metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m417-m418

cis-Bis[(4-nitro­phen­yl)cyanamido-κN1]bis­­(1,10-phenanthroline-κ2N,N′)nickel(II) methanol monosolvate

aDepartment of Chemistry, Isfahan University of Technology, Isfahan 84456-38111, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: chinif@cc.iut.ac.ir

(Received 5 February 2012; accepted 6 March 2012; online 14 March 2012)

In the title compound, [Ni(C7H4N3O2)2(C12H8N2)2]·CH3OH, the NiII atom is six-coordinated in a distorted N6 octa­hedral geometry and is chelated by two phenanthroline ligands and two phenyl­cyanamide groups which occupy cis positions. The (4-nitro­phen­yl)cyanamide anions act as monodentate ligands. There is one classical inter­molecular O—H⋯N hydrogen bond and several C—H⋯O hydrogen bonds are also observed.

Related literature

For background to phenyl­cyanamide ligands and their complexes, see: Crutchley (2001[Crutchley, R. J. (2001). Coord. Chem. Rev. 219, 125-155.]). For mononuclear complexes of phenyl­cyanamide complexes, see: Letcher et al. (1993[Letcher, R. J., Zhang, W., Bensimon, C. & Crutchley, R. J. (1993). Inorg. Chim. Acta, 210, 183-191.]); Kim et al. (2002[Kim, Y.-J., Joo, Y.-S., Han, J.-T. & Han, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 3611-3618.]); Shen et al. (1999[Shen, X., Shan, J., Sun, H.-B. & Kang, B.-S. (1999). J. Chin. Chem. Soc. 46, 179-183.]). For polynuclear complexes of phenyl­cyanamide ligands, see: Ainscough et al. (1991[Ainscough, E. W., Baker, E. N., Brader, M. L. & Brodie, A. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1243-1249.]); Chiniforoshan et al. (2009[Chiniforoshan, H., Jalilpour, S., Shirinfar, B. & Khavasi, H. R. (2009). Acta Cryst. E65, m386.], 2010[Chiniforoshan, H., Shirinfar, B., Jalilpour, S. & Khavasi, H. R. (2010). Acta Cryst. E66, m331.], 2012[Chiniforoshan, H., Jazestani, M. & Notash, B. (2012). Acta Cryst. E68, m232.]); Escuer et al. (2004[Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409-1417.]). For related structures, see: Wu et al. (2004[Wu, A.-Q., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2004). Acta Cryst. E60, m373-m375.]); Cheng et al. (2002[Cheng, Y.-Q., Liu, A.-L., Hu, M.-L. & Ng, S. W. (2002). Acta Cryst. E58, m545-m547.]); Shen et al. (1999[Shen, X., Shan, J., Sun, H.-B. & Kang, B.-S. (1999). J. Chin. Chem. Soc. 46, 179-183.]). For the preparation of 4-nitro-phenyl­cyanamide used in the synthesis of the title compound, see: Crutchley & Naklicki (1989[Crutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955-1958.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4N3O2)2(C12H8N2)2]·CH4O

  • Mr = 775.40

  • Triclinic, [P \overline 1]

  • a = 10.019 (2) Å

  • b = 11.307 (2) Å

  • c = 16.403 (3) Å

  • α = 103.54 (3)°

  • β = 92.96 (3)°

  • γ = 99.77 (3)°

  • V = 1772.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.862, Tmax = 0.938

  • 19823 measured reflections

  • 9512 independent reflections

  • 6693 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.139

  • S = 1.06

  • 9512 reflections

  • 501 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N9i 0.91 (3) 1.98 (4) 2.883 (4) 174 (5)
C39—H39B⋯O4ii 0.96 2.55 3.435 (7) 153
C22—H22⋯O1iii 0.93 2.57 3.469 (6) 162
C16—H16⋯O2iv 0.93 2.45 3.312 (6) 154
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+2; (iv) x-1, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phenylcyanmide ligands (pcyd) can act as monodentate (Letcher et al., 1993; Kim et al., 2002; Shen et al., 1999) and also as bridging ligands (Crutchley, 2001). In the bridging mode, the cyanamido group (NCN) is coordinated in the end-to-end mode, forming polynuclear complexes (Chiniforoshan et al. 2009, 2010, 2012; Escuer et al., 2004; Ainscough et al., 1991).

Following our work with this family of ligands, we report here the synthesis and crystal structure of mononuclear [Ni(Phen)2(4-NO2-pcyd)2].CH3OH compound of (4-nitrophenyl)cyanamide ligand, Crutchley & Naklicki (1989). The asymmetric unit of the title compound is shown in Fig. 1. In the structure of the title compound, nickel(II) atom has a distorted octahedral geometry (Fig. 1). The coordination environment consist of four nitrogen atoms from two 1,10-phenanthroline ligand and two anionic 4-NO2-phenylcyanamide ligands which occupy cis position. Bond lengths and angles are in the normal ranges reported for similar structures (Wu et al., 2004; Cheng et al., 2002; Shen et al., 1999). Crutchley (2001) has shown that the angle of a metal atom with the axial CN moiety ranges from 180° to 120°. These angles for the title compound are equal to 153.2 (2) and 150.6 (3)° for Ni(1)—N(5)—C(25) and Ni(1)—N(8)—C(32), respectively. There are several intermolecular O—H···N and C—H···O hydrogen bonds which play important role in the stabilization of crystal structure (Table 1 & Fig. 2).

Related literature top

For background to phenylcyanamide ligands and their complexes, see: Crutchley (2001). For mononuclear complexes of phenylcyanamide complexes, see: Letcher et al. (1993); Kim et al. (2002); Shen et al. (1999). For polynuclear complexes of phenylcyanamide ligands, see: Ainscough et al. (1991); Chiniforoshan et al. (2009, 2010, 2012); Escuer et al. (2004). For related structures, see: Wu et al. (2004); Cheng et al. (2002); Shen et al. (1999). For the preparation of 4-nitro-phenylcyanamide used in the synthesis of the title compound, see: Crutchley & Naklicki (1989).

Experimental top

A solution of Ni(OAc)2.4H2O (0.24 gr, 0.1 mmol) in 25 ml of methanol was slowly added to methanolic solution (in 35 ml) of 4-nitrophenylcynamide (Crutchley & Naklicki, 1989) (0.32 gr, 0.2 mmol) and 1,10-phenanthroline (0.39 gr, 0.2 mmol). The mixture was stirred at ambient temperature and the yellow solid filtered after 5 h. The yellow crystals suitable for X-ray structure determination were obtained by dissolving this solid in DMF then diffused by methanol after 3 weeks.

Refinement top

The hydrogen atom attached to oxygen atom of the methanol was found in difference Fourier map and refined isotropically with distance restraint of O—H = 0.91 (3)Å. All H atoms bonded to C were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups.

Structure description top

Phenylcyanmide ligands (pcyd) can act as monodentate (Letcher et al., 1993; Kim et al., 2002; Shen et al., 1999) and also as bridging ligands (Crutchley, 2001). In the bridging mode, the cyanamido group (NCN) is coordinated in the end-to-end mode, forming polynuclear complexes (Chiniforoshan et al. 2009, 2010, 2012; Escuer et al., 2004; Ainscough et al., 1991).

Following our work with this family of ligands, we report here the synthesis and crystal structure of mononuclear [Ni(Phen)2(4-NO2-pcyd)2].CH3OH compound of (4-nitrophenyl)cyanamide ligand, Crutchley & Naklicki (1989). The asymmetric unit of the title compound is shown in Fig. 1. In the structure of the title compound, nickel(II) atom has a distorted octahedral geometry (Fig. 1). The coordination environment consist of four nitrogen atoms from two 1,10-phenanthroline ligand and two anionic 4-NO2-phenylcyanamide ligands which occupy cis position. Bond lengths and angles are in the normal ranges reported for similar structures (Wu et al., 2004; Cheng et al., 2002; Shen et al., 1999). Crutchley (2001) has shown that the angle of a metal atom with the axial CN moiety ranges from 180° to 120°. These angles for the title compound are equal to 153.2 (2) and 150.6 (3)° for Ni(1)—N(5)—C(25) and Ni(1)—N(8)—C(32), respectively. There are several intermolecular O—H···N and C—H···O hydrogen bonds which play important role in the stabilization of crystal structure (Table 1 & Fig. 2).

For background to phenylcyanamide ligands and their complexes, see: Crutchley (2001). For mononuclear complexes of phenylcyanamide complexes, see: Letcher et al. (1993); Kim et al. (2002); Shen et al. (1999). For polynuclear complexes of phenylcyanamide ligands, see: Ainscough et al. (1991); Chiniforoshan et al. (2009, 2010, 2012); Escuer et al. (2004). For related structures, see: Wu et al. (2004); Cheng et al. (2002); Shen et al. (1999). For the preparation of 4-nitro-phenylcyanamide used in the synthesis of the title compound, see: Crutchley & Naklicki (1989).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of [Ni(Phen)2(4-NO2-pcyd)2].CH3OH. The intermolecular O—H···N and C—H···O hydrogen bonds are shown as green dashed lines.
cis-Bis[(4-nitrophenyl)cyanamido-κN1]bis(1,10-phenanthroline- κ2N,N')nickel(II) methanol monosolvate top
Crystal data top
[Ni(C7H4N3O2)2(C12H8N2)2]·CH4OZ = 2
Mr = 775.40F(000) = 800
Triclinic, P1Dx = 1.453 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.019 (2) ÅCell parameters from 9512 reflections
b = 11.307 (2) Åθ = 2.1–29.2°
c = 16.403 (3) ŵ = 0.61 mm1
α = 103.54 (3)°T = 298 K
β = 92.96 (3)°Plate, yellow
γ = 99.77 (3)°0.25 × 0.2 × 0.1 mm
V = 1772.3 (7) Å3
Data collection top
Stoe IPDS II
diffractometer
9512 independent reflections
Radiation source: fine-focus sealed tube6693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.1°
rotation method scansh = 1213
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
k = 1515
Tmin = 0.862, Tmax = 0.938l = 2220
19823 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.8996P]
where P = (Fo2 + 2Fc2)/3
9512 reflections(Δ/σ)max = 0.001
501 parametersΔρmax = 0.65 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
[Ni(C7H4N3O2)2(C12H8N2)2]·CH4Oγ = 99.77 (3)°
Mr = 775.40V = 1772.3 (7) Å3
Triclinic, P1Z = 2
a = 10.019 (2) ÅMo Kα radiation
b = 11.307 (2) ŵ = 0.61 mm1
c = 16.403 (3) ÅT = 298 K
α = 103.54 (3)°0.25 × 0.2 × 0.1 mm
β = 92.96 (3)°
Data collection top
Stoe IPDS II
diffractometer
9512 independent reflections
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
6693 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.938Rint = 0.053
19823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.65 e Å3
9512 reflectionsΔρmin = 0.31 e Å3
501 parameters
Special details top

Experimental. shape of crystal determined optically

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C390.1500 (7)0.3400 (5)0.7660 (5)0.146 (3)
H39A0.23780.34930.74500.219*
H39B0.12050.25540.76780.219*
H39C0.15570.39280.82170.219*
O10.8551 (5)0.7156 (4)1.0013 (4)0.197 (3)
O21.0049 (4)0.6144 (4)0.9548 (3)0.1357 (15)
Ni10.62348 (4)0.11112 (3)0.714358 (19)0.04018 (11)
N20.7128 (2)0.2733 (2)0.68911 (13)0.0435 (5)
N30.4682 (2)0.2034 (2)0.77044 (14)0.0484 (5)
N10.5513 (2)0.1913 (2)0.58779 (13)0.0449 (5)
N40.7020 (2)0.0547 (2)0.83983 (13)0.0445 (5)
N80.7899 (3)0.0105 (3)0.67656 (16)0.0583 (6)
N50.5203 (3)0.0329 (2)0.72202 (17)0.0590 (6)
C120.6933 (3)0.3347 (2)0.60642 (15)0.0418 (5)
C50.5907 (3)0.3441 (3)0.46523 (17)0.0538 (7)
C240.6222 (3)0.1045 (3)0.89187 (16)0.0469 (6)
C130.4963 (3)0.1838 (3)0.85447 (17)0.0490 (6)
C110.7872 (3)0.3163 (3)0.74050 (18)0.0532 (7)
H110.80190.27460.79720.064*
C200.6575 (4)0.0808 (3)0.97889 (18)0.0628 (9)
C60.6549 (4)0.4473 (3)0.4333 (2)0.0713 (10)
H60.64510.48330.37570.086*
C10.6097 (3)0.2884 (2)0.55207 (15)0.0438 (6)
N90.8915 (3)0.1479 (2)0.60677 (15)0.0534 (6)
C380.8241 (3)0.0062 (3)0.46698 (18)0.0505 (6)
H380.78340.05650.49060.061*
C220.8588 (4)0.0513 (3)0.9591 (2)0.0735 (10)
H220.93950.10660.98050.088*
C330.8870 (3)0.1206 (3)0.51983 (17)0.0460 (6)
C80.7502 (3)0.4389 (3)0.57381 (19)0.0540 (7)
C140.3505 (3)0.2741 (3)0.7350 (2)0.0651 (9)
H140.32920.28650.67740.078*
C320.8361 (3)0.0614 (3)0.64100 (17)0.0486 (6)
C360.8833 (3)0.0780 (3)0.34610 (17)0.0502 (6)
C350.9464 (3)0.1919 (3)0.39645 (19)0.0571 (7)
H350.98710.25390.37220.069*
C340.9486 (3)0.2129 (3)0.48241 (19)0.0546 (7)
H340.99150.28930.51630.065*
C370.8216 (3)0.0150 (3)0.38064 (18)0.0532 (7)
H370.77900.09110.34610.064*
C230.8176 (3)0.0209 (3)0.87307 (19)0.0561 (7)
H230.87350.05510.83770.067*
C20.4720 (3)0.1491 (3)0.53848 (19)0.0578 (7)
H20.43060.08340.56270.069*
C30.4480 (4)0.1994 (3)0.4516 (2)0.0665 (9)
H30.39170.16740.41890.080*
C190.5667 (6)0.1375 (4)1.0287 (2)0.0860 (13)
H190.59010.12341.08620.103*
C90.8266 (4)0.4821 (3)0.6308 (2)0.0634 (8)
H90.86470.55200.61210.076*
C210.7808 (5)0.0001 (4)1.0112 (2)0.0774 (11)
H210.80890.01851.06850.093*
C170.4077 (4)0.2368 (3)0.9054 (2)0.0660 (9)
C100.8445 (4)0.4207 (3)0.7137 (2)0.0625 (8)
H100.89480.44860.75220.075*
O30.9376 (3)0.1389 (3)0.22532 (15)0.0832 (8)
N100.8849 (3)0.0551 (3)0.25539 (16)0.0626 (7)
O40.8363 (4)0.0475 (3)0.21191 (16)0.1014 (10)
C40.5077 (4)0.2955 (3)0.41506 (18)0.0659 (9)
H40.49360.32870.35710.079*
C70.7291 (4)0.4929 (3)0.4848 (2)0.0706 (9)
H70.76770.56120.46220.085*
C180.4481 (6)0.2108 (4)0.9942 (3)0.0871 (14)
H180.39060.24581.02850.104*
C150.2576 (4)0.3304 (4)0.7812 (4)0.0866 (13)
H150.17660.38070.75440.104*
C160.2862 (4)0.3115 (4)0.8657 (3)0.0862 (13)
H160.22440.34850.89700.103*
N60.4741 (3)0.2393 (2)0.78229 (17)0.0612 (7)
C250.5024 (3)0.1317 (3)0.75123 (17)0.0502 (7)
C260.5794 (3)0.3316 (3)0.82375 (18)0.0535 (7)
C310.7151 (4)0.3199 (3)0.8274 (2)0.0640 (8)
H310.73870.24630.79860.077*
C300.8150 (4)0.4140 (3)0.8722 (3)0.0731 (10)
H300.90530.40430.87420.088*
C290.7803 (4)0.5236 (3)0.9144 (2)0.0706 (9)
C270.5480 (4)0.4449 (3)0.8667 (3)0.0801 (11)
H270.45810.45610.86460.096*
N70.8870 (5)0.6246 (4)0.9598 (3)0.1013 (12)
C280.6476 (5)0.5385 (4)0.9115 (3)0.0856 (12)
H280.62530.61270.94010.103*
O50.0518 (4)0.3745 (3)0.7102 (3)0.1121 (12)
H5A0.001 (5)0.301 (4)0.681 (3)0.14 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C390.175 (6)0.078 (3)0.169 (6)0.031 (4)0.033 (5)0.007 (4)
O10.132 (4)0.093 (3)0.301 (7)0.003 (3)0.012 (4)0.062 (4)
O20.088 (2)0.105 (3)0.196 (4)0.015 (2)0.031 (3)0.020 (3)
Ni10.0489 (2)0.04276 (18)0.02925 (15)0.01033 (14)0.00388 (12)0.00828 (12)
N20.0498 (13)0.0472 (12)0.0352 (10)0.0105 (10)0.0052 (9)0.0125 (9)
N30.0533 (14)0.0422 (12)0.0478 (12)0.0082 (10)0.0090 (10)0.0071 (10)
N10.0528 (13)0.0485 (12)0.0353 (10)0.0150 (10)0.0015 (9)0.0106 (9)
N40.0549 (13)0.0440 (12)0.0337 (10)0.0103 (10)0.0015 (9)0.0075 (9)
N80.0629 (16)0.0673 (16)0.0467 (13)0.0077 (13)0.0109 (11)0.0199 (12)
N50.0680 (17)0.0530 (15)0.0569 (15)0.0198 (13)0.0024 (12)0.0099 (12)
C120.0457 (14)0.0413 (13)0.0382 (12)0.0080 (11)0.0069 (10)0.0091 (10)
C50.0667 (19)0.0549 (17)0.0357 (13)0.0074 (14)0.0038 (12)0.0061 (12)
C240.0654 (18)0.0447 (14)0.0349 (12)0.0209 (13)0.0090 (12)0.0097 (10)
C130.0628 (18)0.0446 (14)0.0460 (14)0.0204 (13)0.0207 (13)0.0131 (11)
C110.0613 (18)0.0604 (18)0.0442 (14)0.0168 (14)0.0043 (13)0.0219 (13)
C200.097 (3)0.0649 (19)0.0360 (14)0.0398 (19)0.0114 (15)0.0131 (13)
C60.100 (3)0.066 (2)0.0414 (15)0.0221 (19)0.0067 (16)0.0039 (14)
C10.0502 (15)0.0450 (14)0.0347 (12)0.0050 (11)0.0051 (10)0.0092 (10)
N90.0590 (15)0.0565 (14)0.0452 (12)0.0045 (12)0.0082 (11)0.0176 (11)
C380.0542 (16)0.0490 (15)0.0496 (15)0.0060 (13)0.0079 (12)0.0168 (12)
C220.089 (3)0.066 (2)0.0548 (19)0.0179 (19)0.0261 (18)0.0005 (16)
C330.0447 (14)0.0527 (15)0.0444 (13)0.0121 (12)0.0077 (11)0.0163 (12)
C80.0627 (18)0.0445 (15)0.0544 (16)0.0136 (13)0.0079 (14)0.0086 (12)
C140.0533 (18)0.0570 (19)0.078 (2)0.0074 (15)0.0052 (16)0.0051 (16)
C320.0472 (15)0.0584 (17)0.0404 (13)0.0120 (13)0.0062 (11)0.0110 (12)
C360.0489 (16)0.0638 (18)0.0424 (14)0.0161 (13)0.0069 (12)0.0175 (13)
C350.0649 (19)0.0590 (18)0.0526 (16)0.0087 (15)0.0142 (14)0.0240 (14)
C340.0625 (18)0.0491 (16)0.0509 (15)0.0034 (14)0.0116 (13)0.0135 (13)
C370.0540 (17)0.0546 (17)0.0494 (15)0.0075 (13)0.0041 (13)0.0115 (13)
C230.0627 (18)0.0497 (16)0.0507 (16)0.0066 (14)0.0062 (13)0.0072 (13)
C20.0635 (19)0.069 (2)0.0455 (15)0.0245 (15)0.0018 (13)0.0161 (14)
C30.075 (2)0.083 (2)0.0442 (16)0.0182 (18)0.0085 (15)0.0212 (16)
C190.132 (4)0.105 (3)0.0445 (18)0.059 (3)0.033 (2)0.033 (2)
C90.074 (2)0.0528 (18)0.071 (2)0.0258 (16)0.0141 (17)0.0182 (15)
C210.114 (3)0.082 (2)0.0356 (15)0.042 (2)0.0144 (18)0.0012 (16)
C170.077 (2)0.0609 (19)0.077 (2)0.0283 (18)0.0401 (18)0.0321 (17)
C100.070 (2)0.064 (2)0.0648 (19)0.0242 (16)0.0056 (16)0.0302 (16)
O30.110 (2)0.0929 (19)0.0529 (13)0.0118 (16)0.0165 (13)0.0331 (13)
N100.0711 (18)0.0763 (19)0.0446 (13)0.0176 (15)0.0061 (12)0.0204 (13)
O40.153 (3)0.088 (2)0.0470 (13)0.0056 (19)0.0008 (16)0.0078 (13)
C40.084 (2)0.077 (2)0.0333 (13)0.0120 (19)0.0025 (14)0.0111 (14)
C70.095 (3)0.0550 (19)0.0598 (19)0.0275 (18)0.0138 (18)0.0008 (15)
C180.123 (4)0.099 (3)0.073 (2)0.057 (3)0.061 (3)0.052 (2)
C150.053 (2)0.069 (2)0.133 (4)0.0011 (17)0.020 (2)0.020 (2)
C160.076 (3)0.074 (2)0.124 (4)0.019 (2)0.053 (3)0.043 (3)
N60.0699 (17)0.0549 (15)0.0593 (15)0.0258 (13)0.0045 (13)0.0055 (12)
C250.0619 (18)0.0566 (17)0.0366 (13)0.0188 (14)0.0046 (12)0.0151 (12)
C260.071 (2)0.0543 (17)0.0446 (14)0.0262 (15)0.0147 (13)0.0174 (12)
C310.074 (2)0.0528 (18)0.071 (2)0.0186 (16)0.0279 (17)0.0172 (15)
C300.065 (2)0.071 (2)0.088 (3)0.0138 (18)0.0259 (19)0.024 (2)
C290.079 (2)0.0532 (19)0.080 (2)0.0059 (17)0.0168 (19)0.0199 (17)
C270.077 (2)0.063 (2)0.097 (3)0.0332 (19)0.002 (2)0.0019 (19)
N70.096 (3)0.066 (2)0.135 (4)0.005 (2)0.016 (3)0.018 (2)
C280.091 (3)0.057 (2)0.104 (3)0.029 (2)0.012 (2)0.001 (2)
O50.112 (3)0.070 (2)0.144 (3)0.0153 (18)0.024 (2)0.016 (2)
Geometric parameters (Å, º) top
C39—O51.471 (7)C8—C71.434 (4)
C39—H39A0.9600C14—C151.394 (6)
C39—H39B0.9600C14—H140.9300
C39—H39C0.9600C36—C371.380 (4)
O1—N71.195 (6)C36—C351.383 (4)
O2—N71.212 (5)C36—N101.451 (4)
Ni1—N52.056 (3)C35—C341.372 (4)
Ni1—N82.062 (3)C35—H350.9300
Ni1—N42.076 (2)C34—H340.9300
Ni1—N12.097 (2)C37—H370.9300
Ni1—N32.098 (2)C23—H230.9300
Ni1—N22.139 (2)C2—C31.397 (4)
N2—C111.323 (3)C2—H20.9300
N2—C121.358 (3)C3—C41.360 (5)
N3—C141.326 (4)C3—H30.9300
N3—C131.351 (4)C19—C181.340 (6)
N1—C21.325 (4)C19—H190.9300
N1—C11.358 (3)C9—C101.362 (5)
N4—C231.322 (4)C9—H90.9300
N4—C241.352 (4)C21—H210.9300
N8—C321.157 (4)C17—C161.390 (6)
N5—C251.156 (4)C17—C181.438 (6)
C12—C81.402 (4)C10—H100.9300
C12—C11.435 (4)O3—N101.224 (4)
C5—C41.402 (5)N10—O41.215 (4)
C5—C11.405 (4)C4—H40.9300
C5—C61.433 (5)C7—H70.9300
C24—C201.404 (4)C18—H180.9300
C24—C131.432 (4)C15—C161.360 (7)
C13—C171.407 (4)C15—H150.9300
C11—C101.390 (4)C16—H160.9300
C11—H110.9300N6—C251.289 (4)
C20—C211.403 (6)N6—C261.373 (4)
C20—C191.425 (6)C26—C311.388 (5)
C6—C71.342 (5)C26—C271.406 (4)
C6—H60.9300C31—C301.368 (5)
N9—C321.297 (4)C31—H310.9300
N9—C331.383 (3)C30—C291.380 (5)
C38—C371.378 (4)C30—H300.9300
C38—C331.402 (4)C29—C281.368 (6)
C38—H380.9300C29—N71.451 (5)
C22—C211.350 (6)C27—C281.363 (6)
C22—C231.395 (4)C27—H270.9300
C22—H220.9300C28—H280.9300
C33—C341.402 (4)O5—H5A0.91 (3)
C8—C91.401 (5)
O5—C39—H39A109.5C37—C36—N10119.4 (3)
O5—C39—H39B109.5C35—C36—N10119.3 (3)
H39A—C39—H39B109.5C34—C35—C36119.5 (3)
O5—C39—H39C109.5C34—C35—H35120.2
H39A—C39—H39C109.5C36—C35—H35120.2
H39B—C39—H39C109.5C35—C34—C33120.9 (3)
N5—Ni1—N890.67 (12)C35—C34—H34119.6
N5—Ni1—N494.32 (10)C33—C34—H34119.6
N8—Ni1—N492.39 (10)C38—C37—C36119.1 (3)
N5—Ni1—N193.16 (10)C38—C37—H37120.4
N8—Ni1—N189.69 (10)C36—C37—H37120.4
N4—Ni1—N1172.22 (9)N4—C23—C22122.5 (3)
N5—Ni1—N389.86 (11)N4—C23—H23118.7
N8—Ni1—N3171.74 (10)C22—C23—H23118.7
N4—Ni1—N379.35 (10)N1—C2—C3122.6 (3)
N1—Ni1—N398.51 (10)N1—C2—H2118.7
N5—Ni1—N2171.53 (9)C3—C2—H2118.7
N8—Ni1—N291.08 (10)C4—C3—C2119.5 (3)
N4—Ni1—N293.89 (9)C4—C3—H3120.3
N1—Ni1—N278.56 (9)C2—C3—H3120.3
N3—Ni1—N289.59 (9)C18—C19—C20121.2 (3)
C11—N2—C12117.8 (2)C18—C19—H19119.4
C11—N2—Ni1129.65 (19)C20—C19—H19119.4
C12—N2—Ni1112.50 (17)C10—C9—C8119.4 (3)
C14—N3—C13118.2 (3)C10—C9—H9120.3
C14—N3—Ni1129.1 (2)C8—C9—H9120.3
C13—N3—Ni1112.70 (19)C22—C21—C20119.9 (3)
C2—N1—C1118.3 (2)C22—C21—H21120.1
C2—N1—Ni1127.8 (2)C20—C21—H21120.1
C1—N1—Ni1113.33 (17)C16—C17—C13117.1 (4)
C23—N4—C24118.1 (2)C16—C17—C18124.5 (4)
C23—N4—Ni1128.3 (2)C13—C17—C18118.4 (4)
C24—N4—Ni1113.61 (18)C9—C10—C11119.6 (3)
C32—N8—Ni1150.6 (3)C9—C10—H10120.2
C25—N5—Ni1153.2 (2)C11—C10—H10120.2
N2—C12—C8122.8 (3)O4—N10—O3122.2 (3)
N2—C12—C1116.9 (2)O4—N10—C36118.9 (3)
C8—C12—C1120.2 (2)O3—N10—C36118.9 (3)
C4—C5—C1117.4 (3)C3—C4—C5119.6 (3)
C4—C5—C6124.0 (3)C3—C4—H4120.2
C1—C5—C6118.6 (3)C5—C4—H4120.2
N4—C24—C20123.0 (3)C6—C7—C8121.6 (3)
N4—C24—C13116.9 (2)C6—C7—H7119.2
C20—C24—C13120.1 (3)C8—C7—H7119.2
N3—C13—C17122.9 (3)C19—C18—C17121.6 (3)
N3—C13—C24117.4 (2)C19—C18—H18119.2
C17—C13—C24119.7 (3)C17—C18—H18119.2
N2—C11—C10123.1 (3)C16—C15—C14119.6 (4)
N2—C11—H11118.5C16—C15—H15120.2
C10—C11—H11118.5C14—C15—H15120.2
C21—C20—C24116.8 (3)C15—C16—C17119.9 (4)
C21—C20—C19124.3 (3)C15—C16—H16120.0
C24—C20—C19118.9 (4)C17—C16—H16120.0
C7—C6—C5121.4 (3)C25—N6—C26117.3 (3)
C7—C6—H6119.3N5—C25—N6176.2 (4)
C5—C6—H6119.3N6—C26—C31124.4 (3)
N1—C1—C5122.5 (3)N6—C26—C27118.0 (3)
N1—C1—C12117.7 (2)C31—C26—C27117.6 (3)
C5—C1—C12119.8 (3)C30—C31—C26121.5 (3)
C32—N9—C33117.8 (2)C30—C31—H31119.2
C37—C38—C33121.1 (3)C26—C31—H31119.2
C37—C38—H38119.4C31—C30—C29119.3 (4)
C33—C38—H38119.4C31—C30—H30120.3
C21—C22—C23119.7 (3)C29—C30—H30120.3
C21—C22—H22120.2C28—C29—C30120.6 (4)
C23—C22—H22120.2C28—C29—N7120.2 (4)
N9—C33—C38123.8 (3)C30—C29—N7119.2 (4)
N9—C33—C34118.1 (3)C28—C27—C26120.7 (4)
C38—C33—C34118.1 (3)C28—C27—H27119.6
C9—C8—C12117.4 (3)C26—C27—H27119.6
C9—C8—C7124.3 (3)O1—N7—O2122.1 (5)
C12—C8—C7118.3 (3)O1—N7—C29118.6 (5)
N3—C14—C15122.3 (4)O2—N7—C29119.4 (4)
N3—C14—H14118.9C27—C28—C29120.2 (3)
C15—C14—H14118.9C27—C28—H28119.9
N8—C32—N9175.6 (3)C29—C28—H28119.9
C37—C36—C35121.2 (3)C39—O5—H5A104 (4)
N8—Ni1—N2—C1194.1 (3)N2—C12—C1—C5177.1 (3)
N4—Ni1—N2—C111.6 (3)C8—C12—C1—C53.2 (4)
N1—Ni1—N2—C11176.5 (3)C32—N9—C33—C381.2 (4)
N3—Ni1—N2—C1177.7 (3)C32—N9—C33—C34178.9 (3)
N8—Ni1—N2—C1282.19 (19)C37—C38—C33—N9179.3 (3)
N4—Ni1—N2—C12174.66 (18)C37—C38—C33—C340.6 (4)
N1—Ni1—N2—C127.27 (18)N2—C12—C8—C92.0 (4)
N3—Ni1—N2—C12106.04 (19)C1—C12—C8—C9177.7 (3)
N5—Ni1—N3—C1483.3 (3)N2—C12—C8—C7176.8 (3)
N4—Ni1—N3—C14177.7 (3)C1—C12—C8—C73.5 (4)
N1—Ni1—N3—C149.9 (3)C13—N3—C14—C151.6 (5)
N2—Ni1—N3—C1488.2 (3)Ni1—N3—C14—C15179.4 (3)
N5—Ni1—N3—C1395.8 (2)C37—C36—C35—C340.3 (5)
N4—Ni1—N3—C131.39 (19)N10—C36—C35—C34178.1 (3)
N1—Ni1—N3—C13171.02 (19)C36—C35—C34—C330.4 (5)
N2—Ni1—N3—C1392.6 (2)N9—C33—C34—C35179.4 (3)
N5—Ni1—N1—C22.2 (3)C38—C33—C34—C350.5 (5)
N8—Ni1—N1—C288.5 (3)C33—C38—C37—C360.6 (5)
N3—Ni1—N1—C292.5 (3)C35—C36—C37—C380.4 (5)
N2—Ni1—N1—C2179.6 (3)N10—C36—C37—C38178.0 (3)
N5—Ni1—N1—C1172.90 (19)C24—N4—C23—C220.4 (4)
N8—Ni1—N1—C182.2 (2)Ni1—N4—C23—C22179.9 (2)
N3—Ni1—N1—C196.77 (19)C21—C22—C23—N41.7 (5)
N2—Ni1—N1—C18.92 (18)C1—N1—C2—C31.0 (5)
N5—Ni1—N4—C2389.7 (3)Ni1—N1—C2—C3169.4 (3)
N8—Ni1—N4—C231.1 (3)N1—C2—C3—C40.0 (5)
N3—Ni1—N4—C23178.8 (3)C21—C20—C19—C18177.8 (4)
N2—Ni1—N4—C2392.4 (3)C24—C20—C19—C181.1 (6)
N5—Ni1—N4—C2490.8 (2)C12—C8—C9—C101.3 (5)
N8—Ni1—N4—C24178.4 (2)C7—C8—C9—C10177.4 (3)
N3—Ni1—N4—C241.73 (18)C23—C22—C21—C201.6 (6)
N2—Ni1—N4—C2487.13 (19)C24—C20—C21—C220.2 (5)
N5—Ni1—N8—C3233.3 (5)C19—C20—C21—C22178.6 (4)
N4—Ni1—N8—C32127.6 (5)N3—C13—C17—C160.5 (5)
N1—Ni1—N8—C3259.9 (5)C24—C13—C17—C16179.1 (3)
N2—Ni1—N8—C32138.4 (5)N3—C13—C17—C18179.4 (3)
N8—Ni1—N5—C2567.7 (6)C24—C13—C17—C181.0 (4)
N4—Ni1—N5—C2524.7 (6)C8—C9—C10—C110.2 (5)
N1—Ni1—N5—C25157.5 (6)N2—C11—C10—C91.2 (5)
N3—Ni1—N5—C25104.0 (6)C37—C36—N10—O42.7 (5)
C11—N2—C12—C81.1 (4)C35—C36—N10—O4175.7 (3)
Ni1—N2—C12—C8175.6 (2)C37—C36—N10—O3178.6 (3)
C11—N2—C12—C1178.6 (2)C35—C36—N10—O32.9 (5)
Ni1—N2—C12—C14.7 (3)C2—C3—C4—C51.0 (5)
C23—N4—C24—C201.0 (4)C1—C5—C4—C31.0 (5)
Ni1—N4—C24—C20178.6 (2)C6—C5—C4—C3178.2 (3)
C23—N4—C24—C13178.6 (3)C5—C6—C7—C81.5 (6)
Ni1—N4—C24—C131.8 (3)C9—C8—C7—C6179.9 (4)
C14—N3—C13—C171.2 (4)C12—C8—C7—C61.2 (5)
Ni1—N3—C13—C17179.5 (2)C20—C19—C18—C170.7 (6)
C14—N3—C13—C24178.3 (3)C16—C17—C18—C19179.8 (4)
Ni1—N3—C13—C240.9 (3)C13—C17—C18—C190.4 (6)
N4—C24—C13—N30.6 (4)N3—C14—C15—C161.1 (6)
C20—C24—C13—N3179.8 (3)C14—C15—C16—C170.3 (6)
N4—C24—C13—C17179.0 (3)C13—C17—C16—C150.0 (6)
C20—C24—C13—C170.6 (4)C18—C17—C16—C15179.9 (4)
C12—N2—C11—C100.5 (4)C26—N6—C25—N5177 (100)
Ni1—N2—C11—C10176.6 (2)C25—N6—C26—C316.4 (5)
N4—C24—C20—C211.1 (4)C25—N6—C26—C27172.4 (3)
C13—C24—C20—C21178.5 (3)N6—C26—C31—C30177.7 (3)
N4—C24—C20—C19180.0 (3)C27—C26—C31—C301.1 (5)
C13—C24—C20—C190.4 (4)C26—C31—C30—C290.4 (5)
C4—C5—C6—C7177.4 (4)C31—C30—C29—C280.2 (6)
C1—C5—C6—C71.8 (5)C31—C30—C29—N7178.1 (4)
C2—N1—C1—C50.9 (4)N6—C26—C27—C28177.7 (4)
Ni1—N1—C1—C5170.8 (2)C31—C26—C27—C281.2 (6)
C2—N1—C1—C12178.9 (3)C28—C29—N7—O17.7 (8)
Ni1—N1—C1—C129.5 (3)C30—C29—N7—O1174.4 (6)
C4—C5—C1—N10.1 (4)C28—C29—N7—O2172.6 (5)
C6—C5—C1—N1179.2 (3)C30—C29—N7—O25.3 (7)
C4—C5—C1—C12179.8 (3)C26—C27—C28—C290.6 (7)
C6—C5—C1—C120.6 (4)C30—C29—C28—C270.1 (7)
N2—C12—C1—N13.2 (4)N7—C29—C28—C27178.0 (4)
C8—C12—C1—N1176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N9i0.91 (3)1.98 (4)2.883 (4)174 (5)
C39—H39B···O4ii0.962.553.435 (7)153
C22—H22···O1iii0.932.573.469 (6)162
C16—H16···O2iv0.932.453.312 (6)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z+2; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H4N3O2)2(C12H8N2)2]·CH4O
Mr775.40
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.019 (2), 11.307 (2), 16.403 (3)
α, β, γ (°)103.54 (3), 92.96 (3), 99.77 (3)
V3)1772.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.25 × 0.2 × 0.1
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.862, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
19823, 9512, 6693
Rint0.053
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.139, 1.06
No. of reflections9512
No. of parameters501
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.31

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N9i0.91 (3)1.98 (4)2.883 (4)174 (5)
C39—H39B···O4ii0.962.553.435 (7)152.7
C22—H22···O1iii0.932.573.469 (6)161.9
C16—H16···O2iv0.932.453.312 (6)154.3
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z+2; (iv) x1, y1, z.
 

Acknowledgements

The authors acknowledge financial support from Isfahan University of Technology.

References

First citationAinscough, E. W., Baker, E. N., Brader, M. L. & Brodie, A. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1243–1249.  CSD CrossRef Web of Science Google Scholar
First citationCheng, Y.-Q., Liu, A.-L., Hu, M.-L. & Ng, S. W. (2002). Acta Cryst. E58, m545–m547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChiniforoshan, H., Jalilpour, S., Shirinfar, B. & Khavasi, H. R. (2009). Acta Cryst. E65, m386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChiniforoshan, H., Jazestani, M. & Notash, B. (2012). Acta Cryst. E68, m232.  CSD CrossRef IUCr Journals Google Scholar
First citationChiniforoshan, H., Shirinfar, B., Jalilpour, S. & Khavasi, H. R. (2010). Acta Cryst. E66, m331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrutchley, R. J. (2001). Coord. Chem. Rev. 219, 125–155.  Web of Science CrossRef Google Scholar
First citationCrutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955–1958.  CrossRef CAS Web of Science Google Scholar
First citationEscuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409–1417.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKim, Y.-J., Joo, Y.-S., Han, J.-T. & Han, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 3611–3618.  Web of Science CSD CrossRef Google Scholar
First citationLetcher, R. J., Zhang, W., Bensimon, C. & Crutchley, R. J. (1993). Inorg. Chim. Acta, 210, 183–191.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X., Shan, J., Sun, H.-B. & Kang, B.-S. (1999). J. Chin. Chem. Soc. 46, 179–183.  CAS Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWu, A.-Q., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2004). Acta Cryst. E60, m373–m375.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m417-m418
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds