organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1004-o1005

Fluphenazine di­hydro­chloride di­methanol solvate

aFaculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie St., 50-383 Wroclaw, Poland
*Correspondence e-mail: joanna.petrus@chem.uni.wroc.pl

(Received 21 February 2012; accepted 27 February 2012; online 10 March 2012)

In the title compound {systematic name: 1-(2-hy­droxy­eth­yl)-4-[3-(2-trifluoro­methyl-10H-phenothia­zin-10-yl)prop­yl]piperazine-1,4-diium dichloride dimethanol disolvate}, C22H28F3N3OS2+·2Cl·2CH3OH, the dihedral angle between the planes of the two outer benzene rings of the tricyclic phenothia­zine system is 46.91 (13)°. The piperazine ring adopts a chair conformation. The crystal structure is stabilized by O—H⋯Cl, N—H⋯Cl, C—H⋯O, C—H⋯Cl and C—H⋯F hydrogen bonds and contacts.

Related literature

For the properties of phenothia­zines, see: Ford et al. (1988[Ford, J. M., Prozialeck, W. C. & Hait, W. N. (1988). Mol. Pharmacol. 35, 105-115.]); Ohlow & Moosmann (2011[Ohlow, M. J. & Moosmann, B. (2011). Drug Discov. Today, 16, 119-131.]); Tsakovska & Pajeva (2006[Tsakovska, I. & Pajeva, I. (2006). Curr. Drug Targets, 7, 1123-1134.]) and for the biological properties of fluphenazine, see: Gasiorowski et al. (2001[Gasiorowski, K., Brokos, B., Szyba, K. & Leszek, J. (2001). Mutagenesis, 16, 31-38.]); Szabó et al. (1999[Szabó, D., Szabó, G., Ocsovszki, I., Aszalos, A. & Molnár, J. (1999). Cancer Lett. 139, 115-119.]). For related structures, see: Dahl et al. (1986[Dahl, S. G., Hough, E. & Hals, P.-A. (1986). Biochem. Pharmacol. 35, 1263-1269.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). J. Chem. Crystallogr. 40, 970-974.]); McDowell (1978[McDowell, J. J. H. (1978). Acta Cryst. B34, 686-689.], 1980[McDowell, J. J. H. (1980). Acta Cryst. B36, 2178-2181.]); Yathirajan et al. (2007[Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1693-o1695.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]);.

[Scheme 1]

Experimental

Crystal data
  • C22H28F3N3OS2+·2Cl·2(CH4O)

  • Mr = 574.53

  • Orthorhombic, P c a 21

  • a = 39.76 (2) Å

  • b = 9.952 (8) Å

  • c = 7.127 (5) Å

  • V = 2820 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 85 K

  • 0.24 × 0.02 × 0.01 mm

Data collection
  • Oxford Diffraction Xcalibur PX κ-geometry diffractometer with Onyx CCD camera

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.850, Tmax = 1.000

  • 43952 measured reflections

  • 13922 independent reflections

  • 10615 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.197

  • S = 1.19

  • 13922 reflections

  • 330 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.85 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5579 Friedel pairs

  • Flack parameter: 0.09 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16⋯Cl2 0.93 2.12 3.017 (3) 161
N18—H18⋯Cl1 0.93 2.16 3.078 (3) 171
O24—H24⋯Cl1 0.84 2.31 3.147 (3) 172
O22—H22⋯Cl2i 0.84 2.27 3.065 (3) 157
O23—H23⋯Cl2ii 0.84 2.36 3.169 (3) 163
C18—H18A⋯O22 0.99 2.23 2.924 (4) 126
C21—H21A⋯O23 0.99 2.39 3.266 (5) 147
C2—H2⋯F13Aiii 0.95 2.45 3.381 (4) 165
C14—H14A⋯O23ii 0.99 2.51 3.482 (5) 169
C17—H17A⋯O24iv 0.99 2.24 3.215 (4) 166
C17—H17B⋯O22i 0.99 2.55 3.379 (5) 141
C16—H16B⋯Cl2v 0.99 2.67 3.619 (4) 161
C19—H19B⋯Cl2ii 0.99 2.75 3.529 (3) 136
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-1, z-{\script{1\over 2}}]; (iv) [-x+1, -y, z+{\script{1\over 2}}]; (v) x, y, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fluphenazine (2-(4-(3-(2-(trifluoromethyl)-10H-phenothiazin-10-yl)propyl) piperazin-1-yl)ethanol)) (FPh) belongs to one of the oldest and the biggest family of antipsychotic drugs known as phenothiazines (Ohlow & Moosmann, 2011). Apart from its application in the treatment of many psychoses (mainly schizophrenia, mania and paranoid syndromes), it exhibits also a broad spectrum of biological effects, among them the anti-MDR (multidrug resistance) potency. (Gasiorowski et al., 2001; Szabó et al., 1999). Due to the anti-MDR activity of phenothiazines is strictly correlated with their structure (Tsakovska & Pajeva, 2006; Ford et al., 1988), the aim of our work is to characterize the solid state structure of fluphenazine. In the crystal structure of I (Fig. 1), the dihedral angle between the planes of the two outer benzene rings of the phenothiazine system known as 'butterfly angle', correlates with values find for phenothiazines with high biological activity (Dahl et al., 1986; McDowell, 1978; Yathirajan et al., 2007). The piperazine ring adopts a chair conformation, as in the case before reported fluphenazine dipicrate (Dutkiewicz et al., 2010), described by the Cremer & Pople (1975) puckering parameters q2 = 0.019 Å, φ2 = 13.9°, q3 = -0.593 Å, Q = 0.593 Å, θ = 178.2°. The crystal structure is stabilized by O—H···Cl, N—H···Cl, C—H···O, C—H···Cl and C—H···F hydrogen bonds and contacts (Table 1 and Fig. 2), that are very similar to those in trifluperazine dihydrochloride (McDowell, 1980).

Related literature top

For the properties of phenothiazines, see: Ford et al. (1988); Ohlow & Moosmann (2011); Tsakovska & Pajeva (2006) and for the biological properties of fluphenazine, see: Gasiorowski et al. (2001); Szabó et al. (1999). For related structures, see: Dahl et al. (1986); Dutkiewicz et al. (2010); McDowell (1978, 1980); Yathirajan et al. (2007). For puckering parameters, see: Cremer & Pople (1975); .

Experimental top

The FPh2+.2Cl-.2CH3OH crystals were obtained by slow evaporation of methanol solution of dihydrochloride fluphenazine (Jelfa) at -15°C.

Refinement top

All H atoms were found in difference Fourier maps. In the final refinement cycles, all H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95–0.99 Å, N—H = 0.93 Å and O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C, Nsp3) or 1.5Ueq(O, Cmethyl).

Structure description top

Fluphenazine (2-(4-(3-(2-(trifluoromethyl)-10H-phenothiazin-10-yl)propyl) piperazin-1-yl)ethanol)) (FPh) belongs to one of the oldest and the biggest family of antipsychotic drugs known as phenothiazines (Ohlow & Moosmann, 2011). Apart from its application in the treatment of many psychoses (mainly schizophrenia, mania and paranoid syndromes), it exhibits also a broad spectrum of biological effects, among them the anti-MDR (multidrug resistance) potency. (Gasiorowski et al., 2001; Szabó et al., 1999). Due to the anti-MDR activity of phenothiazines is strictly correlated with their structure (Tsakovska & Pajeva, 2006; Ford et al., 1988), the aim of our work is to characterize the solid state structure of fluphenazine. In the crystal structure of I (Fig. 1), the dihedral angle between the planes of the two outer benzene rings of the phenothiazine system known as 'butterfly angle', correlates with values find for phenothiazines with high biological activity (Dahl et al., 1986; McDowell, 1978; Yathirajan et al., 2007). The piperazine ring adopts a chair conformation, as in the case before reported fluphenazine dipicrate (Dutkiewicz et al., 2010), described by the Cremer & Pople (1975) puckering parameters q2 = 0.019 Å, φ2 = 13.9°, q3 = -0.593 Å, Q = 0.593 Å, θ = 178.2°. The crystal structure is stabilized by O—H···Cl, N—H···Cl, C—H···O, C—H···Cl and C—H···F hydrogen bonds and contacts (Table 1 and Fig. 2), that are very similar to those in trifluperazine dihydrochloride (McDowell, 1980).

For the properties of phenothiazines, see: Ford et al. (1988); Ohlow & Moosmann (2011); Tsakovska & Pajeva (2006) and for the biological properties of fluphenazine, see: Gasiorowski et al. (2001); Szabó et al. (1999). For related structures, see: Dahl et al. (1986); Dutkiewicz et al. (2010); McDowell (1978, 1980); Yathirajan et al. (2007). For puckering parameters, see: Cremer & Pople (1975); .

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structures and atom-numbering schemes for the FPh dication, chloride anions and solvent molecules joined by hydrogen bonds (dashed lines) in the asymmetric unit of I. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis.
1-(2-hydroxyethyl)-4-[3-(2-trifluoromethyl-10H-phenothiazin- 10-yl)propyl]piperazine-1,4-diium dichloride dimethanol disolvate top
Crystal data top
C22H28F3N3OS2+·2Cl·2(CH4O)F(000) = 1208
Mr = 574.53Dx = 1.353 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 13454 reflections
a = 39.76 (2) Åθ = 4.8–38.5°
b = 9.952 (8) ŵ = 0.35 mm1
c = 7.127 (5) ÅT = 85 K
V = 2820 (3) Å3Needle, colourless
Z = 40.24 × 0.02 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur PX κ-geometry
diffractometer with CCD Onyx camera
13922 independent reflections
Radiation source: fine-focus sealed tube10615 reflections with I > 2σ(I)
Graphite/ monochromatorRint = 0.052
ω and φ scansθmax = 38.6°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 6964
Tmin = 0.850, Tmax = 1.000k = 1715
43952 measured reflectionsl = 1210
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.062P)2 + 4.274P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
13922 reflectionsΔρmax = 1.25 e Å3
330 parametersΔρmin = 0.85 e Å3
1 restraintAbsolute structure: Flack (1983), 5579 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (7)
Crystal data top
C22H28F3N3OS2+·2Cl·2(CH4O)V = 2820 (3) Å3
Mr = 574.53Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 39.76 (2) ŵ = 0.35 mm1
b = 9.952 (8) ÅT = 85 K
c = 7.127 (5) Å0.24 × 0.02 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur PX κ-geometry
diffractometer with CCD Onyx camera
13922 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
10615 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 1.000Rint = 0.052
43952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.197Δρmax = 1.25 e Å3
S = 1.19Δρmin = 0.85 e Å3
13922 reflectionsAbsolute structure: Flack (1983), 5579 Friedel pairs
330 parametersAbsolute structure parameter: 0.09 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.716794 (19)0.15955 (8)0.47197 (13)0.01988 (15)
C10.69059 (7)0.1626 (3)0.2720 (4)0.0141 (5)
C20.69591 (8)0.0733 (3)0.1245 (5)0.0186 (6)
H20.71390.01090.13010.022*
C30.67489 (8)0.0756 (3)0.0306 (5)0.0217 (6)
H30.67810.01360.13030.026*
C40.64910 (8)0.1692 (3)0.0392 (5)0.0218 (5)
H40.63470.17090.14560.026*
C50.64397 (7)0.2604 (3)0.1050 (5)0.0178 (5)
H50.62650.32510.09560.021*
C60.66444 (7)0.2571 (3)0.2641 (4)0.0131 (4)
N60.66034 (6)0.3468 (2)0.4191 (4)0.0154 (5)
C70.68982 (7)0.4120 (3)0.4788 (4)0.0146 (5)
C80.69142 (8)0.5497 (3)0.5105 (5)0.0176 (5)
H80.67220.60450.48930.021*
C90.72137 (8)0.6071 (3)0.5736 (5)0.0204 (6)
C100.75000 (9)0.5322 (3)0.5989 (5)0.0219 (6)
H100.77020.57310.64090.026*
C110.74876 (8)0.3957 (3)0.5618 (5)0.0208 (6)
H110.76860.34320.57460.025*
C120.71912 (7)0.3344 (3)0.5065 (4)0.0174 (5)
C130.72107 (9)0.7549 (4)0.6146 (6)0.0288 (8)
F13A0.75142 (7)0.8068 (2)0.6355 (6)0.0553 (10)
F13B0.70499 (8)0.8260 (2)0.4841 (5)0.0470 (7)
F13C0.70460 (9)0.7820 (3)0.7761 (5)0.0500 (8)
C140.62843 (7)0.4191 (3)0.4335 (5)0.0178 (5)
H14A0.62420.46840.31510.021*
H14B0.62990.48580.53630.021*
C150.59930 (7)0.3231 (3)0.4715 (5)0.0163 (5)
H15A0.59980.24820.38020.020*
H15B0.60130.28500.59930.020*
C160.56640 (6)0.4003 (2)0.4535 (5)0.0133 (4)
H16A0.56910.49100.50850.016*
H16B0.56070.41110.31920.016*
N160.53816 (6)0.3281 (2)0.5520 (3)0.0112 (4)
H160.54360.32380.67880.013*
C170.53309 (7)0.1872 (3)0.4842 (4)0.0142 (5)
H17A0.55410.13540.50090.017*
H17B0.52760.18820.34880.017*
C180.50516 (7)0.1208 (3)0.5911 (5)0.0146 (5)
H18A0.50220.02780.54470.018*
H18B0.51130.11600.72560.018*
N180.47276 (6)0.1961 (2)0.5704 (3)0.0108 (4)
H180.46760.20150.44330.013*
C190.47808 (7)0.3362 (3)0.6430 (4)0.0132 (4)
H19A0.48400.33270.77790.016*
H19B0.45700.38850.62960.016*
C200.50609 (6)0.4044 (2)0.5348 (4)0.0101 (4)
H20A0.49970.41110.40080.012*
H20B0.50930.49670.58350.012*
C210.44365 (7)0.1309 (3)0.6692 (4)0.0150 (5)
H21A0.42590.19900.69050.018*
H21B0.45120.09810.79330.018*
C220.42902 (8)0.0152 (3)0.5600 (5)0.0170 (5)
H22A0.40940.02200.62770.020*
H22B0.42140.04680.43550.020*
O220.45382 (7)0.0860 (2)0.5376 (4)0.0262 (5)
H220.44450.16160.53240.039*
O230.39180 (8)0.3725 (3)0.5576 (5)0.0333 (6)
H230.40010.44510.51900.050*
C230.36311 (18)0.3410 (7)0.4515 (13)0.071 (2)
H23A0.34840.42000.44410.106*
H23B0.35100.26690.51150.106*
H23C0.36990.31420.32470.106*
O240.40656 (6)0.0214 (2)0.0563 (4)0.0233 (5)
H240.41900.08750.08080.035*
C240.37321 (9)0.0675 (5)0.0181 (6)0.0335 (9)
H24A0.36390.11010.13060.050*
H24B0.35910.00900.01790.050*
H24C0.37380.13280.08470.050*
Cl10.459485 (19)0.24652 (8)0.15078 (11)0.01844 (13)
Cl20.562033 (17)0.38032 (7)0.94712 (10)0.01575 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0209 (3)0.0132 (3)0.0255 (4)0.0016 (2)0.0071 (3)0.0018 (3)
C10.0136 (11)0.0084 (10)0.0203 (13)0.0007 (9)0.0001 (9)0.0013 (9)
C20.0164 (11)0.0105 (11)0.0289 (17)0.0025 (9)0.0035 (11)0.0022 (10)
C30.0259 (13)0.0161 (12)0.0230 (15)0.0017 (10)0.0032 (13)0.0057 (12)
C40.0257 (13)0.0220 (13)0.0175 (13)0.0010 (11)0.0047 (12)0.0027 (13)
C50.0160 (12)0.0170 (12)0.0203 (14)0.0028 (10)0.0017 (10)0.0001 (10)
C60.0135 (10)0.0061 (9)0.0198 (13)0.0007 (8)0.0023 (9)0.0009 (9)
N60.0128 (9)0.0112 (9)0.0223 (13)0.0003 (8)0.0018 (8)0.0045 (8)
C70.0162 (10)0.0123 (10)0.0153 (12)0.0000 (8)0.0009 (9)0.0019 (9)
C80.0164 (11)0.0110 (11)0.0253 (15)0.0001 (9)0.0000 (10)0.0015 (10)
C90.0211 (13)0.0143 (12)0.0258 (15)0.0048 (10)0.0021 (12)0.0064 (11)
C100.0200 (13)0.0205 (14)0.0253 (16)0.0021 (11)0.0043 (12)0.0034 (12)
C110.0181 (12)0.0198 (14)0.0246 (15)0.0008 (10)0.0057 (11)0.0019 (12)
C120.0163 (11)0.0175 (12)0.0184 (14)0.0012 (10)0.0041 (10)0.0004 (10)
C130.0258 (15)0.0192 (15)0.041 (2)0.0062 (12)0.0014 (14)0.0085 (15)
F13A0.0261 (11)0.0234 (11)0.116 (3)0.0107 (10)0.0014 (16)0.0251 (15)
F13B0.0628 (17)0.0125 (9)0.066 (2)0.0013 (10)0.0150 (16)0.0016 (11)
F13C0.066 (2)0.0277 (13)0.0561 (19)0.0046 (13)0.0231 (16)0.0180 (13)
C140.0139 (10)0.0171 (12)0.0224 (14)0.0014 (9)0.0035 (11)0.0034 (11)
C150.0135 (10)0.0122 (10)0.0233 (14)0.0015 (8)0.0036 (10)0.0010 (11)
C160.0135 (10)0.0110 (10)0.0153 (11)0.0004 (7)0.0025 (10)0.0001 (10)
N160.0117 (9)0.0114 (9)0.0104 (9)0.0011 (7)0.0015 (7)0.0008 (8)
C170.0143 (10)0.0095 (10)0.0187 (13)0.0009 (8)0.0010 (9)0.0022 (9)
C180.0161 (11)0.0062 (9)0.0216 (13)0.0014 (8)0.0022 (10)0.0014 (9)
N180.0133 (9)0.0072 (8)0.0118 (10)0.0012 (7)0.0008 (8)0.0006 (7)
C190.0155 (10)0.0084 (9)0.0156 (11)0.0011 (8)0.0013 (9)0.0011 (9)
C200.0140 (10)0.0037 (9)0.0127 (11)0.0007 (7)0.0002 (8)0.0011 (7)
C210.0168 (11)0.0126 (11)0.0157 (12)0.0032 (9)0.0031 (9)0.0008 (9)
C220.0212 (12)0.0118 (11)0.0179 (13)0.0033 (9)0.0008 (10)0.0016 (10)
O220.0263 (11)0.0120 (9)0.0404 (15)0.0039 (8)0.0014 (11)0.0060 (10)
O230.0375 (15)0.0228 (13)0.0394 (17)0.0038 (11)0.0043 (13)0.0034 (12)
C230.080 (4)0.055 (3)0.077 (4)0.036 (3)0.038 (4)0.013 (3)
O240.0189 (10)0.0157 (10)0.0353 (14)0.0021 (8)0.0012 (10)0.0041 (10)
C240.0175 (14)0.045 (2)0.038 (2)0.0028 (15)0.0015 (14)0.0069 (17)
Cl10.0254 (3)0.0182 (3)0.0118 (2)0.0055 (3)0.0041 (3)0.0017 (2)
Cl20.0212 (3)0.0131 (2)0.0129 (3)0.0022 (2)0.0034 (2)0.0012 (2)
Geometric parameters (Å, º) top
S1—C121.760 (4)C16—H16B0.9900
S1—C11.766 (3)N16—C201.489 (3)
C1—C21.393 (4)N16—C171.497 (4)
C1—C61.403 (4)N16—H160.9300
C2—C31.386 (5)C17—C181.500 (4)
C2—H20.9500C17—H17A0.9900
C3—C41.387 (4)C17—H17B0.9900
C3—H30.9500C18—N181.498 (4)
C4—C51.386 (5)C18—H18A0.9900
C4—H40.9500C18—H18B0.9900
C5—C61.396 (4)N18—C191.502 (4)
C5—H50.9500N18—C211.502 (4)
C6—N61.430 (4)N18—H180.9300
N6—C71.406 (4)C19—C201.516 (4)
N6—C141.462 (4)C19—H19A0.9900
C7—C81.390 (4)C19—H19B0.9900
C7—C121.412 (4)C20—H20A0.9900
C8—C91.395 (4)C20—H20B0.9900
C8—H80.9500C21—C221.507 (4)
C9—C101.373 (5)C21—H21A0.9900
C9—C131.499 (5)C21—H21B0.9900
C10—C111.385 (5)C22—O221.418 (4)
C10—H100.9500C22—H22A0.9900
C11—C121.385 (4)C22—H22B0.9900
C11—H110.9500O22—H220.8400
C13—F13A1.321 (4)O23—C231.404 (7)
C13—F13B1.332 (5)O23—H230.8400
C13—F13C1.352 (5)C23—H23A0.9800
C14—C151.526 (4)C23—H23B0.9800
C14—H14A0.9900C23—H23C0.9800
C14—H14B0.9900O24—C241.429 (4)
C15—C161.522 (4)O24—H240.8400
C15—H15A0.9900C24—H24A0.9800
C15—H15B0.9900C24—H24B0.9800
C16—N161.507 (4)C24—H24C0.9800
C16—H16A0.9900
C12—S1—C197.29 (14)C20—N16—C17109.6 (2)
C2—C1—C6120.6 (3)C20—N16—C16110.9 (2)
C2—C1—S1120.6 (2)C17—N16—C16113.4 (2)
C6—C1—S1118.8 (2)C20—N16—H16107.6
C3—C2—C1120.0 (3)C17—N16—H16107.6
C3—C2—H2120.0C16—N16—H16107.6
C1—C2—H2120.0N16—C17—C18110.4 (2)
C2—C3—C4119.5 (3)N16—C17—H17A109.6
C2—C3—H3120.3C18—C17—H17A109.6
C4—C3—H3120.3N16—C17—H17B109.6
C5—C4—C3121.1 (3)C18—C17—H17B109.6
C5—C4—H4119.5H17A—C17—H17B108.1
C3—C4—H4119.5N18—C18—C17111.5 (2)
C4—C5—C6120.1 (3)N18—C18—H18A109.3
C4—C5—H5120.0C17—C18—H18A109.3
C6—C5—H5120.0N18—C18—H18B109.3
C5—C6—C1118.7 (3)C17—C18—H18B109.3
C5—C6—N6123.1 (3)H18A—C18—H18B108.0
C1—C6—N6118.2 (3)C18—N18—C19108.0 (2)
C7—N6—C6115.3 (2)C18—N18—C21113.6 (2)
C7—N6—C14118.4 (2)C19—N18—C21110.3 (2)
C6—N6—C14117.4 (2)C18—N18—H18108.2
C8—C7—N6122.8 (3)C19—N18—H18108.2
C8—C7—C12118.6 (3)C21—N18—H18108.2
N6—C7—C12118.6 (3)N18—C19—C20110.1 (2)
C7—C8—C9119.7 (3)N18—C19—H19A109.6
C7—C8—H8120.2C20—C19—H19A109.6
C9—C8—H8120.2N18—C19—H19B109.6
C10—C9—C8121.9 (3)C20—C19—H19B109.6
C10—C9—C13120.9 (3)H19A—C19—H19B108.1
C8—C9—C13117.2 (3)N16—C20—C19111.0 (2)
C9—C10—C11118.6 (3)N16—C20—H20A109.4
C9—C10—H10120.7C19—C20—H20A109.4
C11—C10—H10120.7N16—C20—H20B109.4
C12—C11—C10121.1 (3)C19—C20—H20B109.4
C12—C11—H11119.5H20A—C20—H20B108.0
C10—C11—H11119.5N18—C21—C22112.7 (2)
C11—C12—C7120.1 (3)N18—C21—H21A109.1
C11—C12—S1121.3 (2)C22—C21—H21A109.1
C7—C12—S1118.6 (2)N18—C21—H21B109.1
F13A—C13—F13B108.0 (4)C22—C21—H21B109.1
F13A—C13—F13C105.6 (3)H21A—C21—H21B107.8
F13B—C13—F13C104.8 (3)O22—C22—C21109.4 (3)
F13A—C13—C9113.5 (3)O22—C22—H22A109.8
F13B—C13—C9112.9 (3)C21—C22—H22A109.8
F13C—C13—C9111.4 (3)O22—C22—H22B109.8
N6—C14—C15111.3 (2)C21—C22—H22B109.8
N6—C14—H14A109.4H22A—C22—H22B108.2
C15—C14—H14A109.4C22—O22—H22109.5
N6—C14—H14B109.4C23—O23—H23109.5
C15—C14—H14B109.4O23—C23—H23A109.5
H14A—C14—H14B108.0O23—C23—H23B109.5
C16—C15—C14108.8 (2)H23A—C23—H23B109.5
C16—C15—H15A109.9O23—C23—H23C109.5
C14—C15—H15A109.9H23A—C23—H23C109.5
C16—C15—H15B109.9H23B—C23—H23C109.5
C14—C15—H15B109.9C24—O24—H24109.5
H15A—C15—H15B108.3O24—C24—H24A109.5
N16—C16—C15111.1 (2)O24—C24—H24B109.5
N16—C16—H16A109.4H24A—C24—H24B109.5
C15—C16—H16A109.4O24—C24—H24C109.5
N16—C16—H16B109.4H24A—C24—H24C109.5
C15—C16—H16B109.4H24B—C24—H24C109.5
H16A—C16—H16B108.0
C12—S1—C1—C2141.0 (3)N6—C7—C12—C11178.8 (3)
C12—S1—C1—C638.6 (3)C8—C7—C12—S1178.4 (2)
C6—C1—C2—C31.2 (4)N6—C7—C12—S12.0 (4)
S1—C1—C2—C3179.2 (2)C1—S1—C12—C11141.1 (3)
C1—C2—C3—C41.4 (5)C1—S1—C12—C739.8 (3)
C2—C3—C4—C50.1 (5)C10—C9—C13—F13A13.7 (6)
C3—C4—C5—C61.4 (5)C8—C9—C13—F13A166.8 (4)
C4—C5—C6—C11.6 (4)C10—C9—C13—F13B137.1 (4)
C4—C5—C6—N6179.2 (3)C8—C9—C13—F13B43.4 (5)
C2—C1—C6—C50.3 (4)C10—C9—C13—F13C105.3 (4)
S1—C1—C6—C5179.3 (2)C8—C9—C13—F13C74.2 (5)
C2—C1—C6—N6179.5 (3)C7—N6—C14—C15148.0 (3)
S1—C1—C6—N60.1 (4)C6—N6—C14—C1566.1 (4)
C5—C6—N6—C7130.1 (3)N6—C14—C15—C16170.9 (3)
C1—C6—N6—C749.0 (4)C14—C15—C16—N16160.3 (3)
C5—C6—N6—C1416.7 (4)C15—C16—N16—C20179.7 (2)
C1—C6—N6—C14164.1 (3)C15—C16—N16—C1756.5 (3)
C6—N6—C7—C8131.6 (3)C20—N16—C17—C1856.8 (3)
C14—N6—C7—C814.9 (5)C16—N16—C17—C18178.8 (2)
C6—N6—C7—C1247.9 (4)N16—C17—C18—N1859.1 (3)
C14—N6—C7—C12165.6 (3)C17—C18—N18—C1959.3 (3)
N6—C7—C8—C9178.6 (3)C17—C18—N18—C21177.9 (2)
C12—C7—C8—C91.9 (5)C18—N18—C19—C2058.7 (3)
C7—C8—C9—C102.6 (5)C21—N18—C19—C20176.6 (2)
C7—C8—C9—C13177.0 (3)C17—N16—C20—C1957.3 (3)
C8—C9—C10—C110.6 (6)C16—N16—C20—C19176.8 (2)
C13—C9—C10—C11179.0 (3)N18—C19—C20—N1659.3 (3)
C9—C10—C11—C122.1 (6)C18—N18—C21—C2279.5 (3)
C10—C11—C12—C72.8 (5)C19—N18—C21—C22159.0 (2)
C10—C11—C12—S1176.4 (3)N18—C21—C22—O2261.8 (3)
C8—C7—C12—C110.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16···Cl20.932.123.017 (3)161
N18—H18···Cl10.932.163.078 (3)171
O24—H24···Cl10.842.313.147 (3)172
O22—H22···Cl2i0.842.273.065 (3)157
O23—H23···Cl2ii0.842.363.169 (3)163
C18—H18A···O220.992.232.924 (4)126
C21—H21A···O230.992.393.266 (5)147
C2—H2···F13Aiii0.952.453.381 (4)165
C14—H14A···O23ii0.992.513.482 (5)169
C17—H17A···O24iv0.992.243.215 (4)166
C17—H17B···O22i0.992.553.379 (5)141
C16—H16B···Cl2v0.992.673.619 (4)161
C19—H19B···Cl2ii0.992.753.529 (3)136
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y+1, z1/2; (iii) x+3/2, y1, z1/2; (iv) x+1, y, z+1/2; (v) x, y, z1.

Experimental details

Crystal data
Chemical formulaC22H28F3N3OS2+·2Cl·2(CH4O)
Mr574.53
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)85
a, b, c (Å)39.76 (2), 9.952 (8), 7.127 (5)
V3)2820 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.24 × 0.02 × 0.01
Data collection
DiffractometerOxford Diffraction Xcalibur PX κ-geometry
diffractometer with CCD Onyx camera
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.850, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
43952, 13922, 10615
Rint0.052
(sin θ/λ)max1)0.878
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.197, 1.19
No. of reflections13922
No. of parameters330
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.85
Absolute structureFlack (1983), 5579 Friedel pairs
Absolute structure parameter0.09 (7)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16···Cl20.932.123.017 (3)160.5
N18—H18···Cl10.932.163.078 (3)170.5
O24—H24···Cl10.842.313.147 (3)171.5
O22—H22···Cl2i0.842.273.065 (3)156.8
O23—H23···Cl2ii0.842.363.169 (3)162.8
C18—H18A···O220.992.232.924 (4)125.9
C21—H21A···O230.992.393.266 (5)146.9
C2—H2···F13Aiii0.952.453.381 (4)165.0
C14—H14A···O23ii0.992.513.482 (5)168.5
C17—H17A···O24iv0.992.243.215 (4)166.4
C17—H17B···O22i0.992.553.379 (5)141.2
C16—H16B···Cl2v0.992.673.619 (4)160.7
C19—H19B···Cl2ii0.992.753.529 (3)136.0
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y+1, z1/2; (iii) x+3/2, y1, z1/2; (iv) x+1, y, z+1/2; (v) x, y, z1.
 

Acknowledgements

This work was supported by the Polish Ministry of Sciences and Higher Education (grant Nos. N N204 150440 and N N204 150338) and the European Social Funds (ESF) in the areas of Human Capital Strategy Program and the Marshal's Office of Lower Silesia.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDahl, S. G., Hough, E. & Hals, P.-A. (1986). Biochem. Pharmacol. 35, 1263–1269.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). J. Chem. Crystallogr. 40, 970–974.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFord, J. M., Prozialeck, W. C. & Hait, W. N. (1988). Mol. Pharmacol. 35, 105–115.  Google Scholar
First citationGasiorowski, K., Brokos, B., Szyba, K. & Leszek, J. (2001). Mutagenesis, 16, 31–38.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcDowell, J. J. H. (1978). Acta Cryst. B34, 686–689.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMcDowell, J. J. H. (1980). Acta Cryst. B36, 2178–2181.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOhlow, M. J. & Moosmann, B. (2011). Drug Discov. Today, 16, 119–131.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzabó, D., Szabó, G., Ocsovszki, I., Aszalos, A. & Molnár, J. (1999). Cancer Lett. 139, 115–119.  Web of Science PubMed Google Scholar
First citationTsakovska, I. & Pajeva, I. (2006). Curr. Drug Targets, 7, 1123–1134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1693–o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1004-o1005
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds