H8AA0.78680.30620.32090.045*0.450 (14)
C9A1.128 (3)0.3943 (10)0.2899 (12)0.044 (3)0.450 (14)
C10A1.287 (10)0.374 (2)0.210 (4)0.041 (4)0.450 (14)
C11A1.503 (5)0.4729 (15)0.2231 (19)0.044 (3)0.450 (14)
C12A1.521 (9)0.595 (2)0.300 (3)0.062 (5)0.450 (14)
H12B1.65400.66250.30420.074*0.450 (14)
C13A1.344 (3)0.6185 (9)0.3695 (10)0.061 (3)0.450 (14)
H13B1.35460.70230.41970.073*0.450 (14)
C14A1.151 (2)0.5199 (7)0.3662 (9)0.057 (3)0.450 (14)
H14B1.03460.53710.41530.068*0.450 (14)
C15A1.854 (3)0.5432 (16)0.1425 (16)0.077 (4)0.450 (14)
H15D1.92200.51330.07320.115*0.450 (14)
H15E1.99470.56970.21270.115*0.450 (14)
H15F1.77230.61560.13870.115*0.450 (14)
O3A1.295 (3)0.2529 (14)0.1380 (15)0.062 (4)0.450 (14)
H3B1.17190.19970.13930.093*0.450 (14)
O4A1.661 (2)0.4394 (11)0.1466 (11)0.062 (3)0.450 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.0358 (17)0.064 (2)0.0037 (15)0.0263 (17)0.0113 (16)
C20.0416 (18)0.0415 (17)0.061 (2)0.0011 (15)0.0226 (16)0.0186 (16)
C30.058 (2)0.0408 (18)0.076 (2)0.0084 (16)0.029 (2)0.0086 (17)
C40.074 (3)0.0459 (19)0.069 (2)0.0080 (18)0.035 (2)0.0019 (17)
C50.054 (2)0.0481 (19)0.054 (2)0.0007 (16)0.0273 (17)0.0053 (16)
C60.0400 (18)0.0430 (17)0.057 (2)0.0004 (14)0.0226 (16)0.0162 (15)
C70.0413 (18)0.0389 (17)0.059 (2)0.0023 (14)0.0248 (16)0.0097 (15)
O10.0638 (16)0.0449 (13)0.0852 (18)0.0150 (11)0.0389 (14)0.0117 (12)
O20.0772 (18)0.0519 (15)0.0748 (18)0.0139 (13)0.0489 (14)0.0046 (13)
N10.017 (7)0.044 (2)0.053 (3)0.003 (3)0.015 (5)0.013 (2)
C80.045 (6)0.055 (5)0.046 (5)0.002 (4)0.012 (4)0.010 (4)
C90.048 (6)0.050 (4)0.057 (5)0.001 (4)0.025 (5)0.003 (4)
C100.038 (8)0.038 (6)0.047 (5)0.002 (6)0.014 (5)0.002 (5)
C110.038 (6)0.054 (5)0.065 (7)0.007 (5)0.025 (6)0.004 (5)
C120.045 (8)0.051 (7)0.080 (7)0.014 (7)0.027 (6)0.007 (6)
C130.058 (6)0.057 (5)0.082 (6)0.015 (4)0.037 (5)0.018 (4)
C140.063 (6)0.068 (5)0.070 (5)0.015 (4)0.038 (5)0.005 (4)
C150.057 (7)0.079 (6)0.105 (10)0.012 (5)0.043 (7)0.027 (6)
O30.057 (7)0.052 (5)0.067 (5)0.018 (4)0.037 (5)0.009 (4)
O40.073 (6)0.073 (4)0.075 (5)0.030 (4)0.040 (4)0.004 (4)
N1A0.017 (7)0.044 (2)0.053 (3)0.003 (3)0.015 (5)0.013 (2)
C8A0.027 (5)0.042 (4)0.047 (7)0.008 (3)0.021 (4)0.010 (4)
C9A0.040 (6)0.034 (4)0.057 (6)0.000 (4)0.020 (5)0.013 (4)
C10A0.030 (7)0.033 (5)0.062 (8)0.004 (5)0.021 (6)0.013 (5)
C11A0.042 (7)0.042 (5)0.054 (7)0.001 (4)0.017 (5)0.023 (5)
C12A0.055 (10)0.044 (6)0.077 (8)0.006 (6)0.020 (7)0.009 (6)
C13A0.071 (7)0.036 (4)0.066 (6)0.004 (4)0.022 (5)0.005 (4)
C14A0.060 (6)0.039 (4)0.070 (6)0.006 (4)0.028 (5)0.010 (4)
C15A0.067 (9)0.069 (7)0.099 (11)0.017 (7)0.035 (7)0.039 (7)
O3A0.059 (8)0.038 (4)0.084 (8)0.002 (5)0.041 (6)0.002 (5)
O4A0.050 (5)0.064 (4)0.076 (7)0.009 (4)0.039 (5)0.024 (4)
Geometric parameters (Å, º) top
C1—O21.232 (4)C13—C141.378 (9)
C1—O11.284 (4)C13—H13A0.9300
C1—C21.482 (5)C14—H14A0.9300
C2—C31.382 (4)C15—O41.426 (9)
C2—C71.385 (4)C15—H15A0.9600
C3—C41.382 (5)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.361 (4)O3—H30.8200
C4—H4A0.9300N1A—C8A1.333 (13)
C5—C61.376 (4)C8A—C9A1.450 (10)
C5—H5A0.9300C8A—H8AA0.9300
C6—N11.38 (2)C9A—C10A1.382 (12)
C6—C71.405 (4)C9A—C14A1.391 (10)
C6—N1A1.49 (3)C10A—O3A1.368 (19)
C7—H7A0.9300C10A—C11A1.419 (14)
O2—H20.9612C11A—O4A1.362 (12)
N1—C81.329 (13)C11A—C12A1.367 (16)
C8—C91.454 (9)C12A—C13A1.374 (17)
C8—H8A0.9300C12A—H12B0.9300
C9—C101.383 (11)C13A—C14A1.370 (10)
C9—C141.395 (9)C13A—H13B0.9300
C10—O31.365 (18)C14A—H14B0.9300
C10—C111.418 (13)C15A—O4A1.443 (10)
C11—C121.370 (15)C15A—H15D0.9600
C11—O41.373 (11)C15A—H15E0.9600
C12—C131.384 (16)C15A—H15F0.9600
C12—H12A0.9300O3A—H3B0.8200
O2—C1—O1122.7 (3)C11—C12—H12A118.8
O2—C1—C2119.7 (3)C13—C12—H12A118.8
O1—C1—C2117.6 (3)C14—C13—C12118.3 (8)
C3—C2—C7120.6 (3)C14—C13—H13A120.9
C3—C2—C1120.5 (3)C12—C13—H13A120.9
C7—C2—C1118.9 (3)C13—C14—C9121.8 (7)
C2—C3—C4119.7 (3)C13—C14—H14A119.1
C2—C3—H3A120.2C9—C14—H14A119.1
C4—C3—H3A120.2C11—O4—C15118.0 (9)
C5—C4—C3120.0 (3)C8A—N1A—C6113.9 (18)
C5—C4—H4A120.0N1A—C8A—C9A119.6 (14)
C3—C4—H4A120.0N1A—C8A—H8AA120.2
C4—C5—C6121.7 (3)C9A—C8A—H8AA120.2
C4—C5—H5A119.2C10A—C9A—C14A118.6 (10)
C6—C5—H5A119.2C10A—C9A—C8A119.5 (9)
C5—C6—N1119.2 (10)C14A—C9A—C8A121.5 (10)
C5—C6—C7118.9 (3)O3A—C10A—C9A123.2 (14)
N1—C6—C7121.5 (9)O3A—C10A—C11A115 (2)
C5—C6—N1A115.4 (10)C9A—C10A—C11A119.5 (10)
N1—C6—N1A13.2 (17)O4A—C11A—C12A125.1 (11)
C7—C6—N1A125.2 (11)O4A—C11A—C10A115.2 (10)
C2—C7—C6119.2 (3)C12A—C11A—C10A119.3 (16)
C2—C7—H7A120.4C11A—C12A—C13A120.0 (13)
C6—C7—H7A120.4C11A—C12A—H12B120.0
C1—O2—H2114.7C13A—C12A—H12B120.0
C8—N1—C6123 (2)C14A—C13A—C12A120.9 (10)
N1—C8—C9120.7 (14)C14A—C13A—H13B119.5
N1—C8—H8A119.6C12A—C13A—H13B119.5
C9—C8—H8A119.6C13A—C14A—C9A120.4 (9)
C10—C9—C14118.3 (8)C13A—C14A—H14B119.8
C10—C9—C8122.2 (8)C9A—C14A—H14B119.8
C14—C9—C8119.4 (8)O4A—C15A—H15D109.5
O3—C10—C9121.7 (12)O4A—C15A—H15E109.5
O3—C10—C11115.0 (19)H15D—C15A—H15E109.5
C9—C10—C11120.3 (8)O4A—C15A—H15F109.5
C12—C11—O4125.4 (9)H15D—C15A—H15F109.5
C12—C11—C10118.0 (14)H15E—C15A—H15F109.5
O4—C11—C10116.1 (9)C10A—O3A—H3B109.5
C11—C12—C13122.4 (10)C11A—O4A—C15A116.8 (11)
O2—C1—C2—C3176.1 (3)O4—C11—C12—C13177 (3)
O1—C1—C2—C33.8 (5)C10—C11—C12—C135 (7)
O2—C1—C2—C73.1 (5)C11—C12—C13—C140 (5)
O1—C1—C2—C7177.1 (3)C12—C13—C14—C91 (3)
C7—C2—C3—C40.6 (5)C10—C9—C14—C137 (3)
C1—C2—C3—C4179.8 (3)C8—C9—C14—C13177.9 (9)
C2—C3—C4—C50.2 (6)C12—C11—O4—C152 (4)
C3—C4—C5—C60.7 (6)C10—C11—O4—C15174 (3)
C4—C5—C6—N1172.3 (11)C5—C6—N1A—C8A156.3 (18)
C4—C5—C6—C71.2 (5)N1—C6—N1A—C8A46 (7)
C4—C5—C6—N1A173.4 (14)C7—C6—N1A—C8A32 (3)
C3—C2—C7—C60.1 (5)C6—N1A—C8A—C9A175.4 (16)
C1—C2—C7—C6179.3 (3)N1A—C8A—C9A—C10A17 (4)
C5—C6—C7—C20.7 (5)N1A—C8A—C9A—C14A170.5 (19)
N1—C6—C7—C2172.6 (11)C14A—C9A—C10A—O3A175 (4)
N1A—C6—C7—C2172.2 (14)C8A—C9A—C10A—O3A13 (7)
C5—C6—N1—C8157.2 (13)C14A—C9A—C10A—C11A13 (7)
C7—C6—N1—C829 (2)C8A—C9A—C10A—C11A174 (4)
N1A—C6—N1—C881 (10)O3A—C10A—C11A—O4A11 (6)
C6—N1—C8—C9175.3 (12)C9A—C10A—C11A—O4A174 (4)
N1—C8—C9—C1019 (3)O3A—C10A—C11A—C12A176 (4)
N1—C8—C9—C14165.7 (13)C9A—C10A—C11A—C12A13 (8)
C14—C9—C10—O3171 (3)O4A—C11A—C12A—C13A177 (3)
C8—C9—C10—O314 (5)C10A—C11A—C12A—C13A5 (8)
C14—C9—C10—C1112 (5)C11A—C12A—C13A—C14A2 (7)
C8—C9—C10—C11173 (3)C12A—C13A—C14A—C9A1 (3)
O3—C10—C11—C12172 (4)C10A—C9A—C14A—C13A6 (4)
C9—C10—C11—C1211 (7)C8A—C9A—C14A—C13A178.7 (11)
O3—C10—C11—O416 (5)C12A—C11A—O4A—C15A3 (5)
C9—C10—C11—O4176 (3)C10A—C11A—O4A—C15A169 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C9A–C14A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.961.692.638 (4)169
O3—H3···N10.821.922.64 (2)147
C15A—H15E···Cg1ii0.962.903.757 (11)139
C15A—H15E···Cg2ii0.962.833.680 (12)139
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13NO4
Mr271.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.2738 (9), 10.978 (2), 12.084 (2)
α, β, γ (°)107.044 (10), 100.776 (11), 97.539 (10)
V3)644.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8775, 2308, 1253
Rint0.047
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.258, 1.05
No. of reflections2308
No. of parameters279
No. of restraints405
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C9A–C14A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.961.692.638 (4)169
O3—H3···N10.821.922.64 (2)147
C15A—H15E···Cg1ii0.962.903.757 (11)139
C15A—H15E···Cg2ii0.962.833.680 (12)139
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68, m182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds