organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro-3-nitro­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 24 February 2012; accepted 27 February 2012; online 3 March 2012)

In the title compound, C10H9ClN2O5, the nitro group is significantly twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 27.4 (6)°]. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of O—H⋯O hydrogen bonds. These dimers are further linked by N—H⋯O hydrogen bonds into double chains running along the a axis.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.]); Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o873.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.]), on N-chloro­aryl­amides, see: Gowda et al. (2003[Gowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51-56.]); Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and on N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9ClN2O5

  • Mr = 272.64

  • Monoclinic, P 21 /n

  • a = 4.8089 (8) Å

  • b = 10.278 (1) Å

  • c = 23.062 (3) Å

  • β = 90.69 (2)°

  • V = 1139.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.44 × 0.12 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.861, Tmax = 0.966

  • 4342 measured reflections

  • 2305 independent reflections

  • 1601 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.169

  • S = 1.05

  • 2305 reflections

  • 169 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.28 (3) 3.006 (3) 144 (3)
O3—H3O⋯O2ii 0.83 (2) 1.84 (2) 2.667 (3) 176 (4)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+3, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Chaithanya et al., 2012), N-(aryl)-methanesulfonamides (Gowda et al., 2007); N-chloroarylsulfonamides (Gowda et al., 2003; Jyothi & Gowda, 2004) and N-bromoaryl- sulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(4-Chloro-3-nitrophenyl)succinamic acid has been determined (Fig. 1). The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. But the N—H bond is syn to the meta–nitro group. The conformations of the amide CO and the carboxyl CO of the acid segment are anti to each other and both are anti to the H atoms on the adjacent –CH2 groups. Furthermore, the CO and O—H bonds of the acid group are in syn position to each other, in contrast to the anti positions observed in N-(4-Chloro-3-nitro- phenyl)maleamic acid (I) (Chaithanya et al., 2012).

The dihedral angle between the phenyl ring and the amide group in the title compound is 31.8 (2)°, compared to the value of 11.5 (3)° in (I).

In the structure, the O—H···O and N—H···O intermolecular hydrogen bonds link the molecules into double chains running along the a axis (Table 1, Fig. 2).

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000); Chaithanya et al. (2012), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-chloroarylamides, see: Gowda et al. (2003); Jyothi & Gowda (2004) and on N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

Succinic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with 4-chloro-3-nitroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 4-chloro-3-nitroaniline. The resultant solid N-(4-Chloro-3-nitrophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Rod like colorless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation of the solvent (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were located in a difference map Those bonded to C H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å. The coordinates of the H atoms bonded to N and O were refined with the N—H and O—H distance restrained to 0.86 (2) Å and 0.82 (2)Å, respectively. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.

Structure description top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Chaithanya et al., 2012), N-(aryl)-methanesulfonamides (Gowda et al., 2007); N-chloroarylsulfonamides (Gowda et al., 2003; Jyothi & Gowda, 2004) and N-bromoaryl- sulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(4-Chloro-3-nitrophenyl)succinamic acid has been determined (Fig. 1). The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. But the N—H bond is syn to the meta–nitro group. The conformations of the amide CO and the carboxyl CO of the acid segment are anti to each other and both are anti to the H atoms on the adjacent –CH2 groups. Furthermore, the CO and O—H bonds of the acid group are in syn position to each other, in contrast to the anti positions observed in N-(4-Chloro-3-nitro- phenyl)maleamic acid (I) (Chaithanya et al., 2012).

The dihedral angle between the phenyl ring and the amide group in the title compound is 31.8 (2)°, compared to the value of 11.5 (3)° in (I).

In the structure, the O—H···O and N—H···O intermolecular hydrogen bonds link the molecules into double chains running along the a axis (Table 1, Fig. 2).

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000); Chaithanya et al. (2012), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-chloroarylamides, see: Gowda et al. (2003); Jyothi & Gowda (2004) and on N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(4-Chloro-3-nitrophenyl)succinamic acid top
Crystal data top
C10H9ClN2O5F(000) = 560
Mr = 272.64Dx = 1.589 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1280 reflections
a = 4.8089 (8) Åθ = 2.6–27.7°
b = 10.278 (1) ŵ = 0.35 mm1
c = 23.062 (3) ÅT = 293 K
β = 90.69 (2)°Rod, colourless
V = 1139.8 (3) Å30.44 × 0.12 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2305 independent reflections
Radiation source: fine-focus sealed tube1601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 36
Tmin = 0.861, Tmax = 0.966k = 1211
4342 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2 + 1.4622P]
where P = (Fo2 + 2Fc2)/3
2305 reflections(Δ/σ)max = 0.011
169 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H9ClN2O5V = 1139.8 (3) Å3
Mr = 272.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8089 (8) ŵ = 0.35 mm1
b = 10.278 (1) ÅT = 293 K
c = 23.062 (3) Å0.44 × 0.12 × 0.10 mm
β = 90.69 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2305 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1601 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.966Rint = 0.015
4342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0652 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
2305 reflectionsΔρmin = 0.41 e Å3
169 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0737 (6)0.7722 (3)0.13397 (13)0.0366 (7)
C20.0598 (7)0.7250 (3)0.18230 (14)0.0438 (8)
H20.19130.77590.20090.053*
C30.0015 (8)0.6024 (3)0.20300 (14)0.0503 (9)
C40.1914 (9)0.5237 (3)0.17540 (17)0.0574 (10)
C50.3217 (8)0.5714 (3)0.12722 (17)0.0556 (9)
H50.44980.51940.10820.067*
C60.2671 (7)0.6949 (3)0.10641 (14)0.0451 (8)
H60.35970.72580.07400.054*
C70.1739 (6)0.9830 (3)0.08795 (13)0.0355 (7)
C80.0419 (6)1.1125 (3)0.07321 (15)0.0430 (8)
H8A0.12261.09800.04930.052*
H8B0.01561.15500.10870.052*
C90.2393 (6)1.1998 (3)0.04144 (15)0.0433 (8)
H9A0.40221.21400.06590.052*
H9B0.30001.15510.00680.052*
C100.1234 (6)1.3291 (3)0.02419 (14)0.0389 (7)
N10.0022 (5)0.8974 (3)0.11358 (12)0.0427 (7)
H1N0.163 (4)0.922 (3)0.1198 (15)0.051*
N20.1337 (9)0.5654 (4)0.25738 (15)0.0712 (11)
O10.4145 (4)0.9578 (2)0.07676 (12)0.0550 (7)
O20.1033 (5)1.3682 (2)0.04216 (12)0.0557 (7)
O30.2758 (5)1.3960 (2)0.00944 (13)0.0588 (7)
H3O0.219 (8)1.470 (2)0.0181 (18)0.071*
O40.0219 (9)0.4891 (5)0.28923 (18)0.1385 (19)
O50.3572 (10)0.6136 (4)0.26831 (16)0.1106 (14)
Cl10.2654 (4)0.36516 (11)0.19545 (7)0.1142 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0353 (16)0.0357 (16)0.0387 (16)0.0019 (13)0.0005 (13)0.0035 (13)
C20.0455 (18)0.0432 (18)0.0428 (18)0.0068 (14)0.0034 (14)0.0003 (14)
C30.066 (2)0.047 (2)0.0379 (17)0.0164 (18)0.0092 (16)0.0070 (15)
C40.081 (3)0.0361 (18)0.055 (2)0.0019 (18)0.020 (2)0.0122 (16)
C50.065 (2)0.0406 (19)0.061 (2)0.0128 (17)0.0061 (18)0.0025 (17)
C60.0497 (19)0.0431 (18)0.0426 (18)0.0047 (15)0.0023 (14)0.0036 (15)
C70.0315 (15)0.0367 (16)0.0382 (16)0.0010 (12)0.0023 (12)0.0074 (13)
C80.0339 (16)0.0375 (17)0.058 (2)0.0063 (13)0.0102 (14)0.0103 (15)
C90.0362 (16)0.0367 (17)0.057 (2)0.0063 (13)0.0090 (15)0.0100 (15)
C100.0334 (16)0.0382 (17)0.0453 (18)0.0002 (13)0.0020 (13)0.0058 (14)
N10.0332 (13)0.0367 (14)0.0585 (17)0.0061 (11)0.0110 (12)0.0114 (13)
N20.086 (3)0.072 (2)0.055 (2)0.028 (2)0.0038 (19)0.0273 (19)
O10.0343 (12)0.0480 (14)0.0831 (18)0.0081 (10)0.0141 (11)0.0201 (13)
O20.0425 (13)0.0464 (14)0.0786 (18)0.0124 (10)0.0180 (12)0.0196 (12)
O30.0525 (15)0.0407 (14)0.0837 (19)0.0100 (11)0.0238 (13)0.0218 (13)
O40.126 (3)0.192 (5)0.098 (3)0.007 (3)0.001 (2)0.094 (3)
O50.144 (4)0.111 (3)0.079 (2)0.002 (3)0.042 (2)0.026 (2)
Cl10.1907 (17)0.0468 (6)0.1045 (11)0.0161 (8)0.0287 (10)0.0271 (6)
Geometric parameters (Å, º) top
C1—C21.381 (4)C7—C81.511 (4)
C1—C61.384 (4)C8—C91.503 (4)
C1—N11.411 (4)C8—H8A0.9700
C2—C31.378 (5)C8—H8B0.9700
C2—H20.9300C9—C101.493 (4)
C3—C41.381 (6)C9—H9A0.9700
C3—N21.470 (5)C9—H9B0.9700
C4—C51.373 (5)C10—O21.238 (4)
C4—Cl11.729 (4)C10—O31.275 (4)
C5—C61.381 (5)N1—H1N0.847 (18)
C5—H50.9300N2—O41.198 (5)
C6—H60.9300N2—O51.213 (5)
C7—O11.216 (3)O3—H3O0.834 (19)
C7—N11.348 (4)
C2—C1—C6119.3 (3)C9—C8—H8A109.3
C2—C1—N1118.4 (3)C7—C8—H8A109.3
C6—C1—N1122.2 (3)C9—C8—H8B109.3
C3—C2—C1120.1 (3)C7—C8—H8B109.3
C3—C2—H2119.9H8A—C8—H8B107.9
C1—C2—H2119.9C10—C9—C8115.2 (3)
C2—C3—C4121.1 (3)C10—C9—H9A108.5
C2—C3—N2115.9 (4)C8—C9—H9A108.5
C4—C3—N2122.9 (3)C10—C9—H9B108.5
C5—C4—C3118.3 (3)C8—C9—H9B108.5
C5—C4—Cl1117.3 (3)H9A—C9—H9B107.5
C3—C4—Cl1124.3 (3)O2—C10—O3122.9 (3)
C4—C5—C6121.5 (4)O2—C10—C9121.8 (3)
C4—C5—H5119.2O3—C10—C9115.3 (3)
C6—C5—H5119.2C7—N1—C1126.4 (3)
C5—C6—C1119.6 (3)C7—N1—H1N118 (2)
C5—C6—H6120.2C1—N1—H1N116 (2)
C1—C6—H6120.2O4—N2—O5122.2 (4)
O1—C7—N1122.9 (3)O4—N2—C3119.5 (5)
O1—C7—C8122.5 (3)O5—N2—C3118.3 (4)
N1—C7—C8114.6 (2)C10—O3—H3O117 (3)
C9—C8—C7111.7 (2)
C6—C1—C2—C30.6 (5)O1—C7—C8—C92.6 (5)
N1—C1—C2—C3179.1 (3)N1—C7—C8—C9176.4 (3)
C1—C2—C3—C41.5 (5)C7—C8—C9—C10178.9 (3)
C1—C2—C3—N2175.0 (3)C8—C9—C10—O210.1 (5)
C2—C3—C4—C51.1 (5)C8—C9—C10—O3170.8 (3)
N2—C3—C4—C5175.1 (3)O1—C7—N1—C13.8 (5)
C2—C3—C4—Cl1175.8 (3)C8—C7—N1—C1177.2 (3)
N2—C3—C4—Cl18.1 (5)C2—C1—N1—C7147.1 (3)
C3—C4—C5—C60.1 (6)C6—C1—N1—C734.5 (5)
Cl1—C4—C5—C6177.2 (3)C2—C3—N2—O4151.7 (4)
C4—C5—C6—C11.0 (5)C4—C3—N2—O424.7 (6)
C2—C1—C6—C50.6 (5)C2—C3—N2—O528.7 (5)
N1—C1—C6—C5177.8 (3)C4—C3—N2—O5155.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.28 (3)3.006 (3)144 (3)
O3—H3O···O2ii0.83 (2)1.84 (2)2.667 (3)176 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y+3, z.

Experimental details

Crystal data
Chemical formulaC10H9ClN2O5
Mr272.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.8089 (8), 10.278 (1), 23.062 (3)
β (°) 90.69 (2)
V3)1139.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.44 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.861, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
4342, 2305, 1601
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.169, 1.05
No. of reflections2305
No. of parameters169
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.847 (18)2.28 (3)3.006 (3)144 (3)
O3—H3O···O2ii0.834 (19)1.84 (2)2.667 (3)176 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y+3, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under UGC–BSR one-time grant to faculty.

References

First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o873.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds