metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m400-m401

Di­aqua­bis­­(propane-1,3-di­amine)­nickel(II) bis­­(propane-1,3-di­amine)­di­sulfato­nickelate(II)

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine
*Correspondence e-mail: rusanova_j@yahoo.com

(Received 24 February 2012; accepted 5 March 2012; online 10 March 2012)

The ionic NiII title complex, [Ni(C3H10N2)2(H2O)2][Ni(SO4)2(C3H10N2)2], is built up of [Ni(dipr)2(H2O)2]2+ complex cations and [Ni(dipr)2(SO4)2]2− complex anions (dipr is propane-1,3-diamine). Both NiII atoms display a slightly distorted octa­hedral coordination and are located on inversion centers. There are several types of hydrogen-bonding inter­actions, which connect complex cations and anions into a two-dimensional network parallel to (010). Hydrogen bonds formed by the axially coordinated water mol­ecule of the complex cation and one of the O atoms of the sulfate groups of the complex anion (first type) link them into chains along the c axis. These chains are linked to each other through hydrogen bonds formed by an O atom (second type) of the SO4 groups and NH2 groups of the ligand of the complex cations from neighboring chains, forming a two-dimensional hydrogen-bonded net perpendicular to the b axis. The third type of O atoms of the sulfate groups of the complex anion are also linked into chains by a combination of both previously described types of H-atom connections.

Related literature

For background to direct synthesis, see: Nesterov et al. (2004[Nesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. pp. 7868-7876.], 2006[Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, F., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605-4607.]); Kovbasyuk et al. (1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161-163.], 1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735-2738.]); Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, pp. 263-266.]). For the structures of related complexes, see: Clegg et al. (1992[Clegg, W., Bharadwaj, P. K. & Mandal, S. (1992). Acta Cryst. C48, 942-943.]); Kim & Lee (2002[Kim, C.-H. & Lee, S.-G. (2002). Acta Cryst. C58, m421-m423.]); Fritsky et al. (2004[Fritsky, I. O., Swiaztek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]); Nowicka et al. (2002[Nowicka, B., Schmauch, G., Chihara, T., Heinemann, F. W., Hagiwara, M., Wakatsuki, Y. & Kisch, H. (2002). Bull. Chem. Soc. Jpn, 75, 2169-2175.]); Stockner et al. (2007[Stockner, F., Beckert, R., Gleich, D., Birckner, E., Gunther, W., Gorls, H. & Vaughan, G. (2007). Eur. J. Org. Chem. pp. 1237-1243.]); Duesler & Raymond (1978[Duesler, E. N. & Raymond, K. N. (1978). Inorg. Chim. Acta, 30, 87-95.]); Jurnak & Raymond (1974[Jurnak, F. A. & Raymond, K. N. (1974). Inorg. Chem. 13, 2387-2397.]); Solans et al. (1982[Solans, X., Font-Altaba, M., Montfort, M. & Ribas, J. (1982). Acta Cryst. B38, 2899-2901.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H10N2)2(H2O)2][Ni(SO4)2(C3H10N2)2]

  • Mr = 642.1

  • Triclinic, [P \overline 1]

  • a = 6.7055 (1) Å

  • b = 8.9098 (2) Å

  • c = 11.9504 (4) Å

  • α = 103.016 (2)°

  • β = 103.795 (2)°

  • γ = 105.729 (1)°

  • V = 634.52 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 296 K

  • 0.49 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2009[Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.]) Tmin = 0.488, Tmax = 0.703

  • 10425 measured reflections

  • 3078 independent reflections

  • 2728 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.07

  • 3078 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H9⋯O1 0.82 (2) 1.96 (2) 2.7739 (16) 172 (2)
N2—H1⋯O4 0.823 (19) 2.265 (19) 3.0528 (18) 160.4 (16)
N1—H4⋯O2i 0.84 (2) 2.28 (2) 3.0621 (18) 154.9 (18)
O5—H10⋯O2i 0.70 (2) 2.15 (3) 2.8476 (18) 179 (3)
N3—H5⋯O3ii 0.86 (2) 2.06 (2) 2.8900 (17) 161.4 (17)
N2—H2⋯O2iii 0.923 (19) 2.145 (19) 3.0600 (17) 171.2 (15)
N4—H7⋯O3iv 0.91 (2) 2.03 (2) 2.9269 (18) 170 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+2, -z+1; (iii) -x+2, -y+2, -z; (iv) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It has been shown that direct synthesis is an efficient method to obtained novel homo- and heterometallic complexes (Nesterov et al. (2004, 2006); Kovbasyuk et al. (1997, 1998); Vassilyeva et al. (1997)). The title compound, [Ni(C3H10N2)2(H2O)2][Ni(C3H10N2)2(SO4)2], was obtained unintentionally as the product of an attempted synthesis of a Cu/ Ni mixed-metal complex using zerovalent Copper, Nickel(II) sulfate hexahydrate, diacetylmonoxime and 1,3-diaminopropane in methanol on air. As it shown on Fig. 1. Ni atoms in complex cations and anions display a slightly distorted octahedral coordination, being linked to four N atoms of two 1,3-propane-diamine ligands and two O atoms of two water molecules of complex cation or two sulfo-groups of complex anion.

Three types of hydrogen-bond interactions between O atoms of the sulfogroups and H atoms of the water molecules as well as NH2 groups of the 1,3-diaminopropane ligand are presented of Fig 2. The bond distances and angles in the title molecule agree well with the corresponding bond distances and angles reported in closely related compounds (Clegg et al., (1992); Nowicka et al., (2002); Kim & Lee, (2002); Fritsky et al., (2004); Stockner et al., (2007)).

The 1,3-propanediamine ligands have the typical chair conformation and bond distances and angles are similar to those observed elsewhere (Jurnak et al., (1974); Duesler et al., (1978); Solans et al., (1982)).

Related literature top

For background to direct synthesis, see: Nesterov et al. (2004, 2006); Kovbasyuk et al. (1997, 1998); Vassilyeva et al. (1997). For the structures of related complexes, see: Clegg et al. (1992); Kim & Lee (2002); Fritsky et al. (2004); Nowicka et al. (2002); Stockner et al. (2007); Duesler & Raymond (1978); Jurnak & Raymond (1974); Solans et al. (1982).

Experimental top

The title compound was prepared by direct synthesis mixing of the zero valent copper powder (0.064 g, 1 mmol), Ni (SO4)2.H2O (0.25 g, 1 mmol), diacetylmonoxime (0.1 g, 1 mmol), 1,3-diaminopropane (0.07 ml, 1 mmol), methanol (20 ml) were heated to 323–333 K and stirred magnetically for 2 h. Resulted mixture was filtered off and transparent brown solution was allowed to stand at room temperature and light blue crystals of the title compound suitable for X-ray analysis precipitated within few days. They were collected by filter-suction, washed with dry PríOH and finally dried in vacuo at room temperature (yield: 0.27 g)

Refinement top

The C—H hydrogen atoms where placed geometrically as riding model, the remaining H atoms were located in difference Fourier synthesis and refined in isotropic approximation.

Structure description top

It has been shown that direct synthesis is an efficient method to obtained novel homo- and heterometallic complexes (Nesterov et al. (2004, 2006); Kovbasyuk et al. (1997, 1998); Vassilyeva et al. (1997)). The title compound, [Ni(C3H10N2)2(H2O)2][Ni(C3H10N2)2(SO4)2], was obtained unintentionally as the product of an attempted synthesis of a Cu/ Ni mixed-metal complex using zerovalent Copper, Nickel(II) sulfate hexahydrate, diacetylmonoxime and 1,3-diaminopropane in methanol on air. As it shown on Fig. 1. Ni atoms in complex cations and anions display a slightly distorted octahedral coordination, being linked to four N atoms of two 1,3-propane-diamine ligands and two O atoms of two water molecules of complex cation or two sulfo-groups of complex anion.

Three types of hydrogen-bond interactions between O atoms of the sulfogroups and H atoms of the water molecules as well as NH2 groups of the 1,3-diaminopropane ligand are presented of Fig 2. The bond distances and angles in the title molecule agree well with the corresponding bond distances and angles reported in closely related compounds (Clegg et al., (1992); Nowicka et al., (2002); Kim & Lee, (2002); Fritsky et al., (2004); Stockner et al., (2007)).

The 1,3-propanediamine ligands have the typical chair conformation and bond distances and angles are similar to those observed elsewhere (Jurnak et al., (1974); Duesler et al., (1978); Solans et al., (1982)).

For background to direct synthesis, see: Nesterov et al. (2004, 2006); Kovbasyuk et al. (1997, 1998); Vassilyeva et al. (1997). For the structures of related complexes, see: Clegg et al. (1992); Kim & Lee (2002); Fritsky et al. (2004); Nowicka et al. (2002); Stockner et al. (2007); Duesler & Raymond (1978); Jurnak & Raymond (1974); Solans et al. (1982).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Projection perpendicular to ac-direction. C—H hydrogen atoms are omitted for clarity.
Diaquabis(propane-1,3-diamine)nickel(II) bis(propane-1,3-diamine)disulfatonickelate(II) top
Crystal data top
[Ni(C3H10N2)2(H2O)2][Ni(SO4)2(C3H10N2)2]Z = 1
Mr = 642.1F(000) = 340
Triclinic, P1Dx = 1.680 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7055 (1) ÅCell parameters from 5917 reflections
b = 8.9098 (2) Åθ = 2.5–28.2°
c = 11.9504 (4) ŵ = 1.71 mm1
α = 103.016 (2)°T = 296 K
β = 103.795 (2)°Prism, light blue
γ = 105.729 (1)°0.49 × 0.15 × 0.12 mm
V = 634.52 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3078 independent reflections
Radiation source: fine-focus sealed tube2728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 28.2°, θmin = 2.5°
Absorption correction: numerical
(SADABS; Sheldrick, 2009)
h = 87
Tmin = 0.488, Tmax = 0.703k = 1110
10425 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.0694P]
where P = (Fo2 + 2Fc2)/3
3078 reflections(Δ/σ)max = 0.006
197 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
12 constraints
Crystal data top
[Ni(C3H10N2)2(H2O)2][Ni(SO4)2(C3H10N2)2]γ = 105.729 (1)°
Mr = 642.1V = 634.52 (3) Å3
Triclinic, P1Z = 1
a = 6.7055 (1) ÅMo Kα radiation
b = 8.9098 (2) ŵ = 1.71 mm1
c = 11.9504 (4) ÅT = 296 K
α = 103.016 (2)°0.49 × 0.15 × 0.12 mm
β = 103.795 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3078 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2009)
2728 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.703Rint = 0.030
10425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.41 e Å3
3078 reflectionsΔρmin = 0.37 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.00000.01064 (8)
Ni20.50001.00000.50000.01320 (8)
S10.89097 (6)1.01326 (4)0.23292 (3)0.01404 (9)
O10.70097 (16)1.06228 (13)0.18226 (9)0.0155 (2)
O21.05971 (18)1.06347 (15)0.17662 (11)0.0263 (3)
O30.97660 (18)1.09600 (14)0.36389 (10)0.0240 (3)
O40.8164 (2)0.83460 (14)0.20784 (11)0.0287 (3)
O50.4535 (2)1.07096 (17)0.33786 (11)0.0246 (3)
N10.2544 (2)0.83826 (16)0.03946 (12)0.0175 (3)
N20.6059 (2)0.80081 (15)0.05714 (12)0.0155 (3)
N30.6379 (2)0.82954 (16)0.43334 (13)0.0165 (3)
N40.1851 (2)0.82026 (17)0.43194 (13)0.0180 (3)
C10.1280 (2)0.67732 (18)0.05413 (15)0.0203 (3)
H1A0.06030.69430.12940.024*
H1B0.01260.61730.02850.024*
C20.2734 (3)0.57695 (18)0.07559 (15)0.0222 (3)
H2A0.18110.46600.12530.027*
H2B0.35240.57130.00180.027*
C30.4379 (3)0.64240 (18)0.13651 (14)0.0200 (3)
H3A0.50840.56310.15700.024*
H3B0.36180.65660.21120.024*
C40.5382 (3)0.65484 (19)0.42206 (15)0.0226 (3)
H4A0.55510.64370.50240.027*
H4B0.61510.59210.38390.027*
C50.2966 (3)0.5844 (2)0.34818 (16)0.0264 (4)
H5A0.27740.61340.27380.032*
H5B0.24890.46570.32630.032*
C60.1537 (3)0.64477 (19)0.41474 (16)0.0246 (4)
H6A0.00170.58030.36960.030*
H6B0.18560.62750.49340.030*
H10.667 (3)0.788 (2)0.0068 (17)0.018 (5)*
H20.707 (3)0.830 (2)0.0962 (16)0.018 (4)*
H30.319 (3)0.826 (2)0.1079 (18)0.030 (5)*
H40.165 (3)0.882 (2)0.0580 (18)0.031 (6)*
H50.765 (3)0.868 (2)0.4867 (18)0.023 (5)*
H60.663 (3)0.836 (2)0.3633 (18)0.029 (5)*
H70.127 (3)0.852 (2)0.490 (2)0.037 (6)*
H80.122 (3)0.828 (2)0.3723 (18)0.022 (5)*
H90.533 (4)1.078 (3)0.295 (2)0.041 (6)*
H100.357 (4)1.070 (3)0.299 (2)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00944 (13)0.01273 (13)0.01009 (13)0.00461 (10)0.00306 (10)0.00329 (10)
Ni20.01046 (13)0.01788 (14)0.01234 (14)0.00583 (10)0.00410 (10)0.00503 (10)
S10.01275 (17)0.02077 (18)0.01136 (17)0.00832 (14)0.00423 (14)0.00661 (14)
O10.0124 (5)0.0248 (5)0.0122 (5)0.0096 (4)0.0042 (4)0.0067 (4)
O20.0192 (6)0.0456 (7)0.0277 (6)0.0188 (5)0.0154 (5)0.0192 (6)
O30.0206 (6)0.0370 (6)0.0124 (5)0.0131 (5)0.0019 (5)0.0036 (5)
O40.0374 (7)0.0228 (6)0.0256 (6)0.0128 (5)0.0043 (6)0.0099 (5)
O50.0158 (6)0.0495 (8)0.0182 (6)0.0175 (6)0.0084 (5)0.0176 (5)
N10.0169 (6)0.0183 (6)0.0196 (7)0.0065 (5)0.0085 (6)0.0067 (5)
N20.0158 (6)0.0186 (6)0.0140 (6)0.0085 (5)0.0051 (5)0.0052 (5)
N30.0129 (6)0.0215 (6)0.0152 (7)0.0070 (5)0.0037 (6)0.0052 (5)
N40.0143 (6)0.0239 (7)0.0164 (7)0.0073 (5)0.0040 (6)0.0070 (5)
C10.0156 (7)0.0162 (7)0.0260 (8)0.0015 (6)0.0050 (7)0.0071 (6)
C20.0254 (8)0.0139 (7)0.0264 (9)0.0059 (6)0.0076 (7)0.0059 (6)
C30.0225 (8)0.0172 (7)0.0182 (8)0.0082 (6)0.0054 (7)0.0012 (6)
C40.0214 (8)0.0214 (8)0.0251 (8)0.0108 (6)0.0052 (7)0.0052 (6)
C50.0225 (8)0.0209 (8)0.0279 (9)0.0056 (6)0.0027 (7)0.0005 (7)
C60.0181 (8)0.0224 (8)0.0299 (9)0.0033 (6)0.0062 (7)0.0079 (7)
Geometric parameters (Å, º) top
Ni1—N1i2.0978 (13)N2—H20.923 (19)
Ni1—N12.0978 (13)N3—C41.479 (2)
Ni1—N2i2.1187 (13)N3—H50.86 (2)
Ni1—N22.1187 (13)N3—H60.90 (2)
Ni1—O1i2.1257 (10)N4—C61.479 (2)
Ni1—O12.1257 (10)N4—H70.91 (2)
Ni2—N3ii2.0893 (13)N4—H80.76 (2)
Ni2—N32.0893 (13)C1—C21.518 (2)
Ni2—N4ii2.1083 (13)C1—H1A0.9700
Ni2—N42.1083 (13)C1—H1B0.9700
Ni2—O52.1499 (12)C2—C31.521 (2)
Ni2—O5ii2.1499 (12)C2—H2A0.9700
S1—O31.4645 (11)C2—H2B0.9700
S1—O41.4682 (12)C3—H3A0.9700
S1—O21.4688 (11)C3—H3B0.9700
S1—O11.4945 (10)C4—C51.521 (2)
O5—H90.82 (2)C4—H4A0.9700
O5—H100.70 (2)C4—H4B0.9700
N1—C11.4806 (19)C5—C61.514 (2)
N1—H30.88 (2)C5—H5A0.9700
N1—H40.84 (2)C5—H5B0.9700
N2—C31.4785 (19)C6—H6A0.9700
N2—H10.823 (19)C6—H6B0.9700
N1i—Ni1—N1180.0Ni1—N2—H2109.3 (11)
N1i—Ni1—N2i87.81 (5)H1—N2—H2109.5 (16)
N1—Ni1—N2i92.19 (5)C4—N3—Ni2120.00 (10)
N1i—Ni1—N292.19 (5)C4—N3—H5108.9 (13)
N1—Ni1—N287.81 (5)Ni2—N3—H5100.4 (12)
N2i—Ni1—N2180.0C4—N3—H6108.8 (12)
N1i—Ni1—O1i88.28 (5)Ni2—N3—H6112.6 (13)
N1—Ni1—O1i91.72 (5)H5—N3—H6104.8 (17)
N2i—Ni1—O1i92.13 (5)C6—N4—Ni2121.41 (10)
N2—Ni1—O1i87.87 (5)C6—N4—H7106.6 (13)
N1i—Ni1—O191.72 (5)Ni2—N4—H7101.2 (13)
N1—Ni1—O188.28 (5)C6—N4—H8107.8 (14)
N2i—Ni1—O187.87 (5)Ni2—N4—H8109.4 (14)
N2—Ni1—O192.13 (5)H7—N4—H8110 (2)
O1i—Ni1—O1180.00 (6)N1—C1—C2111.30 (13)
N3ii—Ni2—N3180.000 (1)N1—C1—H1A109.4
N3ii—Ni2—N4ii91.66 (5)C2—C1—H1A109.4
N3—Ni2—N4ii88.34 (5)N1—C1—H1B109.4
N3ii—Ni2—N488.34 (5)C2—C1—H1B109.4
N3—Ni2—N491.66 (5)H1A—C1—H1B108.0
N4ii—Ni2—N4180.00 (7)C1—C2—C3115.06 (13)
N3ii—Ni2—O587.79 (5)C1—C2—H2A108.5
N3—Ni2—O592.21 (5)C3—C2—H2A108.5
N4ii—Ni2—O587.84 (5)C1—C2—H2B108.5
N4—Ni2—O592.16 (5)C3—C2—H2B108.5
N3ii—Ni2—O5ii92.21 (5)H2A—C2—H2B107.5
N3—Ni2—O5ii87.79 (5)N2—C3—C2111.60 (13)
N4ii—Ni2—O5ii92.16 (5)N2—C3—H3A109.3
N4—Ni2—O5ii87.84 (5)C2—C3—H3A109.3
O5—Ni2—O5ii180.000 (1)N2—C3—H3B109.3
O3—S1—O4110.23 (7)C2—C3—H3B109.3
O3—S1—O2110.28 (7)H3A—C3—H3B108.0
O4—S1—O2109.99 (7)N3—C4—C5112.50 (13)
O3—S1—O1107.70 (6)N3—C4—H4A109.1
O4—S1—O1109.11 (7)C5—C4—H4A109.1
O2—S1—O1109.48 (6)N3—C4—H4B109.1
S1—O1—Ni1130.04 (6)C5—C4—H4B109.1
Ni2—O5—H9127.9 (16)H4A—C4—H4B107.8
Ni2—O5—H10128.6 (19)C6—C5—C4113.29 (14)
H9—O5—H10101 (2)C6—C5—H5A108.9
C1—N1—Ni1116.97 (10)C4—C5—H5A108.9
C1—N1—H3110.9 (12)C6—C5—H5B108.9
Ni1—N1—H3105.9 (13)C4—C5—H5B108.9
C1—N1—H4108.0 (13)H5A—C5—H5B107.7
Ni1—N1—H4111.9 (13)N4—C6—C5113.15 (13)
H3—N1—H4102.2 (18)N4—C6—H6A108.9
C3—N2—Ni1117.85 (10)C5—C6—H6A108.9
C3—N2—H1108.5 (12)N4—C6—H6B108.9
Ni1—N2—H1103.6 (12)C5—C6—H6B108.9
C3—N2—H2107.8 (11)H6A—C6—H6B107.8
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H9···O10.82 (2)1.96 (2)2.7739 (16)172 (2)
N2—H1···O40.823 (19)2.265 (19)3.0528 (18)160.4 (16)
N1—H4···O2iii0.84 (2)2.28 (2)3.0621 (18)154.9 (18)
O5—H10···O2iii0.70 (2)2.15 (3)2.8476 (18)179 (3)
N3—H5···O3iv0.86 (2)2.06 (2)2.8900 (17)161.4 (17)
N2—H2···O2v0.923 (19)2.145 (19)3.0600 (17)171.2 (15)
N4—H7···O3ii0.91 (2)2.03 (2)2.9269 (18)170 (2)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x+2, y+2, z+1; (v) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H10N2)2(H2O)2][Ni(SO4)2(C3H10N2)2]
Mr642.1
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.7055 (1), 8.9098 (2), 11.9504 (4)
α, β, γ (°)103.016 (2), 103.795 (2), 105.729 (1)
V3)634.52 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.49 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionNumerical
(SADABS; Sheldrick, 2009)
Tmin, Tmax0.488, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
10425, 3078, 2728
Rint0.030
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.07
No. of reflections3078
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H9···O10.82 (2)1.96 (2)2.7739 (16)172 (2)
N2—H1···O40.823 (19)2.265 (19)3.0528 (18)160.4 (16)
N1—H4···O2i0.84 (2)2.28 (2)3.0621 (18)154.9 (18)
O5—H10···O2i0.70 (2)2.15 (3)2.8476 (18)179 (3)
N3—H5···O3ii0.86 (2)2.06 (2)2.8900 (17)161.4 (17)
N2—H2···O2iii0.923 (19)2.145 (19)3.0600 (17)171.2 (15)
N4—H7···O3iv0.91 (2)2.03 (2)2.9269 (18)170 (2)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z+1; (iii) x+2, y+2, z; (iv) x+1, y+2, z+1.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Bharadwaj, P. K. & Mandal, S. (1992). Acta Cryst. C48, 942–943.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuesler, E. N. & Raymond, K. N. (1978). Inorg. Chim. Acta, 30, 87–95.  CSD CrossRef CAS Web of Science Google Scholar
First citationFritsky, I. O., Swiaztek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationJurnak, F. A. & Raymond, K. N. (1974). Inorg. Chem. 13, 2387–2397.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, C.-H. & Lee, S.-G. (2002). Acta Cryst. C58, m421–m423.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.  CSD CrossRef CAS Web of Science Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735–2738.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, F., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. pp. 7868–7876.  Web of Science CSD CrossRef Google Scholar
First citationNowicka, B., Schmauch, G., Chihara, T., Heinemann, F. W., Hagiwara, M., Wakatsuki, Y. & Kisch, H. (2002). Bull. Chem. Soc. Jpn, 75, 2169–2175.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSolans, X., Font-Altaba, M., Montfort, M. & Ribas, J. (1982). Acta Cryst. B38, 2899–2901.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationStockner, F., Beckert, R., Gleich, D., Birckner, E., Gunther, W., Gorls, H. & Vaughan, G. (2007). Eur. J. Org. Chem. pp. 1237–1243.  Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, pp. 263–266.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m400-m401
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds