organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,2-Di­methyl­propano­yl)-N′-(2-meth­­oxy­phen­yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, and bDepartment of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 11 March 2012; accepted 13 March 2012; online 21 March 2012)

In the title compound, C13H18N2O2S, the carbonyl­thio­urea fragment is nearly planar with an r.m.s. deviation of 0.0096 Å. The dihedral angle between carbonyl­thio­urea group and the benzene ring is 19.16 (16)°. There are two intra­molecular N—H⋯O hydrogen bonds, which lead to two pseudo-six-membered rings. Weak intra­molecular C—H⋯S hydrogen bonding also occurs.

Related literature

For related structures, see: Saeed & Flörke (2007[Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.]); Yusof et al. (2008[Yusof, M. S. M., Muharam, S. H., Kassim, M. B. & Yamin, B. M. (2008). Acta Cryst. E64, o1137.]); Shoukat et al. (2007[Shoukat, N., Rauf, M. K., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o3207.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O2S

  • Mr = 266.35

  • Orthorhombic, P 21 21 21

  • a = 5.9181 (10) Å

  • b = 13.492 (2) Å

  • c = 17.592 (3) Å

  • V = 1404.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 273 K

  • 0.50 × 0.14 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.980

  • 8711 measured reflections

  • 2763 independent reflections

  • 2227 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.147

  • S = 1.13

  • 2763 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1141

  • Flack parameter: 0.63 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.89 2.619 (4) 142
N2—H2A⋯O2 0.86 2.17 2.575 (4) 109
C12—H12A⋯S1 0.93 2.62 3.235 (4) 124

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The title compound is analogous to the previously reported, 1-(2-Nitrophenyl)-3-pivaloylthiourea (Saeed and Flörke, 2007) except that the nitro group is replace with methoxy group (Fig. 1). The bond lengths are in normal ranges (Allen et al., 1987) and comparable with other similar molecule reported (Yusof et al. 2008; Shoukat et al. 2007).

The carbonylthiourea (S1/N1/N2/O1/C4–C7) and phenyl fragments are essentially planar, with rms deviations of 0.0096 Å and 0.0064 Å, respectively. These two fragments inclined at each other at an angle of 19.16(0.16)°. There are two intramolecular hydrogen bonds, N2—H2A···O1 and N2—H2A···O2 leading to two pseudo-six membered rings. Weak C-H···S intramolecular H-bonding is also exist. There is no intermolecular hydrogen bond in the crystal structure.

Related literature top

For related structures, see: Saeed & Flörke (2007); Yusof et al. (2008); Shoukat et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a stirring acetone solution (75 ml) of pivaloyl chloride (5.0 g, 0.04 mol) and ammonium thiocyanate (3.15 g, 0.04 mol), 2-methoxyaniline (0.49 g, 0.04 mol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice blocks. The white precipitate was filtered off and washed with distilled water and cold ethanol before being dried under vacuum. Good quality crystals were obtained by recrystallization from DMF.

Refinement top

H atoms on C were positioned geometrically with C—H 0.93, 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H)= xUeq(C) where x=1.5 for methyl H and x=1.2 for aromatic H atoms. The H atom attached to oxygen atoms were located from the Fourier difference map and refined isotropically.

Structure description top

The title compound is analogous to the previously reported, 1-(2-Nitrophenyl)-3-pivaloylthiourea (Saeed and Flörke, 2007) except that the nitro group is replace with methoxy group (Fig. 1). The bond lengths are in normal ranges (Allen et al., 1987) and comparable with other similar molecule reported (Yusof et al. 2008; Shoukat et al. 2007).

The carbonylthiourea (S1/N1/N2/O1/C4–C7) and phenyl fragments are essentially planar, with rms deviations of 0.0096 Å and 0.0064 Å, respectively. These two fragments inclined at each other at an angle of 19.16(0.16)°. There are two intramolecular hydrogen bonds, N2—H2A···O1 and N2—H2A···O2 leading to two pseudo-six membered rings. Weak C-H···S intramolecular H-bonding is also exist. There is no intermolecular hydrogen bond in the crystal structure.

For related structures, see: Saeed & Flörke (2007); Yusof et al. (2008); Shoukat et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Dashed lines show H-bondings.
N-(2,2-Dimethylpropanoyl)-N'-(2-methoxyphenyl)thiourea top
Crystal data top
C13H18N2O2SF(000) = 568
Mr = 266.35Dx = 1.259 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 770 reflections
a = 5.9181 (10) Åθ = 1.9–26.0°
b = 13.492 (2) ŵ = 0.23 mm1
c = 17.592 (3) ÅT = 273 K
V = 1404.7 (4) Å3Slab, colourless
Z = 40.50 × 0.14 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2763 independent reflections
Radiation source: fine-focus sealed tube2227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 83.66 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scanh = 76
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1616
Tmin = 0.895, Tmax = 0.980l = 2021
8711 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.2181P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2763 reflectionsΔρmax = 0.32 e Å3
163 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 1141 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.63 (15)
Crystal data top
C13H18N2O2SV = 1404.7 (4) Å3
Mr = 266.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9181 (10) ŵ = 0.23 mm1
b = 13.492 (2) ÅT = 273 K
c = 17.592 (3) Å0.50 × 0.14 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2763 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2227 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.980Rint = 0.045
8711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.147Δρmax = 0.32 e Å3
S = 1.13Δρmin = 0.18 e Å3
2763 reflectionsAbsolute structure: Flack (1983), 1141 Friedel pairs
163 parametersAbsolute structure parameter: 0.63 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1312 (2)0.79180 (7)0.57763 (7)0.0693 (4)
O10.3640 (5)0.47260 (17)0.56305 (13)0.0559 (7)
O20.7537 (5)0.5571 (2)0.67865 (15)0.0662 (8)
C60.2391 (6)0.6781 (2)0.58348 (19)0.0442 (8)
N20.3935 (5)0.6446 (2)0.63138 (15)0.0453 (7)
H2A0.43060.58360.62430.054*
N10.1602 (5)0.60835 (18)0.53095 (15)0.0427 (7)
H1A0.05730.62900.50030.051*
C50.2250 (6)0.5112 (2)0.52178 (18)0.0384 (8)
C80.7025 (7)0.6429 (3)0.71748 (19)0.0474 (9)
C90.8272 (8)0.6805 (3)0.7766 (2)0.0623 (11)
H9A0.95880.64890.79240.075*
C40.1096 (6)0.4544 (2)0.45732 (18)0.0445 (8)
C70.5083 (7)0.6910 (2)0.69201 (17)0.0434 (9)
C30.2134 (8)0.3508 (3)0.4531 (2)0.0682 (12)
H3A0.19010.31710.50050.102*
H3B0.37240.35620.44320.102*
H3C0.14270.31400.41280.102*
C20.1488 (9)0.5089 (3)0.3823 (2)0.0726 (13)
H2B0.08310.57380.38500.109*
H2C0.07980.47240.34160.109*
H2D0.30820.51460.37310.109*
C120.4381 (8)0.7757 (3)0.7293 (2)0.0599 (12)
H12A0.30610.80750.71420.072*
C110.5629 (10)0.8133 (3)0.7888 (2)0.0731 (15)
H11A0.51650.87110.81290.088*
C100.7544 (9)0.7660 (3)0.8125 (2)0.0714 (14)
H10A0.83650.79150.85320.086*
C130.9241 (8)0.4949 (3)0.7089 (2)0.0744 (13)
H13A0.94220.43790.67690.112*
H13B0.88170.47400.75910.112*
H13C1.06420.53070.71130.112*
C10.1417 (7)0.4454 (3)0.4742 (3)0.0734 (12)
H1B0.20720.51030.47770.110*
H1C0.16260.41100.52150.110*
H1D0.21410.40900.43410.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0848 (8)0.0424 (5)0.0806 (7)0.0145 (6)0.0263 (7)0.0102 (5)
O10.0650 (17)0.0465 (13)0.0562 (14)0.0105 (13)0.0175 (14)0.0061 (11)
O20.068 (2)0.0701 (18)0.0609 (15)0.0127 (16)0.0192 (15)0.0080 (14)
C60.045 (2)0.0429 (18)0.0448 (18)0.0036 (16)0.0009 (18)0.0016 (15)
N20.0535 (19)0.0360 (14)0.0465 (16)0.0025 (14)0.0089 (15)0.0053 (12)
N10.0445 (17)0.0396 (15)0.0440 (15)0.0033 (13)0.0109 (14)0.0057 (12)
C50.0366 (19)0.0403 (17)0.0385 (17)0.0044 (15)0.0033 (15)0.0015 (14)
C80.054 (2)0.048 (2)0.0405 (18)0.0111 (18)0.0028 (17)0.0069 (16)
C90.061 (3)0.074 (3)0.051 (2)0.020 (2)0.010 (2)0.008 (2)
C40.039 (2)0.0484 (19)0.0462 (19)0.0020 (17)0.0003 (16)0.0068 (15)
C70.057 (2)0.0386 (18)0.0351 (18)0.0119 (18)0.0021 (17)0.0025 (14)
C30.074 (3)0.057 (2)0.074 (3)0.002 (2)0.016 (2)0.027 (2)
C20.100 (4)0.078 (3)0.039 (2)0.011 (3)0.004 (2)0.0070 (19)
C120.085 (3)0.050 (2)0.045 (2)0.007 (2)0.003 (2)0.0055 (17)
C110.119 (5)0.050 (2)0.050 (2)0.015 (3)0.002 (3)0.0072 (18)
C100.100 (4)0.068 (3)0.046 (2)0.041 (3)0.016 (3)0.000 (2)
C130.063 (3)0.088 (3)0.073 (3)0.012 (2)0.007 (2)0.008 (2)
C10.051 (3)0.080 (3)0.090 (3)0.014 (2)0.002 (2)0.021 (2)
Geometric parameters (Å, º) top
S1—C61.665 (3)C7—C121.382 (5)
O1—C51.215 (4)C3—H3A0.9600
O2—C81.378 (5)C3—H3B0.9600
O2—C131.416 (5)C3—H3C0.9600
C6—N21.323 (4)C2—H2B0.9600
C6—N11.399 (4)C2—H2C0.9600
N2—C71.411 (4)C2—H2D0.9600
N2—H2A0.8600C12—C111.378 (6)
N1—C51.375 (4)C12—H12A0.9300
N1—H1A0.8600C11—C101.366 (7)
C5—C41.530 (5)C11—H11A0.9300
C8—C91.373 (5)C10—H10A0.9300
C8—C71.394 (5)C13—H13A0.9600
C9—C101.385 (6)C13—H13B0.9600
C9—H9A0.9300C13—H13C0.9600
C4—C11.522 (5)C1—H1B0.9600
C4—C21.529 (5)C1—H1C0.9600
C4—C31.529 (5)C1—H1D0.9600
C8—O2—C13117.9 (3)C4—C3—H3C109.5
N2—C6—N1114.9 (3)H3A—C3—H3C109.5
N2—C6—S1128.3 (3)H3B—C3—H3C109.5
N1—C6—S1116.8 (3)C4—C2—H2B109.5
C6—N2—C7131.5 (3)C4—C2—H2C109.5
C6—N2—H2A114.3H2B—C2—H2C109.5
C7—N2—H2A114.3C4—C2—H2D109.5
C5—N1—C6128.7 (3)H2B—C2—H2D109.5
C5—N1—H1A115.7H2C—C2—H2D109.5
C6—N1—H1A115.7C11—C12—C7120.2 (4)
O1—C5—N1121.9 (3)C11—C12—H12A119.9
O1—C5—C4122.0 (3)C7—C12—H12A119.9
N1—C5—C4116.1 (3)C10—C11—C12120.4 (4)
C9—C8—O2124.6 (4)C10—C11—H11A119.8
C9—C8—C7121.0 (4)C12—C11—H11A119.8
O2—C8—C7114.4 (3)C11—C10—C9120.5 (4)
C8—C9—C10119.1 (4)C11—C10—H10A119.7
C8—C9—H9A120.5C9—C10—H10A119.7
C10—C9—H9A120.5O2—C13—H13A109.5
C1—C4—C2110.8 (4)O2—C13—H13B109.5
C1—C4—C3109.2 (3)H13A—C13—H13B109.5
C2—C4—C3109.6 (3)O2—C13—H13C109.5
C1—C4—C5109.4 (3)H13A—C13—H13C109.5
C2—C4—C5109.4 (3)H13B—C13—H13C109.5
C3—C4—C5108.4 (3)C4—C1—H1B109.5
C12—C7—C8118.7 (3)C4—C1—H1C109.5
C12—C7—N2125.5 (4)H1B—C1—H1C109.5
C8—C7—N2115.7 (3)C4—C1—H1D109.5
C4—C3—H3A109.5H1B—C1—H1D109.5
C4—C3—H3B109.5H1C—C1—H1D109.5
H3A—C3—H3B109.5
N1—C6—N2—C7178.8 (3)O1—C5—C4—C34.2 (5)
S1—C6—N2—C72.0 (6)N1—C5—C4—C3176.6 (3)
N2—C6—N1—C51.5 (5)C9—C8—C7—C122.3 (5)
S1—C6—N1—C5177.9 (3)O2—C8—C7—C12177.6 (3)
C6—N1—C5—O12.2 (5)C9—C8—C7—N2179.4 (3)
C6—N1—C5—C4178.6 (3)O2—C8—C7—N20.5 (4)
C13—O2—C8—C910.6 (5)C6—N2—C7—C1219.9 (6)
C13—O2—C8—C7169.3 (3)C6—N2—C7—C8163.3 (3)
O2—C8—C9—C10178.1 (3)C8—C7—C12—C112.2 (6)
C7—C8—C9—C101.7 (5)N2—C7—C12—C11178.9 (3)
O1—C5—C4—C1114.7 (4)C7—C12—C11—C101.4 (6)
N1—C5—C4—C164.5 (4)C12—C11—C10—C90.8 (6)
O1—C5—C4—C2123.7 (4)C8—C9—C10—C111.0 (6)
N1—C5—C4—C257.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.892.619 (4)142
N2—H2A···O20.862.172.575 (4)109
C12—H12A···S10.932.623.235 (4)124

Experimental details

Crystal data
Chemical formulaC13H18N2O2S
Mr266.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)5.9181 (10), 13.492 (2), 17.592 (3)
V3)1404.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.50 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.895, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8711, 2763, 2227
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.147, 1.13
No. of reflections2763
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.18
Absolute structureFlack (1983), 1141 Friedel pairs
Absolute structure parameter0.63 (15)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.892.619 (4)142
N2—H2A···O20.862.172.575 (4)109
C12—H12A···S10.932.623.235 (4)124
 

Acknowledgements

The authors wish to thank both Universiti Malaysia Terengganu and Universiti Kebangsaan Malaysia for the research facilities and the Ministry of Higher Education Malaysia for the research grant FRGS 59178.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoukat, N., Rauf, M. K., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o3207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Muharam, S. H., Kassim, M. B. & Yamin, B. M. (2008). Acta Cryst. E64, o1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds