metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m409-m410

Tetra­kis(μ-2-iodo­benzoato-κ2O:O′)bis­­[aqua­copper(II)]

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 7 March 2012; accepted 8 March 2012; online 14 March 2012)

In the centrosymmetric binuclear title complex, [Cu2(C7H4IO2)4(H2O)2], the two CuII ions [Cu⋯Cu = 2.6009 (5) Å] are bridged by four 2-iodo­benzoate (IB) ligands. The four nearest O atoms around each CuII ion form a distorted square-planar arrangement, the distorted square-pyramidal coordination being completed by the O atom of the water mol­ecule at a distance of 2.1525 (16) Å. The dihedral angle between the benzene ring and the carboxyl­ate group is 25.67 (13)° in one of the independent IB ligands and 6.44 (11)° in the other. The benzene rings of the two independent IB ligands are oriented at a dihedral angle of 86.61 (7)°. In the crystal, O—H⋯O inter­actions link the mol­ecules into a two-dimensional network. ππ contacts between the benzene rings [centroid–centroid distances = 3.810 (2) and 3.838 (2) Å] may further stabilize the structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Speier & Fulop (1989[Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.]); Usubaliev et al. (1980[Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091-1096.]); Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 2009a[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955-m956.],b[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328-m1329.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582-m1583.], 2011[Hökelek, T., Sağlam, E. G., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2011). Acta Cryst. E67, m28-m29.]); Necefoğlu et al. (2010a[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334-m335.],b[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010b). Acta Cryst. E66, m485-m486.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H4IO2)4(H2O)2]

  • Mr = 1151.14

  • Triclinic, [P \overline 1]

  • a = 7.3563 (2) Å

  • b = 10.7448 (3) Å

  • c = 10.9066 (3) Å

  • α = 83.167 (3)°

  • β = 72.779 (2)°

  • γ = 77.227 (2)°

  • V = 801.73 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.23 mm−1

  • T = 100 K

  • 0.39 × 0.36 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.150, Tmax = 0.285

  • 14335 measured reflections

  • 3987 independent reflections

  • 3818 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.045

  • S = 1.16

  • 3987 reflections

  • 207 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9814 (16)
Cu1—O2i 1.9577 (16)
Cu1—O3 1.9533 (16)
Cu1—O4 1.9610 (16)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O1ii 0.83 (3) 2.09 (3) 2.839 (2) 152 (3)
O5—H52⋯O4ii 0.83 (3) 2.56 (4) 3.171 (2) 132 (3)
Symmetry code: (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of four iodobenzoate (IB) ligands. The structures of similar complexes of the Cu2+, Zn2+ and Co2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(Py)]2 (Speier & Fulop, 1989); [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995) [Cu2(C8H7O2)4(C6H6N2O)2] (Necefoğlu et al., 2010a) [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a); [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b); [Zn2(C9H10NO2)4(C10H14N2O)2] (Hökelek et al., 2009c); [Zn2(C8H7O2)4(C10H14N2O)2] (Necefoğlu et al., 2010b) and [Co2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2011) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Cu2(IB)4(H2O)2], has a centre of symmetry and two CuII atoms are surrounded by four IB groups and two water molecules. The IB groups act as bridging ligands. The Cu···Cu' distance is 2.6009 (5) Å. The average Cu-O distance is 2.0012 (16) Å (Table 1), and four O atoms of the bridging IB ligands around each Cu atom form a distorted square plane. The Cu atom lies 0.1869 (3) Å below the least-squares plane. The average O-Cu-O bond angle is 92.48 (7)°. A distorted square-pyramidal arrangement around each Cu atom is completed by the water O atom at 2.1525 (16) Å from the Cu atom (Table 1). The O5-Cu1···Cu1' angle is 176.38 (5)° and the dihedral angle between plane through Cu1, O1, O2, C1, Cu1', O1', O2', C1' and the plane through Cu1, O3, O4, C8, Cu1', O3', O4', C8' is 89.13 (6)°. The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O3/O4/C8)] and the adjacent benzene rings A (C2-C7) and B (C9-C14) are 25.67 (13) and 6.44 (11) °, respectively, while that between rings A and B is A/B = 86.61 (7)°.

In the crystal structure, intermolecular O-H···O interactions (Table 2) link the molecules into a two-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene rings, Cg1—Cg1i and Cg2—Cg2ii [symmetry codes: (i) 1 - x, -y, 1 - z, (ii) 2 - x, 1 - y, -z, where Cg1 and Cg2 are the centroids of the rings A (C2-C7) and B (C9-C14), respectively] may further stabilize the structure, with centroid-centroid distances of 3.810 (2) and 3.838 (2) Å].

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Speier & Fulop (1989); Usubaliev et al. (1980); Hökelek et al. (1995, 2009a,b,c, 2011); Necefoğlu et al. (2010a,b).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (100 ml) with sodium 2-iodobenzoate (2.70 g, 10 mmol) in H2O (50 ml). The mixture was set aside to crystallize at ambient temperature for one day, giving green single crystals.

Refinement top

Atoms H51 and H52 (for H2O) were located in a difference Fourier map and refined isotropically. The C-bound H-atoms were positioned geometrically with C—H = 0.95 Å, for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of four iodobenzoate (IB) ligands. The structures of similar complexes of the Cu2+, Zn2+ and Co2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(Py)]2 (Speier & Fulop, 1989); [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995) [Cu2(C8H7O2)4(C6H6N2O)2] (Necefoğlu et al., 2010a) [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a); [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b); [Zn2(C9H10NO2)4(C10H14N2O)2] (Hökelek et al., 2009c); [Zn2(C8H7O2)4(C10H14N2O)2] (Necefoğlu et al., 2010b) and [Co2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2011) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Cu2(IB)4(H2O)2], has a centre of symmetry and two CuII atoms are surrounded by four IB groups and two water molecules. The IB groups act as bridging ligands. The Cu···Cu' distance is 2.6009 (5) Å. The average Cu-O distance is 2.0012 (16) Å (Table 1), and four O atoms of the bridging IB ligands around each Cu atom form a distorted square plane. The Cu atom lies 0.1869 (3) Å below the least-squares plane. The average O-Cu-O bond angle is 92.48 (7)°. A distorted square-pyramidal arrangement around each Cu atom is completed by the water O atom at 2.1525 (16) Å from the Cu atom (Table 1). The O5-Cu1···Cu1' angle is 176.38 (5)° and the dihedral angle between plane through Cu1, O1, O2, C1, Cu1', O1', O2', C1' and the plane through Cu1, O3, O4, C8, Cu1', O3', O4', C8' is 89.13 (6)°. The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O3/O4/C8)] and the adjacent benzene rings A (C2-C7) and B (C9-C14) are 25.67 (13) and 6.44 (11) °, respectively, while that between rings A and B is A/B = 86.61 (7)°.

In the crystal structure, intermolecular O-H···O interactions (Table 2) link the molecules into a two-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene rings, Cg1—Cg1i and Cg2—Cg2ii [symmetry codes: (i) 1 - x, -y, 1 - z, (ii) 2 - x, 1 - y, -z, where Cg1 and Cg2 are the centroids of the rings A (C2-C7) and B (C9-C14), respectively] may further stabilize the structure, with centroid-centroid distances of 3.810 (2) and 3.838 (2) Å].

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Speier & Fulop (1989); Usubaliev et al. (1980); Hökelek et al. (1995, 2009a,b,c, 2011); Necefoğlu et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator:(') - x, - y, - z.
Tetrakis(µ-2-iodobenzoato-κ2O:O')bis[aquacopper(II)] top
Crystal data top
[Cu2(C7H4IO2)4(H2O)2]Z = 1
Mr = 1151.14F(000) = 538
Triclinic, P1Dx = 2.384 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3563 (2) ÅCell parameters from 9932 reflections
b = 10.7448 (3) Åθ = 2.7–28.4°
c = 10.9066 (3) ŵ = 5.23 mm1
α = 83.167 (3)°T = 100 K
β = 72.779 (2)°Block, green
γ = 77.227 (2)°0.39 × 0.36 × 0.24 mm
V = 801.73 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3987 independent reflections
Radiation source: fine-focus sealed tube3818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.150, Tmax = 0.285k = 1414
14335 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0134P)2 + 0.9745P]
where P = (Fo2 + 2Fc2)/3
3987 reflections(Δ/σ)max = 0.002
207 parametersΔρmax = 0.61 e Å3
2 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu2(C7H4IO2)4(H2O)2]γ = 77.227 (2)°
Mr = 1151.14V = 801.73 (4) Å3
Triclinic, P1Z = 1
a = 7.3563 (2) ÅMo Kα radiation
b = 10.7448 (3) ŵ = 5.23 mm1
c = 10.9066 (3) ÅT = 100 K
α = 83.167 (3)°0.39 × 0.36 × 0.24 mm
β = 72.779 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3987 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3818 reflections with I > 2σ(I)
Tmin = 0.150, Tmax = 0.285Rint = 0.025
14335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0192 restraints
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.61 e Å3
3987 reflectionsΔρmin = 0.66 e Å3
207 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.36263 (2)0.882863 (16)0.200310 (15)0.01953 (5)
I20.20180 (2)0.701971 (15)0.777993 (14)0.01579 (5)
Cu10.65575 (4)0.46820 (2)0.53900 (2)0.00769 (6)
O10.6886 (2)0.64727 (16)0.49086 (16)0.0152 (3)
O20.4156 (2)0.70018 (16)0.43065 (16)0.0153 (3)
O30.4755 (2)0.52102 (17)0.70398 (15)0.0151 (3)
O40.7945 (2)0.43067 (18)0.35988 (15)0.0171 (4)
O50.9024 (2)0.41164 (17)0.61507 (15)0.0137 (3)
H511.010 (3)0.375 (3)0.573 (3)0.031 (9)*
H520.920 (6)0.462 (3)0.660 (3)0.050 (12)*
C10.5690 (3)0.7241 (2)0.4403 (2)0.0111 (4)
C20.6219 (3)0.8508 (2)0.3878 (2)0.0118 (4)
C30.5596 (3)0.9249 (2)0.2873 (2)0.0137 (4)
C40.6304 (4)1.0353 (2)0.2372 (3)0.0204 (5)
H40.59321.08280.16630.024*
C50.7553 (4)1.0769 (3)0.2899 (3)0.0247 (6)
H50.80221.15290.25580.030*
C60.8112 (4)1.0070 (2)0.3925 (3)0.0222 (5)
H60.89271.03670.43100.027*
C70.7483 (3)0.8947 (2)0.4384 (2)0.0162 (5)
H70.79180.84560.50630.019*
C80.2958 (3)0.5622 (2)0.7233 (2)0.0102 (4)
C90.1865 (3)0.6078 (2)0.8544 (2)0.0095 (4)
C100.0093 (3)0.6684 (2)0.8928 (2)0.0115 (4)
C110.0913 (3)0.7150 (2)1.0144 (2)0.0170 (5)
H110.22330.75761.03860.020*
C120.0184 (4)0.6997 (3)1.1009 (2)0.0184 (5)
H120.03850.73171.18410.022*
C130.2108 (4)0.6377 (2)1.0661 (2)0.0160 (5)
H130.28600.62611.12550.019*
C140.2927 (3)0.5930 (2)0.9441 (2)0.0124 (4)
H140.42510.55100.92060.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01733 (8)0.02241 (9)0.01989 (8)0.00265 (6)0.00902 (6)0.00232 (6)
I20.01043 (8)0.01989 (8)0.01694 (7)0.00135 (6)0.00594 (6)0.00335 (6)
Cu10.00592 (12)0.00946 (13)0.00725 (11)0.00149 (9)0.00117 (9)0.00054 (9)
O10.0129 (8)0.0116 (8)0.0231 (8)0.0056 (6)0.0079 (7)0.0048 (6)
O20.0119 (8)0.0115 (8)0.0249 (8)0.0044 (6)0.0082 (7)0.0022 (6)
O30.0092 (8)0.0237 (9)0.0101 (7)0.0023 (7)0.0018 (6)0.0046 (6)
O40.0096 (8)0.0315 (10)0.0090 (7)0.0007 (7)0.0018 (6)0.0048 (7)
O50.0084 (8)0.0194 (9)0.0134 (7)0.0012 (7)0.0037 (6)0.0024 (6)
C10.0111 (10)0.0123 (10)0.0082 (9)0.0025 (8)0.0004 (8)0.0016 (8)
C20.0088 (10)0.0101 (10)0.0146 (10)0.0011 (8)0.0006 (8)0.0009 (8)
C30.0089 (10)0.0131 (11)0.0166 (10)0.0003 (8)0.0009 (8)0.0010 (8)
C40.0148 (12)0.0171 (12)0.0252 (12)0.0012 (10)0.0040 (10)0.0069 (10)
C50.0194 (13)0.0147 (12)0.0396 (15)0.0089 (10)0.0066 (11)0.0069 (11)
C60.0179 (12)0.0147 (12)0.0365 (14)0.0071 (10)0.0095 (11)0.0011 (10)
C70.0152 (11)0.0136 (11)0.0197 (11)0.0039 (9)0.0048 (9)0.0007 (9)
C80.0118 (10)0.0091 (10)0.0097 (9)0.0040 (8)0.0021 (8)0.0002 (7)
C90.0092 (10)0.0087 (10)0.0095 (9)0.0029 (8)0.0004 (8)0.0001 (7)
C100.0099 (10)0.0119 (10)0.0129 (10)0.0016 (8)0.0042 (8)0.0001 (8)
C110.0115 (11)0.0206 (12)0.0146 (11)0.0017 (9)0.0003 (9)0.0041 (9)
C120.0168 (12)0.0238 (13)0.0124 (10)0.0005 (10)0.0012 (9)0.0068 (9)
C130.0161 (12)0.0197 (12)0.0124 (10)0.0026 (9)0.0041 (9)0.0027 (9)
C140.0104 (10)0.0134 (11)0.0129 (10)0.0006 (8)0.0036 (8)0.0006 (8)
Geometric parameters (Å, º) top
I1—C32.100 (2)C4—H40.9500
I2—C102.102 (2)C5—C41.388 (4)
Cu1—Cu1i2.6009 (5)C5—H50.9500
Cu1—O11.9814 (16)C6—C51.386 (4)
Cu1—O2i1.9577 (16)C6—H60.9500
Cu1—O31.9533 (16)C7—C61.374 (3)
Cu1—O41.9610 (16)C7—H70.9500
Cu1—O52.1525 (16)C8—O4i1.260 (3)
O1—C11.272 (3)C8—C91.498 (3)
O2—Cu1i1.9577 (16)C9—C101.403 (3)
O2—C11.247 (3)C9—C141.397 (3)
O3—C81.260 (3)C10—C111.388 (3)
O4—C8i1.260 (3)C11—C121.387 (3)
O5—H510.828 (18)C11—H110.9500
O5—H520.828 (19)C12—C131.384 (3)
C2—C11.499 (3)C12—H120.9500
C2—C71.397 (3)C13—C141.384 (3)
C3—C21.404 (3)C13—H130.9500
C3—C41.389 (3)C14—H140.9500
O1—Cu1—Cu1i86.36 (5)C5—C4—C3120.5 (2)
O1—Cu1—O595.68 (7)C5—C4—H4119.8
O2i—Cu1—Cu1i82.79 (5)C4—C5—H5120.1
O2i—Cu1—O1168.98 (7)C6—C5—C4119.8 (2)
O2i—Cu1—O490.09 (8)C6—C5—H5120.1
O2i—Cu1—O595.26 (7)C5—C6—H6120.1
O3—Cu1—Cu1i83.11 (5)C7—C6—C5119.7 (2)
O3—Cu1—O189.93 (7)C7—C6—H6120.1
O3—Cu1—O2i90.68 (7)C2—C7—H7119.1
O3—Cu1—O4168.90 (7)C6—C7—C2121.7 (2)
O3—Cu1—O593.88 (6)C6—C7—H7119.1
O4—Cu1—Cu1i86.00 (5)O3—C8—O4i124.6 (2)
O4—Cu1—O187.22 (8)O3—C8—C9116.33 (18)
O4—Cu1—O597.08 (7)O4i—C8—C9119.06 (19)
O5—Cu1—Cu1i176.38 (5)C10—C9—C8125.79 (19)
C1—O1—Cu1119.86 (14)C14—C9—C8116.50 (19)
C1—O2—Cu1i125.63 (15)C14—C9—C10117.66 (19)
C8—O3—Cu1124.96 (14)C9—C10—I2125.52 (16)
C8i—O4—Cu1121.09 (15)C11—C10—I2113.88 (16)
Cu1—O5—H51123 (2)C11—C10—C9120.6 (2)
Cu1—O5—H52117 (3)C10—C11—H11119.8
H51—O5—H52108 (4)C12—C11—C10120.3 (2)
O1—C1—C2116.23 (19)C12—C11—H11119.8
O2—C1—O1124.6 (2)C11—C12—H12120.0
O2—C1—C2119.2 (2)C13—C12—C11120.1 (2)
C3—C2—C1124.2 (2)C13—C12—H12120.0
C7—C2—C1117.6 (2)C12—C13—H13120.3
C7—C2—C3118.1 (2)C14—C13—C12119.4 (2)
C2—C3—I1125.24 (17)C14—C13—H13120.3
C4—C3—I1114.73 (17)C9—C14—H14119.0
C4—C3—C2120.0 (2)C13—C14—C9121.9 (2)
C3—C4—H4119.8C13—C14—H14119.0
Cu1i—Cu1—O1—C12.22 (16)C3—C2—C7—C60.1 (4)
O2i—Cu1—O1—C17.9 (5)I1—C3—C2—C15.4 (3)
O3—Cu1—O1—C185.32 (17)I1—C3—C2—C7177.62 (17)
O4—Cu1—O1—C183.95 (17)C4—C3—C2—C1174.1 (2)
O5—Cu1—O1—C1179.21 (16)C4—C3—C2—C72.9 (3)
Cu1i—Cu1—O3—C80.27 (18)I1—C3—C4—C5177.2 (2)
O1—Cu1—O3—C886.62 (19)C2—C3—C4—C53.3 (4)
O2i—Cu1—O3—C882.38 (19)C6—C5—C4—C30.6 (4)
O4—Cu1—O3—C811.6 (5)C7—C6—C5—C42.3 (4)
O5—Cu1—O3—C8177.70 (18)C2—C7—C6—C52.7 (4)
Cu1i—Cu1—O4—C8i4.82 (18)O3—C8—C9—C10173.4 (2)
O1—Cu1—O4—C8i91.37 (18)O3—C8—C9—C143.7 (3)
O2i—Cu1—O4—C8i77.94 (18)O4i—C8—C9—C105.2 (3)
O3—Cu1—O4—C8i16.0 (5)O4i—C8—C9—C14177.7 (2)
O5—Cu1—O4—C8i173.25 (18)C8—C9—C10—C11175.2 (2)
Cu1—O1—C1—O28.5 (3)C8—C9—C10—I23.2 (3)
Cu1—O1—C1—C2170.57 (14)C14—C9—C10—I2179.69 (16)
Cu1i—O2—C1—O111.8 (3)C14—C9—C10—C111.9 (3)
Cu1i—O2—C1—C2167.28 (15)C8—C9—C14—C13176.4 (2)
Cu1—O3—C8—O4i3.5 (3)C10—C9—C14—C131.0 (3)
Cu1—O3—C8—C9175.06 (14)I2—C10—C11—C12179.93 (19)
C3—C2—C1—O1153.2 (2)C9—C10—C11—C121.5 (4)
C3—C2—C1—O225.9 (3)C10—C11—C12—C130.1 (4)
C7—C2—C1—O123.8 (3)C11—C12—C13—C140.8 (4)
C7—C2—C1—O2157.1 (2)C12—C13—C14—C90.4 (4)
C1—C2—C7—C6177.3 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O1ii0.83 (3)2.09 (3)2.839 (2)152 (3)
O5—H52···O4ii0.83 (3)2.56 (4)3.171 (2)132 (3)
Symmetry code: (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C7H4IO2)4(H2O)2]
Mr1151.14
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3563 (2), 10.7448 (3), 10.9066 (3)
α, β, γ (°)83.167 (3), 72.779 (2), 77.227 (2)
V3)801.73 (4)
Z1
Radiation typeMo Kα
µ (mm1)5.23
Crystal size (mm)0.39 × 0.36 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.150, 0.285
No. of measured, independent and
observed [I > 2σ(I)] reflections
14335, 3987, 3818
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.045, 1.16
No. of reflections3987
No. of parameters207
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.66

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O11.9814 (16)Cu1—O31.9533 (16)
Cu1—O2i1.9577 (16)Cu1—O41.9610 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O1ii0.83 (3)2.09 (3)2.839 (2)152 (3)
O5—H52···O4ii0.83 (3)2.56 (4)3.171 (2)132 (3)
Symmetry code: (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582–m1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Sağlam, E. G., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2011). Acta Cryst. E67, m28–m29.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010b). Acta Cryst. E66, m485–m486.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m409-m410
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds