organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Chloro­phen­yl)-2-[(2-formylphen­­oxy)meth­yl]prop-2-ene­nitrile

aDepartment of Physics, Bharathidasan Engineering College, Nattrampalli, Vellore 635 854, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 22 February 2012; accepted 24 February 2012; online 3 March 2012)

In the title compound, C17H12ClNO2, the dihedral angle between the two benzene rings is 42.9 (1)°. There are no sgnificant inter­molecular inter­actions.

Related literature

For background to the synthetic procedure, see: Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]). For related structures, see: Manikandan et al. (2012[Manikandan, N., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o28.]); Prasanna et al. (2011[Prasanna, C. M. S., Sethusankar, K., Rajesh, R. & Raghunathan, R. (2011). Acta Cryst. E67, o2176.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12ClNO2

  • Mr = 297.73

  • Triclinic, [P \overline 1]

  • a = 7.5022 (4) Å

  • b = 7.8301 (4) Å

  • c = 13.2379 (8) Å

  • α = 75.470 (3)°

  • β = 84.696 (2)°

  • γ = 70.935 (2)°

  • V = 711.43 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 0.960

  • 14438 measured reflections

  • 3433 independent reflections

  • 2685 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.04

  • 3433 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is a stereodefined trisubstituted olefin, synthesized from the corresponding bromoderivative of Baylis–Hillman adduct with salicylaldehyde via simple SN2 reaction in good yields. This o-salicyladehyde derivative is an important precursor for many heterocyclic frameworks (Bakthadoss & Murugan, 2010).

The title compound comprises a benzaldehyde moiety connected to a chlorophenyl ring through a chain formed by a methoxy methyl and a propenenitrile group. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1.

The dihedral angle between the two aromatic rings is 42.9 (1)°. The propenenitrile (N1/C17/C8–C11) plane forms dihedral angles of 12.4 (1)° and 36.0 (1)°, respectively, with the formyl phenyl and chloro phenyl rings. The Cl1 atom deviates from the plane of attached ring by 0.019 (1) Å. The bond length C9—C17 [1.443 (2) Å] is significantly shorter than the expected value for a C—C single bond because of conjugation effects (Prasanna et al., 2011). The carbonitrile side chain (C9—C17—N1) is almost linear, with the angle around the central C atom being 178.1 (2)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Manikandan et al., 2012; Prasanna et al., 2011).

Related literature top

For background to the synthetic procedure, see: Bakthadoss & Murugan (2010). For related structures, see: Manikandan et al. (2012); Prasanna et al. 2011).

Experimental top

A solution of salicylaldehyde (1.0 mmol, 0.122 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 min at room temperature. To this solution, (E)-2-(bromomethyl)-3-(2-chlorophenyl)prop-2-enenitrile (1.2 mmol, 0.308 g) was added drop wise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. EtOAc (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to a crude product, which was purified through a pad of silica gel (100–200 mesh) using ethyl acetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (0.270 g, 90% yield). Recrystallization was carried out using ethyl acetate as solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound is a stereodefined trisubstituted olefin, synthesized from the corresponding bromoderivative of Baylis–Hillman adduct with salicylaldehyde via simple SN2 reaction in good yields. This o-salicyladehyde derivative is an important precursor for many heterocyclic frameworks (Bakthadoss & Murugan, 2010).

The title compound comprises a benzaldehyde moiety connected to a chlorophenyl ring through a chain formed by a methoxy methyl and a propenenitrile group. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1.

The dihedral angle between the two aromatic rings is 42.9 (1)°. The propenenitrile (N1/C17/C8–C11) plane forms dihedral angles of 12.4 (1)° and 36.0 (1)°, respectively, with the formyl phenyl and chloro phenyl rings. The Cl1 atom deviates from the plane of attached ring by 0.019 (1) Å. The bond length C9—C17 [1.443 (2) Å] is significantly shorter than the expected value for a C—C single bond because of conjugation effects (Prasanna et al., 2011). The carbonitrile side chain (C9—C17—N1) is almost linear, with the angle around the central C atom being 178.1 (2)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Manikandan et al., 2012; Prasanna et al., 2011).

For background to the synthetic procedure, see: Bakthadoss & Murugan (2010). For related structures, see: Manikandan et al. (2012); Prasanna et al. 2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.
(E)-3-(2-Chlorophenyl)-2-[(2-formylphenoxy)methyl]prop-2-enenitrile top
Crystal data top
C17H12ClNO2Z = 2
Mr = 297.73F(000) = 308
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5022 (4) ÅCell parameters from 3463 reflections
b = 7.8301 (4) Åθ = 2.8–28.1°
c = 13.2379 (8) ŵ = 0.27 mm1
α = 75.470 (3)°T = 293 K
β = 84.696 (2)°Block, colourless
γ = 70.935 (2)°0.24 × 0.21 × 0.15 mm
V = 711.43 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3433 independent reflections
Radiation source: fine-focus sealed tube2685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 28.1°, θmin = 2.8°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.937, Tmax = 0.960l = 1717
14438 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.053P)2 + 0.159P]
where P = (Fo2 + 2Fc2)/3
3433 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H12ClNO2γ = 70.935 (2)°
Mr = 297.73V = 711.43 (7) Å3
Triclinic, P1Z = 2
a = 7.5022 (4) ÅMo Kα radiation
b = 7.8301 (4) ŵ = 0.27 mm1
c = 13.2379 (8) ÅT = 293 K
α = 75.470 (3)°0.24 × 0.21 × 0.15 mm
β = 84.696 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3433 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2685 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.960Rint = 0.029
14438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3433 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31341 (8)0.23140 (7)0.01456 (3)0.07011 (17)
N10.1141 (2)0.1357 (2)0.40658 (12)0.0660 (4)
O10.3876 (2)0.21291 (18)0.75288 (10)0.0765 (4)
O20.28615 (15)0.15782 (13)0.48411 (7)0.0436 (2)
C10.32059 (19)0.22280 (18)0.56458 (10)0.0364 (3)
C20.3173 (2)0.4030 (2)0.55536 (12)0.0471 (4)
H20.28300.49130.49280.057*
C30.3655 (3)0.4509 (2)0.64002 (14)0.0562 (4)
H30.36390.57240.63360.067*
C40.4160 (3)0.3238 (2)0.73390 (13)0.0559 (4)
H40.45130.35780.78960.067*
C50.4132 (2)0.1464 (2)0.74357 (11)0.0474 (4)
H50.44420.06030.80710.057*
C60.36463 (19)0.09286 (18)0.66019 (10)0.0377 (3)
C70.3555 (2)0.0949 (2)0.67304 (12)0.0479 (4)
H70.32250.12510.61530.057*
C80.1837 (2)0.2928 (2)0.39872 (11)0.0428 (3)
H8A0.25760.37150.36270.051*
H8B0.06700.37050.42330.051*
C90.1425 (2)0.1907 (2)0.32654 (11)0.0407 (3)
C100.1257 (2)0.2525 (2)0.22304 (11)0.0453 (3)
H100.09880.17540.18760.054*
C110.1448 (2)0.4273 (2)0.15926 (11)0.0450 (3)
C120.2291 (2)0.4332 (2)0.05996 (12)0.0505 (4)
C130.2510 (3)0.5949 (3)0.00219 (14)0.0639 (5)
H130.30800.59530.06760.077*
C140.1887 (3)0.7543 (3)0.03273 (17)0.0725 (6)
H140.20400.86350.00900.087*
C150.1029 (3)0.7550 (3)0.12961 (16)0.0693 (5)
H150.06050.86430.15280.083*
C160.0804 (3)0.5936 (2)0.19183 (13)0.0562 (4)
H160.02120.59550.25660.067*
C170.1252 (2)0.0091 (2)0.37263 (11)0.0463 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0911 (4)0.0811 (3)0.0395 (2)0.0294 (3)0.0038 (2)0.0151 (2)
N10.0812 (11)0.0554 (9)0.0620 (9)0.0321 (8)0.0090 (8)0.0041 (7)
O10.1249 (12)0.0518 (7)0.0519 (7)0.0394 (8)0.0187 (7)0.0113 (6)
O20.0599 (6)0.0349 (5)0.0322 (5)0.0102 (4)0.0091 (4)0.0044 (4)
C10.0398 (7)0.0358 (7)0.0329 (6)0.0113 (5)0.0013 (5)0.0083 (5)
C20.0612 (9)0.0358 (7)0.0424 (8)0.0170 (7)0.0022 (7)0.0043 (6)
C30.0757 (11)0.0435 (8)0.0598 (10)0.0286 (8)0.0056 (8)0.0197 (7)
C40.0689 (11)0.0625 (10)0.0472 (9)0.0272 (8)0.0005 (7)0.0242 (8)
C50.0562 (9)0.0514 (9)0.0344 (7)0.0170 (7)0.0019 (6)0.0089 (6)
C60.0424 (7)0.0352 (7)0.0341 (7)0.0121 (6)0.0002 (5)0.0062 (5)
C70.0610 (9)0.0390 (8)0.0421 (8)0.0176 (7)0.0056 (7)0.0025 (6)
C80.0504 (8)0.0388 (7)0.0339 (7)0.0099 (6)0.0036 (6)0.0037 (5)
C90.0417 (7)0.0429 (7)0.0354 (7)0.0138 (6)0.0005 (5)0.0050 (6)
C100.0520 (8)0.0507 (8)0.0358 (7)0.0215 (7)0.0031 (6)0.0069 (6)
C110.0469 (8)0.0512 (9)0.0339 (7)0.0172 (7)0.0113 (6)0.0017 (6)
C120.0520 (9)0.0601 (10)0.0358 (7)0.0200 (7)0.0105 (6)0.0020 (7)
C130.0614 (10)0.0752 (13)0.0447 (9)0.0263 (9)0.0070 (8)0.0132 (8)
C140.0733 (13)0.0589 (12)0.0736 (13)0.0287 (10)0.0198 (10)0.0222 (10)
C150.0788 (13)0.0479 (10)0.0730 (13)0.0153 (9)0.0219 (10)0.0017 (9)
C160.0621 (10)0.0509 (9)0.0478 (9)0.0124 (8)0.0107 (7)0.0013 (7)
C170.0510 (8)0.0507 (9)0.0366 (7)0.0191 (7)0.0028 (6)0.0062 (6)
Geometric parameters (Å, º) top
Cl1—C121.7353 (18)C8—C91.499 (2)
N1—C171.137 (2)C8—H8A0.9700
O1—C71.2004 (18)C8—H8B0.9700
O2—C11.3672 (16)C9—C101.3367 (19)
O2—C81.4199 (16)C9—C171.443 (2)
C1—C21.378 (2)C10—C111.460 (2)
C1—C61.3992 (18)C10—H100.9300
C2—C31.379 (2)C11—C161.395 (2)
C2—H20.9300C11—C121.402 (2)
C3—C41.378 (2)C12—C131.376 (2)
C3—H30.9300C13—C141.364 (3)
C4—C51.369 (2)C13—H130.9300
C4—H40.9300C14—C151.381 (3)
C5—C61.390 (2)C14—H140.9300
C5—H50.9300C15—C161.377 (3)
C6—C71.460 (2)C15—H150.9300
C7—H70.9300C16—H160.9300
C1—O2—C8116.56 (10)H8A—C8—H8B108.5
O2—C1—C2123.98 (12)C10—C9—C17117.74 (14)
O2—C1—C6115.96 (11)C10—C9—C8125.17 (13)
C2—C1—C6120.05 (13)C17—C9—C8117.06 (12)
C1—C2—C3119.14 (14)C9—C10—C11127.43 (14)
C1—C2—H2120.4C9—C10—H10116.3
C3—C2—H2120.4C11—C10—H10116.3
C4—C3—C2121.89 (14)C16—C11—C12117.11 (14)
C4—C3—H3119.1C16—C11—C10122.99 (14)
C2—C3—H3119.1C12—C11—C10119.90 (14)
C5—C4—C3118.66 (15)C13—C12—C11121.65 (17)
C5—C4—H4120.7C13—C12—Cl1118.70 (14)
C3—C4—H4120.7C11—C12—Cl1119.63 (12)
C4—C5—C6121.20 (14)C14—C13—C12119.65 (18)
C4—C5—H5119.4C14—C13—H13120.2
C6—C5—H5119.4C12—C13—H13120.2
C5—C6—C1118.97 (13)C13—C14—C15120.53 (17)
C5—C6—C7120.44 (13)C13—C14—H14119.7
C1—C6—C7120.58 (12)C15—C14—H14119.7
O1—C7—C6124.58 (15)C16—C15—C14120.0 (2)
O1—C7—H7117.7C16—C15—H15120.0
C6—C7—H7117.7C14—C15—H15120.0
O2—C8—C9107.51 (11)C15—C16—C11121.09 (18)
O2—C8—H8A110.2C15—C16—H16119.5
C9—C8—H8A110.2C11—C16—H16119.5
O2—C8—H8B110.2N1—C17—C9178.10 (17)
C9—C8—H8B110.2
C8—O2—C1—C221.16 (19)C17—C9—C10—C11177.54 (15)
C8—O2—C1—C6160.05 (12)C8—C9—C10—C110.5 (3)
O2—C1—C2—C3176.06 (14)C9—C10—C11—C1637.5 (2)
C6—C1—C2—C32.7 (2)C9—C10—C11—C12143.27 (17)
C1—C2—C3—C40.3 (3)C16—C11—C12—C131.2 (2)
C2—C3—C4—C51.7 (3)C10—C11—C12—C13179.48 (15)
C3—C4—C5—C61.4 (3)C16—C11—C12—Cl1179.72 (12)
C4—C5—C6—C10.9 (2)C10—C11—C12—Cl11.0 (2)
C4—C5—C6—C7177.70 (15)C11—C12—C13—C140.4 (3)
O2—C1—C6—C5175.89 (12)Cl1—C12—C13—C14178.89 (14)
C2—C1—C6—C52.9 (2)C12—C13—C14—C150.3 (3)
O2—C1—C6—C75.54 (19)C13—C14—C15—C160.2 (3)
C2—C1—C6—C7175.62 (13)C14—C15—C16—C110.7 (3)
C5—C6—C7—O10.0 (3)C12—C11—C16—C151.4 (2)
C1—C6—C7—O1178.53 (16)C10—C11—C16—C15179.34 (15)
C1—O2—C8—C9173.38 (11)C10—C9—C17—N136 (6)
O2—C8—C9—C10149.36 (14)C8—C9—C17—N1142 (6)
O2—C8—C9—C1728.70 (17)

Experimental details

Crystal data
Chemical formulaC17H12ClNO2
Mr297.73
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5022 (4), 7.8301 (4), 13.2379 (8)
α, β, γ (°)75.470 (3), 84.696 (2), 70.935 (2)
V3)711.43 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.24 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.937, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
14438, 3433, 2685
Rint0.029
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.04
No. of reflections3433
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationManikandan, N., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o28.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrasanna, C. M. S., Sethusankar, K., Rajesh, R. & Raghunathan, R. (2011). Acta Cryst. E67, o2176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds