metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­­(L-phenyl­alaninato-κ2N,O)nickel(II)

aDepartment of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran, and bLaboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain
*Correspondence e-mail: m_ghorbanloo@yahoo.com

(Received 23 February 2012; accepted 12 March 2012; online 17 March 2012)

In the title compound, [Ni(C9H10NO2)2(H2O)2], the coordination geometry around the NiII ion can be described as distorted octa­hedral, with two N atoms and two O atoms from phenyl­alaninate ligands in the basal plane and two aqua O atoms at the axial sites. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For background to amino acid complexes, see: Thanavelan et al. (2011[Thanavelan, R., Ramalingam, G., Manikandan, G. & Thanikachalam, V. (2011). J. Saudi Chem. Soc. http://dx.doi.org/10.1016/j.jscs.2011.06.016.]). For related structures, see: Rombach et al. (2002[Rombach, M., Gelinsky, M. & Vahrenkamp, M. (2002). Inorg. Chim. Acta, 334, 25-33.]); Marandi & Shahbakhsh (2007[Marandi, F. & Shahbakhsh, N. (2007). Z. Anorg. Allg. Chem. 6333, 1137-1139.]). For similar hydrogen-bonded networks, see: Cao et al. (2011[Cao, Y., Zhao, H., Bai, F., Xing, V., Wei, D., Niu, S. & Shi, S. (2011). Inorg. Chim. Acta, 368, 223-230.]). For details of ππ stacking inter­actions, see: Janiak (2000)[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.].

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H10NO2)2(H2O)2]

  • Mr = 423.10

  • Monoclinic, P 21

  • a = 4.8272 (5) Å

  • b = 32.617 (4) Å

  • c = 6.0585 (7) Å

  • β = 105.995 (1)°

  • V = 916.97 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 100 K

  • 0.46 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]) Tmin = 0.633, Tmax = 0.853

  • 8826 measured reflections

  • 3214 independent reflections

  • 3157 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.06

  • 3214 reflections

  • 256 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1567 Friedel pairs

  • Flack parameter: −0.003 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O1i 0.84 (2) 1.95 (2) 2.747 (2) 159 (2)
O13—H13B⋯O23ii 0.86 (2) 1.88 (2) 2.658 (2) 150 (3)
O33—H33A⋯O3iii 0.83 (2) 1.88 (2) 2.691 (2) 163 (3)
O33—H33B⋯O21iv 0.83 (2) 1.97 (2) 2.748 (2) 156 (2)
N5—H5B⋯O1i 0.92 2.49 3.359 (2) 157
N5—H5A⋯O3iii 0.92 2.39 3.193 (3) 147
N25—H25A⋯O13iv 0.92 2.57 3.148 (2) 122
N25—H25A⋯O21iv 0.92 2.47 3.310 (2) 153
N25—H25B⋯O23ii 0.92 2.36 3.181 (3) 149
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) x, y, z+1; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Amino acids are of special importance among the other chemical substances since they form the basic constituents of living organisms. It is imperative to know the properties of amino acids in order to understand and explain their behavior and the synthesis of peptides, proteins and enzymes in living organisms. Also they are widely applied in food, cosmetic, pharmaceutical and chemical industry. It is known that the reactions of peptides, proteins and enzymes with metal ions are of biochemical importance but they are yet to be thoroughly understood (Thanavelan et al., 2011). The explanation of these phenomena in the biological systems can be possible only by the determination of structure of amino acids.

Because of the importance the characterization of amino acid derivatives, here, we report the synthesis and crystal structure of Trans-diaqua-bis[(L-phenylalanine)-κ2N,O]nickel(II). In the title compound, [Ni(OH2)2(C18H20N2O4)2], the coordination geometry around the nickel(II) can be described as a distored octahedral which is shown in Fig. 1. In the title compound, the amino acid ligands form equatorial plane and axial positions are occupied by the oxygen atoms from aqua ligands. The oxygen atoms of the amino acid ligands are located trans to each other. Moreover, the nitrogen atom of the amino acid ligand (N5) is located trans to the nitrogen atom of the other amino acid (N25). In the title compound the amino acid ligands form two five–membered chelate rings.

The carboxylate groups of the amino acids in the title compound are involved in anti–anti bidentate bridging coordination. The amino acid is N,O-chelated, forming a five-membered ring. Unlike our complex, most of aminoacid complexes with this kind of O,N chelation form coordination polymers held together by bridging carboxylate ligands (Rombach et al., 2002).

This configuration is stabilized by four intermolecular hydrogen bonds of the types O—H···O=C—O and O—H···O—C=O and five hydrogen bonds of the type N—H···O=C—O and N—H···O—C=O (Fig. 2). The carboxylate groups are the acceptors of all hydrogen bonds. Really, this structure as composed of molecules linked by hydrogen bonded into layers leading to 1D network.

Related literature top

For background to amino acid complexes, see: Thanavelan et al. (2011). For related structures, see: Rombach et al. (2002); Marandi & Shahbakhsh (2007). For similar hydrogen-bonded networks, see: Cao et al. (2011). For details of ππ stacking interactions, see: Janiak (2000).

Experimental top

All reagents were commercially available and used as received. For preparing the title compound a methanol (10 ml) solution of L-phenylalanine (2 mmol) and NaOH (2mmol) were added to a methanol solution (10 ml) of Ni(NO3)2.6H2O (1 mmol), and the mixture was refluxed for 6 h.

The X-ray quality blue crystals of the title compound were obtained by slow solvent evaporation during 5 days. Yield: 68%, mp > 400 °C. IR (cm-1): 3357 (broad, H2O), 1594 (vs, νas(COO)), 1497 (s, νs(COO)), 1404 (s, δ-NH2), 450 (w), 546 (w), 575 (w).

Refinement top

H atoms were located in difference Fourier maps and included in the refinement as constrained idealized atoms riding on the parent atom, with C-H = 0.95 Å (aromatic groups), 1.00 Å (CH–N groups), 0.99 Å (CH2–Ph groups) or 0.92 Å (–NH2 groups) and with Uiso(H) = 1.2Ueq(C,N). The H atoms of the aqua ligands were refined as semi-free with a distance restraint, and with Uiso(H) = 1.2Ueq(O).

Structure description top

Amino acids are of special importance among the other chemical substances since they form the basic constituents of living organisms. It is imperative to know the properties of amino acids in order to understand and explain their behavior and the synthesis of peptides, proteins and enzymes in living organisms. Also they are widely applied in food, cosmetic, pharmaceutical and chemical industry. It is known that the reactions of peptides, proteins and enzymes with metal ions are of biochemical importance but they are yet to be thoroughly understood (Thanavelan et al., 2011). The explanation of these phenomena in the biological systems can be possible only by the determination of structure of amino acids.

Because of the importance the characterization of amino acid derivatives, here, we report the synthesis and crystal structure of Trans-diaqua-bis[(L-phenylalanine)-κ2N,O]nickel(II). In the title compound, [Ni(OH2)2(C18H20N2O4)2], the coordination geometry around the nickel(II) can be described as a distored octahedral which is shown in Fig. 1. In the title compound, the amino acid ligands form equatorial plane and axial positions are occupied by the oxygen atoms from aqua ligands. The oxygen atoms of the amino acid ligands are located trans to each other. Moreover, the nitrogen atom of the amino acid ligand (N5) is located trans to the nitrogen atom of the other amino acid (N25). In the title compound the amino acid ligands form two five–membered chelate rings.

The carboxylate groups of the amino acids in the title compound are involved in anti–anti bidentate bridging coordination. The amino acid is N,O-chelated, forming a five-membered ring. Unlike our complex, most of aminoacid complexes with this kind of O,N chelation form coordination polymers held together by bridging carboxylate ligands (Rombach et al., 2002).

This configuration is stabilized by four intermolecular hydrogen bonds of the types O—H···O=C—O and O—H···O—C=O and five hydrogen bonds of the type N—H···O=C—O and N—H···O—C=O (Fig. 2). The carboxylate groups are the acceptors of all hydrogen bonds. Really, this structure as composed of molecules linked by hydrogen bonded into layers leading to 1D network.

For background to amino acid complexes, see: Thanavelan et al. (2011). For related structures, see: Rombach et al. (2002); Marandi & Shahbakhsh (2007). For similar hydrogen-bonded networks, see: Cao et al. (2011). For details of ππ stacking interactions, see: Janiak (2000).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound which O–H···O hydrogen bonds shown as blue dashed lines.
trans-Diaquabis(L-phenylalaninato- κ2N,O)nickel(II) top
Crystal data top
[Ni(C9H10NO2)2(H2O)2]F(000) = 444
Mr = 423.10Dx = 1.532 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7357 reflections
a = 4.8272 (5) Åθ = 2.5–27.8°
b = 32.617 (4) ŵ = 1.10 mm1
c = 6.0585 (7) ÅT = 100 K
β = 105.995 (1)°Block, pale blue
V = 916.97 (18) Å30.46 × 0.15 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3214 independent reflections
Radiation source: fine-focus sealed tube3157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 55
Tmin = 0.633, Tmax = 0.853k = 3838
8826 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.0026P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3214 reflectionsΔρmax = 0.43 e Å3
256 parametersΔρmin = 0.22 e Å3
5 restraintsAbsolute structure: Flack (1983), 1567 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (10)
Crystal data top
[Ni(C9H10NO2)2(H2O)2]V = 916.97 (18) Å3
Mr = 423.10Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.8272 (5) ŵ = 1.10 mm1
b = 32.617 (4) ÅT = 100 K
c = 6.0585 (7) Å0.46 × 0.15 × 0.15 mm
β = 105.995 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3214 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3157 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.853Rint = 0.020
8826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058Δρmax = 0.43 e Å3
S = 1.06Δρmin = 0.22 e Å3
3214 reflectionsAbsolute structure: Flack (1983), 1567 Friedel pairs
256 parametersAbsolute structure parameter: 0.003 (10)
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.28611 (5)0.648490 (11)0.40794 (4)0.01552 (8)
O10.4353 (3)0.62803 (5)0.1433 (3)0.0176 (3)
C20.3680 (5)0.59137 (6)0.0787 (4)0.0154 (5)
O30.4153 (4)0.57545 (5)0.0940 (3)0.0208 (4)
C40.2425 (5)0.56442 (7)0.2377 (4)0.0187 (5)
H40.41080.55120.34950.022*
N50.1012 (4)0.59095 (5)0.3755 (3)0.0166 (4)
H5A0.12390.57960.51840.020*
H5B0.09290.59290.30380.020*
C60.0588 (5)0.52992 (7)0.1089 (4)0.0213 (5)
H6A0.17090.51530.01890.026*
H6B0.11160.54210.00190.026*
C70.0470 (5)0.49844 (7)0.2534 (4)0.0212 (5)
C80.2788 (5)0.47360 (8)0.1455 (4)0.0245 (5)
H80.36930.47730.01360.029*
C90.3811 (6)0.44351 (9)0.2643 (5)0.0285 (6)
H90.53870.42680.18640.034*
C100.2533 (6)0.43785 (8)0.4970 (5)0.0262 (6)
H100.32410.41750.57940.031*
C110.0218 (6)0.46217 (7)0.6083 (4)0.0249 (5)
H110.06750.45840.76750.030*
C120.0812 (5)0.49241 (7)0.4865 (4)0.0233 (5)
H120.24020.50890.56400.028*
O130.0828 (4)0.67531 (5)0.1807 (3)0.0190 (3)
H13A0.231 (4)0.6608 (7)0.133 (4)0.023*
H13B0.042 (6)0.6837 (8)0.059 (3)0.023*
O210.1315 (3)0.66878 (5)0.6664 (3)0.0173 (3)
C220.2192 (5)0.70390 (7)0.7484 (4)0.0170 (5)
O230.1545 (4)0.72004 (5)0.9143 (3)0.0215 (4)
C240.4021 (5)0.72964 (7)0.6278 (4)0.0177 (5)
H240.58460.73790.74370.021*
N250.4761 (4)0.70600 (5)0.4425 (3)0.0169 (4)
H25A0.67300.70320.47600.020*
H25B0.41380.72000.30600.020*
C260.2290 (5)0.76835 (7)0.5355 (4)0.0218 (5)
H26A0.05240.76010.41640.026*
H26B0.16800.78130.66230.026*
C270.3862 (5)0.80002 (7)0.4338 (4)0.0198 (5)
C280.6211 (5)0.82146 (7)0.5734 (4)0.0220 (5)
H280.68660.81530.73260.026*
C290.7596 (6)0.85182 (8)0.4812 (5)0.0255 (6)
H290.91870.86620.57730.031*
C300.6654 (6)0.86095 (8)0.2499 (5)0.0274 (7)
H300.76050.88150.18680.033*
C310.4317 (6)0.84014 (8)0.1094 (4)0.0278 (6)
H310.36510.84670.04920.033*
C320.2955 (5)0.80967 (7)0.2019 (4)0.0239 (5)
H320.13770.79520.10460.029*
O330.6519 (4)0.62138 (5)0.6364 (3)0.0187 (3)
H33A0.592 (6)0.6108 (8)0.740 (4)0.022*
H33B0.792 (4)0.6368 (6)0.684 (4)0.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01495 (13)0.01567 (13)0.01611 (13)0.00181 (13)0.00456 (9)0.00010 (13)
O10.0157 (8)0.0181 (8)0.0192 (8)0.0020 (6)0.0051 (6)0.0016 (7)
C20.0127 (11)0.0169 (12)0.0149 (12)0.0017 (9)0.0011 (9)0.0025 (9)
O30.0238 (9)0.0194 (8)0.0224 (9)0.0007 (7)0.0120 (7)0.0004 (7)
C40.0191 (12)0.0182 (12)0.0197 (12)0.0010 (9)0.0067 (10)0.0008 (9)
N50.0181 (10)0.0161 (10)0.0156 (9)0.0020 (8)0.0044 (8)0.0015 (7)
C60.0250 (13)0.0195 (12)0.0186 (12)0.0010 (10)0.0048 (10)0.0007 (9)
C70.0235 (13)0.0177 (12)0.0253 (13)0.0015 (10)0.0118 (10)0.0026 (9)
C80.0250 (13)0.0251 (13)0.0228 (13)0.0014 (10)0.0054 (10)0.0018 (10)
C90.0239 (15)0.0243 (14)0.0378 (16)0.0079 (11)0.0092 (12)0.0063 (12)
C100.0332 (16)0.0180 (13)0.0329 (15)0.0034 (11)0.0184 (13)0.0009 (11)
C110.0310 (14)0.0197 (12)0.0251 (13)0.0021 (11)0.0098 (11)0.0016 (10)
C120.0234 (13)0.0182 (12)0.0279 (13)0.0034 (10)0.0065 (11)0.0037 (10)
O130.0169 (8)0.0235 (9)0.0168 (9)0.0037 (7)0.0051 (7)0.0035 (7)
O210.0198 (8)0.0170 (8)0.0162 (8)0.0034 (7)0.0069 (7)0.0011 (6)
C220.0131 (11)0.0197 (12)0.0174 (12)0.0010 (9)0.0030 (9)0.0026 (9)
O230.0298 (10)0.0194 (9)0.0180 (9)0.0024 (7)0.0111 (7)0.0001 (7)
C240.0178 (12)0.0155 (11)0.0207 (12)0.0008 (9)0.0068 (10)0.0002 (9)
N250.0171 (10)0.0159 (10)0.0184 (10)0.0017 (8)0.0064 (8)0.0004 (7)
C260.0200 (12)0.0211 (12)0.0260 (12)0.0023 (10)0.0093 (10)0.0026 (10)
C270.0215 (12)0.0148 (11)0.0253 (13)0.0037 (10)0.0101 (10)0.0005 (9)
C280.0233 (12)0.0212 (12)0.0221 (12)0.0036 (10)0.0076 (10)0.0026 (9)
C290.0227 (14)0.0170 (13)0.0383 (16)0.0007 (11)0.0108 (12)0.0000 (12)
C300.0340 (16)0.0176 (13)0.0367 (17)0.0022 (11)0.0200 (13)0.0041 (11)
C310.0401 (16)0.0232 (13)0.0238 (13)0.0040 (11)0.0153 (12)0.0032 (10)
C320.0292 (13)0.0198 (12)0.0236 (13)0.0010 (10)0.0086 (11)0.0000 (10)
O330.0164 (8)0.0219 (9)0.0175 (8)0.0040 (7)0.0042 (7)0.0027 (6)
Geometric parameters (Å, º) top
Ni1—O212.0223 (16)C12—H120.9500
Ni1—O12.0421 (16)O13—H13A0.839 (17)
Ni1—N52.0642 (18)O13—H13B0.861 (17)
Ni1—N252.0731 (18)O21—C221.274 (3)
Ni1—O332.1139 (17)C22—O231.249 (3)
Ni1—O132.1171 (17)C22—C241.541 (3)
O1—C21.272 (3)C24—N251.484 (3)
C2—O31.245 (3)C24—C261.532 (3)
C2—C41.546 (3)C24—H241.0000
C4—N51.492 (3)N25—H25A0.9200
C4—C61.510 (3)N25—H25B0.9200
C4—H41.0000C26—C271.510 (3)
N5—H5A0.9200C26—H26A0.9900
N5—H5B0.9200C26—H26B0.9900
C6—C71.526 (3)C27—C321.388 (3)
C6—H6A0.9900C27—C281.401 (3)
C6—H6B0.9900C28—C291.395 (4)
C7—C81.390 (3)C28—H280.9500
C7—C121.391 (3)C29—C301.381 (4)
C8—C91.386 (4)C29—H290.9500
C8—H80.9500C30—C311.389 (4)
C9—C101.386 (4)C30—H300.9500
C9—H90.9500C31—C321.392 (3)
C10—C111.385 (4)C31—H310.9500
C10—H100.9500C32—H320.9500
C11—C121.402 (3)O33—H33A0.833 (17)
C11—H110.9500O33—H33B0.829 (17)
O21—Ni1—O1179.03 (7)C12—C11—H11119.9
O21—Ni1—N597.42 (7)C7—C12—C11120.7 (2)
O1—Ni1—N582.24 (7)C7—C12—H12119.6
O21—Ni1—N2582.71 (7)C11—C12—H12119.6
O1—Ni1—N2597.64 (7)Ni1—O13—H13A118.2 (18)
N5—Ni1—N25179.38 (8)Ni1—O13—H13B109.7 (18)
O21—Ni1—O3392.85 (6)H13A—O13—H13B105 (2)
O1—Ni1—O3388.04 (7)C22—O21—Ni1116.26 (14)
N5—Ni1—O3386.75 (7)O23—C22—O21124.3 (2)
N25—Ni1—O3392.64 (7)O23—C22—C24117.1 (2)
O21—Ni1—O1386.82 (6)O21—C22—C24118.5 (2)
O1—Ni1—O1392.29 (6)N25—C24—C26111.88 (18)
N5—Ni1—O1392.84 (7)N25—C24—C22111.37 (18)
N25—Ni1—O1387.77 (7)C26—C24—C22107.21 (18)
O33—Ni1—O13179.43 (7)N25—C24—H24108.8
C2—O1—Ni1115.66 (14)C26—C24—H24108.8
O3—C2—O1124.1 (2)C22—C24—H24108.8
O3—C2—C4118.74 (19)C24—N25—Ni1110.76 (14)
O1—C2—C4116.99 (19)C24—N25—H25A109.5
N5—C4—C6115.3 (2)Ni1—N25—H25A109.5
N5—C4—C2109.68 (17)C24—N25—H25B109.5
C6—C4—C2112.15 (19)Ni1—N25—H25B109.5
N5—C4—H4106.4H25A—N25—H25B108.1
C6—C4—H4106.4C27—C26—C24115.33 (19)
C2—C4—H4106.4C27—C26—H26A108.4
C4—N5—Ni1109.17 (14)C24—C26—H26A108.4
C4—N5—H5A109.8C27—C26—H26B108.4
Ni1—N5—H5A109.8C24—C26—H26B108.4
C4—N5—H5B109.8H26A—C26—H26B107.5
Ni1—N5—H5B109.8C32—C27—C28118.4 (2)
H5A—N5—H5B108.3C32—C27—C26121.0 (2)
C4—C6—C7116.5 (2)C28—C27—C26120.6 (2)
C4—C6—H6A108.2C29—C28—C27120.7 (2)
C7—C6—H6A108.2C29—C28—H28119.7
C4—C6—H6B108.2C27—C28—H28119.7
C7—C6—H6B108.2C30—C29—C28119.9 (3)
H6A—C6—H6B107.3C30—C29—H29120.0
C8—C7—C12118.1 (2)C28—C29—H29120.0
C8—C7—C6118.4 (2)C29—C30—C31120.1 (2)
C12—C7—C6123.5 (2)C29—C30—H30120.0
C9—C8—C7121.6 (2)C31—C30—H30120.0
C9—C8—H8119.2C30—C31—C32119.8 (2)
C7—C8—H8119.2C30—C31—H31120.1
C8—C9—C10120.0 (3)C32—C31—H31120.1
C8—C9—H9120.0C27—C32—C31121.2 (2)
C10—C9—H9120.0C27—C32—H32119.4
C11—C10—C9119.5 (2)C31—C32—H32119.4
C11—C10—H10120.3Ni1—O33—H33A105.4 (19)
C9—C10—H10120.3Ni1—O33—H33B115.5 (17)
C10—C11—C12120.1 (2)H33A—O33—H33B114 (3)
C10—C11—H11119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O1i0.84 (2)1.95 (2)2.747 (2)159 (2)
O13—H13B···O23ii0.86 (2)1.88 (2)2.658 (2)150 (3)
O33—H33A···O3iii0.83 (2)1.88 (2)2.691 (2)163 (3)
O33—H33B···O21iv0.83 (2)1.97 (2)2.748 (2)156 (2)
N5—H5B···O1i0.922.493.359 (2)157
N5—H5A···O3iii0.922.393.193 (3)147
N25—H25A···O13iv0.922.573.148 (2)122
N25—H25A···O21iv0.922.473.310 (2)153
N25—H25B···O23ii0.922.363.181 (3)149
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x, y, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C9H10NO2)2(H2O)2]
Mr423.10
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.8272 (5), 32.617 (4), 6.0585 (7)
β (°) 105.995 (1)
V3)916.97 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.46 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.633, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
8826, 3214, 3157
Rint0.020
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.06
No. of reflections3214
No. of parameters256
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.22
Absolute structureFlack (1983), 1567 Friedel pairs
Absolute structure parameter0.003 (10)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O1i0.839 (17)1.950 (18)2.747 (2)159 (2)
O13—H13B···O23ii0.861 (17)1.88 (2)2.658 (2)150 (3)
O33—H33A···O3iii0.833 (17)1.883 (19)2.691 (2)163 (3)
O33—H33B···O21iv0.829 (17)1.971 (19)2.748 (2)156 (2)
N5—H5B···O1i0.922.493.359 (2)156.5
N5—H5A···O3iii0.922.393.193 (3)146.6
N25—H25A···O13iv0.922.573.148 (2)121.8
N25—H25A···O21iv0.922.473.310 (2)152.6
N25—H25B···O23ii0.922.363.181 (3)148.8
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors are grateful to Zanjan University for financial support. The Factoría de Cristalización, CONSOLIDER INGENIO-2010 project provided X-ray structural facilities for this work.

References

First citationBruker (2008). SADABS. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Y., Zhao, H., Bai, F., Xing, V., Wei, D., Niu, S. & Shi, S. (2011). Inorg. Chim. Acta, 368, 223–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMarandi, F. & Shahbakhsh, N. (2007). Z. Anorg. Allg. Chem. 6333, 1137–1139.  Web of Science CSD CrossRef Google Scholar
First citationRombach, M., Gelinsky, M. & Vahrenkamp, M. (2002). Inorg. Chim. Acta, 334, 25–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanavelan, R., Ramalingam, G., Manikandan, G. & Thanikachalam, V. (2011). J. Saudi Chem. Soc. http://dx.doi.org/10.1016/j.jscs.2011.06.016Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds