organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,4E)-Ethyl 5-(phenyl­sulfon­yl)penta-2,4-dienoate

aDepartment of Chemistry, Pachaiyappa's College, Chennai 600 030, India, and bDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: arvindhanpresidency@gmail.com

(Received 23 February 2012; accepted 6 March 2012; online 17 March 2012)

In the title compound, C13H14O4S, both C=C double bonds adopt an E conformation. In the crystal, mol­ecules are linked into centrosymmetric R22(14) dimers via pairs of C—H⋯O hydrogen bonds.

Related literature

For the biological activity of phenyl sulfonyl-containing compounds see: De-Benedetti et al. (1985[De-Benedetti, P. G., Folli, U., Iarossi, D. & Frassineti, C. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1527-1532.]). For a related structure, see: Li (2011[Li, X.-L. (2011). Acta Cryst. E67, o2622.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14O4S

  • Mr = 266.30

  • Triclinic, [P \overline 1]

  • a = 6.2525 (3) Å

  • b = 7.8889 (4) Å

  • c = 14.5049 (7) Å

  • α = 82.828 (3)°

  • β = 87.261 (2)°

  • γ = 72.426 (2)°

  • V = 676.69 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.45 × 0.38 × 0.15 mm

Data collection
  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.899, Tmax = 0.965

  • 8948 measured reflections

  • 3084 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.147

  • S = 1.87

  • 3084 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.32 3.212 (2) 161
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl sulfonyl containing compounds show a wide range of biological properties (De-Benedetti et al., 1985).

Fig. 1. shows a displacement ellipsoid plot of the title compound. Both C=C double bonds display an E configuration. The title molecule exhibits structural similarities with the already reported related structure (Li, 2011). The dihedral angle between two planes (C5—C6—S1—O1) and (C1—C6—S1—O2) is 37.32 (6)°. The crystal packing is stabilized by C—H···O intermolecular interactions. The molecules are linked into centrosymmetric R22(14) dimers via C7—H7···O3 hydrogen bonds (Table 1). The packing of the compound is shown in (Fig. 2).

Related literature top

For the biological activity of phenyl sulfonyl-containing compounds see: De-Benedetti et al. (1985). For a related structure, see: Li (2011).

Experimental top

LIHMDS (8 ml, 8.4 mmol, 1.06 molar solution in THF) was added drop wise to a 0 °C cooled solution of bisphenyl sulfonyl methane (1 g, 3.4 mmol) in dried THF (15 ml) under argon atmosphere. The reaction mixture was stirred at same temp for 1 h, and then trans ethyl 4-bromo coronate (0.71 g, 3.7 mmol) in dry THF (5 ml) was added dropwise and the reaction mixture was allowed to come to RT and it was stirred under argon atmosphere for 16 h. The reaction mixture was quenched by adding saturated NH4Cl (20 ml) and then extracted with ethyl acetate (2x20 ml) and washed with water (2x20 ml) and sat brine (20 ml). Then, the organic layer was dried over MgSO4. Evaporation of the solvent under vacuum furnished the crude product, the residue was chromatographed (25% ethyl acetate in hexanes) to give analytically pure (2E, 4E)-ethyl 5-(phenyl sulfonyl)penta-2,4-dienote (0.673 g. yield 75%) as a colorless solid.

Refinement top

Hydrogen atoms were placed in calculated positions with C–H ranging from 0.93 Å to 0.97Å and refined using a the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for the methyl group and Uiso(H) = 1.2 Ueq(C) for other groups.

Structure description top

Phenyl sulfonyl containing compounds show a wide range of biological properties (De-Benedetti et al., 1985).

Fig. 1. shows a displacement ellipsoid plot of the title compound. Both C=C double bonds display an E configuration. The title molecule exhibits structural similarities with the already reported related structure (Li, 2011). The dihedral angle between two planes (C5—C6—S1—O1) and (C1—C6—S1—O2) is 37.32 (6)°. The crystal packing is stabilized by C—H···O intermolecular interactions. The molecules are linked into centrosymmetric R22(14) dimers via C7—H7···O3 hydrogen bonds (Table 1). The packing of the compound is shown in (Fig. 2).

For the biological activity of phenyl sulfonyl-containing compounds see: De-Benedetti et al. (1985). For a related structure, see: Li (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are shown at 30% probability level. The H atoms are presented as a small spheres of arbitrary radius. Related atoms have symmetry code: (i) -x + 2, -y, -z + 1.
[Figure 2] Fig. 2. A view of the crystal packing. H atoms not involved in hydrogen bonding(dashed lines)have been omitted for clarity.
(2E,4E)-Ethyl 5-(phenylsulfonyl)penta-2,4-dienoate top
Crystal data top
C13H14O4SZ = 2
Mr = 266.30F(000) = 280
Triclinic, P1Dx = 1.307 Mg m3
a = 6.2525 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8889 (4) ÅCell parameters from 5946 reflections
c = 14.5049 (7) Åθ = 2.7–28.3°
α = 82.828 (3)°µ = 0.24 mm1
β = 87.261 (2)°T = 298 K
γ = 72.426 (2)°Triclinic, colourless
V = 676.69 (6) Å30.45 × 0.38 × 0.15 mm
Data collection top
Bruker APEXII KappaCCD
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 15.9948 pixels mm-1θmax = 28.4°, θmin = 2.7°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 109
Tmin = 0.899, Tmax = 0.965l = 1919
8948 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0551P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.87(Δ/σ)max = 0.001
3084 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0173 (18)
Crystal data top
C13H14O4Sγ = 72.426 (2)°
Mr = 266.30V = 676.69 (6) Å3
Triclinic, P1Z = 2
a = 6.2525 (3) ÅMo Kα radiation
b = 7.8889 (4) ŵ = 0.24 mm1
c = 14.5049 (7) ÅT = 298 K
α = 82.828 (3)°0.45 × 0.38 × 0.15 mm
β = 87.261 (2)°
Data collection top
Bruker APEXII KappaCCD
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2621 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.965Rint = 0.020
8948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.87Δρmax = 0.29 e Å3
3084 reflectionsΔρmin = 0.30 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.5671 (3)0.0639 (2)0.13787 (12)0.0577 (4)
H11.65490.00010.15860.069*
C21.6638 (3)0.2359 (3)0.11608 (12)0.0670 (5)
H21.81790.28810.12190.080*
C31.5361 (3)0.3300 (2)0.08618 (12)0.0634 (5)
H31.60350.44650.07260.076*
C41.3103 (3)0.2555 (3)0.07586 (14)0.0714 (5)
H41.22460.32060.05490.086*
C51.2088 (3)0.0820 (2)0.09680 (12)0.0612 (4)
H51.05500.02990.08950.073*
C61.3387 (2)0.0124 (2)0.12854 (9)0.0446 (3)
C71.0978 (3)0.1812 (2)0.27041 (10)0.0534 (4)
H71.19520.11320.31690.064*
C80.8815 (3)0.2378 (2)0.29034 (11)0.0545 (4)
H80.78120.30230.24410.065*
C90.7980 (3)0.2008 (2)0.38347 (11)0.0585 (4)
H90.90130.12960.42710.070*
C100.5861 (3)0.2604 (2)0.41125 (11)0.0603 (4)
H100.47680.33070.36970.072*
C110.5253 (3)0.2140 (3)0.50916 (12)0.0616 (4)
C120.2457 (4)0.2713 (3)0.62613 (15)0.0902 (7)
H12A0.28300.14400.64660.108*
H12B0.32290.32420.66550.108*
C130.0051 (4)0.3538 (4)0.63268 (17)0.1022 (8)
H13A0.03130.47790.60840.153*
H13B0.04200.34360.69660.153*
H13C0.07040.29440.59740.153*
O11.0292 (2)0.32081 (16)0.09966 (8)0.0719 (4)
O21.3810 (2)0.30846 (17)0.17469 (9)0.0749 (4)
O30.6500 (2)0.1095 (2)0.56403 (9)0.0889 (5)
O40.3154 (2)0.3006 (2)0.52876 (8)0.0778 (4)
S11.20983 (6)0.22766 (5)0.16117 (3)0.05254 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0426 (8)0.0583 (10)0.0721 (10)0.0123 (7)0.0000 (7)0.0144 (8)
C20.0466 (9)0.0661 (12)0.0762 (11)0.0015 (8)0.0056 (8)0.0106 (9)
C30.0706 (11)0.0474 (9)0.0635 (9)0.0046 (8)0.0109 (8)0.0111 (7)
C40.0729 (12)0.0618 (12)0.0873 (12)0.0260 (10)0.0008 (10)0.0236 (10)
C50.0462 (8)0.0578 (10)0.0782 (11)0.0109 (8)0.0021 (8)0.0140 (8)
C60.0428 (7)0.0419 (8)0.0454 (7)0.0087 (6)0.0009 (6)0.0020 (6)
C70.0576 (9)0.0475 (9)0.0494 (8)0.0075 (7)0.0029 (7)0.0041 (6)
C80.0565 (9)0.0496 (9)0.0516 (8)0.0064 (7)0.0025 (7)0.0074 (7)
C90.0590 (10)0.0562 (10)0.0548 (9)0.0099 (8)0.0007 (7)0.0047 (7)
C100.0572 (10)0.0603 (11)0.0552 (9)0.0060 (8)0.0003 (7)0.0046 (8)
C110.0595 (10)0.0586 (11)0.0615 (10)0.0110 (8)0.0010 (8)0.0047 (8)
C120.0948 (15)0.0925 (16)0.0674 (11)0.0119 (13)0.0204 (11)0.0019 (11)
C130.0908 (16)0.122 (2)0.0886 (15)0.0233 (15)0.0273 (13)0.0240 (15)
O10.0726 (8)0.0597 (8)0.0600 (7)0.0108 (6)0.0020 (6)0.0051 (5)
O20.0824 (9)0.0565 (8)0.0942 (9)0.0331 (7)0.0119 (7)0.0141 (7)
O30.0740 (9)0.1009 (12)0.0691 (8)0.0048 (8)0.0020 (7)0.0225 (7)
O40.0705 (8)0.0792 (10)0.0640 (7)0.0013 (7)0.0155 (6)0.0001 (7)
S10.0557 (3)0.0399 (3)0.0553 (3)0.00635 (19)0.00194 (18)0.00117 (17)
Geometric parameters (Å, º) top
C1—C21.378 (2)C8—H80.9300
C1—C61.378 (2)C9—C101.326 (2)
C1—H10.9300C9—H90.9300
C2—C31.359 (2)C10—C111.483 (2)
C2—H20.9300C10—H100.9300
C3—C41.363 (3)C11—O31.195 (2)
C3—H30.9300C11—O41.319 (2)
C4—C51.389 (3)C12—C131.451 (3)
C4—H40.9300C12—O41.469 (2)
C5—C61.383 (2)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—S11.7595 (15)C13—H13A0.9600
C7—C81.320 (2)C13—H13B0.9600
C7—S11.7434 (15)C13—H13C0.9600
C7—H70.9300O1—S11.4294 (12)
C8—C91.452 (2)O2—S11.4328 (13)
C2—C1—C6119.12 (15)C8—C9—H9117.4
C2—C1—H1120.4C9—C10—C11119.36 (17)
C6—C1—H1120.4C9—C10—H10120.3
C3—C2—C1120.67 (15)C11—C10—H10120.3
C3—C2—H2119.7O3—C11—O4123.62 (16)
C1—C2—H2119.7O3—C11—C10124.36 (17)
C2—C3—C4120.76 (17)O4—C11—C10112.01 (15)
C2—C3—H3119.6C13—C12—O4108.24 (19)
C4—C3—H3119.6C13—C12—H12A110.1
C3—C4—C5119.78 (17)O4—C12—H12A110.1
C3—C4—H4120.1C13—C12—H12B110.1
C5—C4—H4120.1O4—C12—H12B110.1
C6—C5—C4119.32 (16)H12A—C12—H12B108.4
C6—C5—H5120.3C12—C13—H13A109.5
C4—C5—H5120.3C12—C13—H13B109.5
C1—C6—C5120.34 (15)H13A—C13—H13B109.5
C1—C6—S1119.90 (12)C12—C13—H13C109.5
C5—C6—S1119.71 (11)H13A—C13—H13C109.5
C8—C7—S1123.19 (13)H13B—C13—H13C109.5
C8—C7—H7118.4C11—O4—C12115.52 (15)
S1—C7—H7118.4O1—S1—O2119.36 (8)
C7—C8—C9120.95 (15)O1—S1—C7108.53 (8)
C7—C8—H8119.5O2—S1—C7107.09 (8)
C9—C8—H8119.5O1—S1—C6109.53 (7)
C10—C9—C8125.22 (16)O2—S1—C6108.57 (7)
C10—C9—H9117.4C7—S1—C6102.40 (7)
C6—C1—C2—C30.3 (3)O3—C11—O4—C124.5 (3)
C1—C2—C3—C40.9 (3)C10—C11—O4—C12176.12 (16)
C2—C3—C4—C50.5 (3)C13—C12—O4—C11171.7 (2)
C3—C4—C5—C60.4 (3)C8—C7—S1—O14.46 (18)
C2—C1—C6—C50.7 (2)C8—C7—S1—O2125.64 (16)
C2—C1—C6—S1176.98 (12)C8—C7—S1—C6120.23 (16)
C4—C5—C6—C11.0 (2)C1—C6—S1—O1144.75 (14)
C4—C5—C6—S1176.61 (14)C5—C6—S1—O137.59 (14)
S1—C7—C8—C9177.71 (12)C1—C6—S1—O212.83 (15)
C7—C8—C9—C10176.02 (18)C5—C6—S1—O2169.51 (12)
C8—C9—C10—C11179.12 (15)C1—C6—S1—C7100.21 (14)
C9—C10—C11—O38.3 (3)C5—C6—S1—C777.46 (14)
C9—C10—C11—O4172.26 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.323.212 (2)161
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H14O4S
Mr266.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.2525 (3), 7.8889 (4), 14.5049 (7)
α, β, γ (°)82.828 (3), 87.261 (2), 72.426 (2)
V3)676.69 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.45 × 0.38 × 0.15
Data collection
DiffractometerBruker APEXII KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.899, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8948, 3084, 2621
Rint0.020
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.147, 1.87
No. of reflections3084
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.323.212 (2)160.6
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDe-Benedetti, P. G., Folli, U., Iarossi, D. & Frassineti, C. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1527–1532.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, X.-L. (2011). Acta Cryst. E67, o2622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds