organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2R,3R,6R,7S,8R,10S,11S)-13-{[4-(4-Chloro­phen­yl)piperazin-1-yl]meth­yl}-10-hy­dr­oxy-4,9-di­methyl-3,8,15-trioxa­tetra­cyclo­[10.3.0.02,4.07,9]penta­decan-14-one

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia–Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah,40000 Marrakech, Morocco, and cLaboratoire de Chimie du Solide Applique'e, Faculté des Sciences, Avenue Ibn Battouta, BP 1014 Rabat, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 27 February 2012; accepted 19 March 2012; online 24 March 2012)

The title compound, C25H33ClN2O5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from fused five- and ten-membered rings with two additional ep­oxy ring systems and a chloro­phenyl­piperazine group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the piperazine ring displays a chair conformation and the five-membered ring shows an envelope conformation with the C atom closest to the hy­droxy group forming the flap. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond between the hy­droxy group and a piperazine N atom. The crystal structure is stabilized by weak C—H⋯O inter­actions.

Related literature

For background to the medicinal uses of the plant Anvillea adiata, see: El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the reactivity of this sesquiterpene, see: Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83-91.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]); Castaneda-Acosta et al. (1997[Castaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635-639.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthetic procedure, see: Moumou et al. (2010[Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.]).

[Scheme 1]

Experimental

Crystal data
  • C25H33ClN2O5

  • Mr = 476.98

  • Orthorhombic, P 21 21 21

  • a = 8.0138 (3) Å

  • b = 10.7218 (5) Å

  • c = 28.0174 (13) Å

  • V = 2407.32 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.33 × 0.17 × 0.04 mm

Data collection
  • Agilent Xcalibur Sapphire1 long nozzle diffractometer

  • 13518 measured reflections

  • 4328 independent reflections

  • 3315 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.03

  • 4328 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1836 Friedel pairs

  • Flack parameter: 0.03 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.82 2.14 2.943 (2) 166
C1—H1⋯O4i 0.98 2.37 3.271 (3) 152
C10—H10⋯O1ii 0.98 2.41 3.329 (3) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of medicinals plants and concerning the Anvillea radiata. The main constituent of the chloroform extract of aerial parts of this plant is 9α-hydroxypartenolide (El Hassany et al., 2004). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Castaneda-Acosta et al.,1997; Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009). In order to prepare products with a high added value that can be used in the pharmacological and cosmetics industry. In this context, we have synthesized from 9α-hydroxyparthenolide the 6β,7α-epoxy-9apha hydoxypartenolide(9α-hydroxy-4,8-dimethyl-12- methylen-3,14-dioxa-tricyclo[9.3.0.02,4]tetradec-7-en-13-one) (Moumou et al., 2010). This epoxy-hydroxypartenolide treated with one equivalent of 1-(4-chlorophenyl)-piperazine gives the title compound with a yield of 80%. Its crystal structure is reported herein. The molecule contains a fused ring system and the chlorophenyl-piperazine group as a substituent to the lactone ring. The molecular structure (Fig.1) shows that the lactone ring adopts an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.309 (2) Å and φ = 259.0 (4)°. The ten-membered ring displays an approximate chair-chair conformation, while the piperazine ring has a chair conformation with QT = 0.563 (3) Å, θ = 172.4 (3)° and φ2 = 187 (2)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into chains along the b axis (Table 1, Fig. 2). In addition, an intramolecular O—H···N hydrogen bond is also observed. Owing to the presence of a Cl atom, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack, 1983) as C1(S), C2(R) C3(R), C6(R), C7(S), C8(R), C10(S), C11(S).

Related literature top

For background to the medicinal uses of the plant Anvillea adiata, see: El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neukirch et al. (2003); Neelakantan et al. (2009); Castaneda-Acosta et al. (1997). For ring puckering parameters, see: Cremer & Pople (1975). For the synthetic procedure, see: Moumou et al. (2010).

Experimental top

The mixture of 6β,7α-epoxy-9α-hydoxypartenolide (9α-hydroxy-4,8- dimethyl-12-methylen-3,14-dioxa-tricyclo[9.3.0.02,4] tetradec-7-en-13-one)(700 mg, 2,5 mmol) and one equivalent of 1-(4- chlorophenyl)-piperazine)in EtOH (20 ml) was stirred for twelve hours at room temperature. Then the reaction was stopped by adding water(10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 953 mg (2 mmol) of the title compound (yield: 80%). Recrystallization was performed from ethyl acetate.

Refinement top

Reflections (0 0 2), (1 0 1) and (0 1 1) were obstructed by the beam stop and were omitted from the refinement. All H atoms were fixed geometrically and treated as riding with O—H = 0.82 Å, C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98 Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH).

Structure description top

Our work lies within the framework of the valorization of medicinals plants and concerning the Anvillea radiata. The main constituent of the chloroform extract of aerial parts of this plant is 9α-hydroxypartenolide (El Hassany et al., 2004). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Castaneda-Acosta et al.,1997; Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009). In order to prepare products with a high added value that can be used in the pharmacological and cosmetics industry. In this context, we have synthesized from 9α-hydroxyparthenolide the 6β,7α-epoxy-9apha hydoxypartenolide(9α-hydroxy-4,8-dimethyl-12- methylen-3,14-dioxa-tricyclo[9.3.0.02,4]tetradec-7-en-13-one) (Moumou et al., 2010). This epoxy-hydroxypartenolide treated with one equivalent of 1-(4-chlorophenyl)-piperazine gives the title compound with a yield of 80%. Its crystal structure is reported herein. The molecule contains a fused ring system and the chlorophenyl-piperazine group as a substituent to the lactone ring. The molecular structure (Fig.1) shows that the lactone ring adopts an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.309 (2) Å and φ = 259.0 (4)°. The ten-membered ring displays an approximate chair-chair conformation, while the piperazine ring has a chair conformation with QT = 0.563 (3) Å, θ = 172.4 (3)° and φ2 = 187 (2)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into chains along the b axis (Table 1, Fig. 2). In addition, an intramolecular O—H···N hydrogen bond is also observed. Owing to the presence of a Cl atom, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack, 1983) as C1(S), C2(R) C3(R), C6(R), C7(S), C8(R), C10(S), C11(S).

For background to the medicinal uses of the plant Anvillea adiata, see: El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neukirch et al. (2003); Neelakantan et al. (2009); Castaneda-Acosta et al. (1997). For ring puckering parameters, see: Cremer & Pople (1975). For the synthetic procedure, see: Moumou et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(1S,2R,3R,6R,7S,8R, 10S,11S)-13-{[4-(4-Chlorophenyl)piperazin-1-yl]methyl}- 10-hydroxy-4,9-dimethyl-3,8,15- trioxatetracyclo[10.3.0.02,4.07,9]pentadecan-14-one top
Crystal data top
C25H33ClN2O5F(000) = 1016
Mr = 476.98Dx = 1.316 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 13518 reflections
a = 8.0138 (3) Åθ = 2.4–25.2°
b = 10.7218 (5) ŵ = 0.20 mm1
c = 28.0174 (13) ÅT = 296 K
V = 2407.32 (18) Å3Patelet, colourless
Z = 40.33 × 0.17 × 0.04 mm
Data collection top
Agilent Xcalibur Sapphire1 long nozzle
diffractometer
3315 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.2°, θmin = 2.4°
Detector resolution: 8.2632 pixels mm-1h = 97
ω scansk = 1212
13518 measured reflectionsl = 3133
4328 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3159P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4328 reflectionsΔρmax = 0.22 e Å3
301 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1836 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (13)
Crystal data top
C25H33ClN2O5V = 2407.32 (18) Å3
Mr = 476.98Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0138 (3) ŵ = 0.20 mm1
b = 10.7218 (5) ÅT = 296 K
c = 28.0174 (13) Å0.33 × 0.17 × 0.04 mm
Data collection top
Agilent Xcalibur Sapphire1 long nozzle
diffractometer
3315 reflections with I > 2σ(I)
13518 measured reflectionsRint = 0.030
4328 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.21 e Å3
4328 reflectionsAbsolute structure: Flack (1983), 1836 Friedel pairs
301 parametersAbsolute structure parameter: 0.03 (13)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5658 (3)0.08524 (19)1.03681 (8)0.0420 (6)
H10.51000.15521.05270.050*
C20.5983 (3)0.0172 (2)1.07076 (8)0.0417 (5)
H20.64960.09071.05610.050*
C30.4995 (3)0.0452 (2)1.11324 (8)0.0486 (6)
C40.4939 (3)0.1805 (2)1.12703 (9)0.0570 (7)
H4A0.48430.18671.16150.068*
H4B0.59810.21971.11780.068*
C50.3493 (3)0.2521 (2)1.10412 (9)0.0578 (7)
H5A0.37150.34081.10650.069*
H5B0.24800.23491.12190.069*
C60.3212 (3)0.2194 (2)1.05269 (8)0.0451 (5)
H60.42340.20691.03410.054*
C70.1731 (3)0.1534 (2)1.03400 (8)0.0435 (5)
C80.1828 (3)0.0735 (2)0.98945 (8)0.0436 (5)
H80.06830.05230.98030.052*
C90.2755 (2)0.04992 (19)0.99890 (8)0.0394 (5)
H9A0.25050.07721.03110.047*
H9B0.23290.11280.97720.047*
C100.4669 (2)0.04236 (19)0.99307 (7)0.0387 (5)
H100.49570.04500.98700.046*
C110.5445 (3)0.1206 (2)0.95335 (9)0.0466 (6)
H110.48880.20190.95240.056*
C120.7203 (3)0.1384 (2)0.97059 (10)0.0530 (6)
C130.5433 (3)0.0646 (3)0.90349 (9)0.0570 (6)
H13A0.60720.11810.88240.068*
H13B0.59830.01600.90440.068*
C140.3600 (3)0.0359 (3)1.13124 (9)0.0605 (7)
H14A0.36330.03881.16550.091*
H14B0.25500.00201.12110.091*
H14C0.37270.11871.11870.091*
C150.0266 (3)0.1177 (3)1.06488 (10)0.0604 (7)
H15A0.07530.14071.04920.091*
H15B0.02760.02921.07020.091*
H15C0.03410.16031.09490.091*
C160.2978 (4)0.1685 (2)0.87270 (10)0.0625 (7)
H16A0.36490.21230.84930.075*
H16B0.29320.21920.90130.075*
C170.1245 (4)0.1503 (3)0.85354 (10)0.0708 (8)
H17A0.05560.11190.87790.085*
H17B0.07650.23090.84590.085*
C180.2143 (4)0.0440 (3)0.81888 (10)0.0701 (8)
H18A0.22500.08780.78870.084*
H18B0.15110.09660.84050.084*
C190.3848 (4)0.0219 (3)0.83936 (9)0.0638 (7)
H19A0.43870.10140.84530.077*
H19B0.45200.02370.81650.077*
C200.0295 (4)0.0626 (3)0.78687 (10)0.0725 (8)
C210.1371 (5)0.1627 (4)0.78375 (14)0.1020 (12)
H210.11060.23670.79930.122*
C220.2840 (5)0.1548 (5)0.75781 (18)0.1239 (17)
H220.35520.22320.75640.149*
C230.3247 (5)0.0485 (8)0.73460 (13)0.1231 (19)
C240.2246 (7)0.0525 (8)0.73785 (16)0.157 (2)
H240.25480.12640.72280.188*
C250.0770 (5)0.0464 (5)0.76352 (14)0.1235 (16)
H250.00850.11630.76520.148*
N10.3753 (2)0.04868 (18)0.88377 (6)0.0494 (5)
N20.1238 (3)0.0725 (2)0.81120 (7)0.0628 (6)
O10.1903 (2)0.28639 (14)1.02786 (6)0.0532 (4)
O20.2538 (2)0.14084 (14)0.95132 (6)0.0524 (4)
H2A0.27520.09300.92930.079*
O30.72935 (19)0.12359 (15)1.01782 (6)0.0526 (4)
O40.8427 (2)0.16250 (18)0.94779 (8)0.0750 (6)
O50.6623 (2)0.01156 (16)1.11736 (6)0.0582 (5)
Cl0.51185 (15)0.0396 (2)0.70351 (4)0.1995 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0249 (11)0.0402 (12)0.0608 (15)0.0039 (9)0.0027 (10)0.0073 (10)
C20.0270 (11)0.0431 (12)0.0550 (13)0.0006 (10)0.0066 (10)0.0054 (10)
C30.0383 (13)0.0548 (14)0.0526 (13)0.0048 (12)0.0054 (11)0.0063 (12)
C40.0538 (16)0.0640 (17)0.0531 (15)0.0004 (13)0.0068 (12)0.0055 (12)
C50.0558 (17)0.0509 (15)0.0668 (17)0.0033 (12)0.0025 (13)0.0080 (12)
C60.0370 (13)0.0395 (11)0.0587 (15)0.0069 (11)0.0010 (11)0.0022 (11)
C70.0276 (12)0.0436 (12)0.0592 (14)0.0060 (10)0.0002 (10)0.0094 (11)
C80.0262 (11)0.0475 (12)0.0571 (14)0.0011 (10)0.0054 (10)0.0073 (11)
C90.0287 (11)0.0375 (10)0.0519 (12)0.0045 (10)0.0023 (9)0.0048 (10)
C100.0321 (11)0.0312 (10)0.0529 (13)0.0003 (9)0.0017 (10)0.0025 (10)
C110.0407 (13)0.0394 (11)0.0596 (14)0.0009 (11)0.0045 (11)0.0011 (11)
C120.0449 (15)0.0371 (12)0.0769 (19)0.0073 (11)0.0137 (14)0.0016 (12)
C130.0545 (16)0.0561 (15)0.0603 (15)0.0075 (13)0.0122 (12)0.0010 (13)
C140.0567 (16)0.0644 (16)0.0605 (15)0.0039 (15)0.0105 (13)0.0146 (13)
C150.0323 (13)0.0733 (17)0.0756 (18)0.0046 (13)0.0082 (13)0.0063 (14)
C160.074 (2)0.0525 (15)0.0609 (16)0.0130 (14)0.0042 (14)0.0013 (12)
C170.0699 (19)0.0800 (19)0.0627 (17)0.0234 (17)0.0014 (15)0.0092 (15)
C180.091 (2)0.0634 (16)0.0558 (16)0.0037 (17)0.0012 (15)0.0100 (14)
C190.078 (2)0.0597 (16)0.0538 (15)0.0120 (15)0.0097 (14)0.0076 (13)
C200.070 (2)0.107 (2)0.0399 (14)0.011 (2)0.0070 (14)0.0107 (16)
C210.078 (3)0.103 (3)0.125 (3)0.015 (2)0.027 (2)0.042 (2)
C220.078 (3)0.161 (4)0.132 (4)0.029 (3)0.026 (3)0.074 (3)
C230.072 (3)0.246 (6)0.051 (2)0.036 (4)0.0035 (18)0.020 (3)
C240.107 (4)0.273 (8)0.090 (3)0.009 (5)0.012 (3)0.086 (4)
C250.095 (3)0.184 (4)0.091 (3)0.010 (3)0.011 (2)0.073 (3)
N10.0549 (13)0.0464 (10)0.0470 (11)0.0071 (10)0.0056 (10)0.0016 (9)
N20.0683 (16)0.0730 (15)0.0470 (12)0.0009 (12)0.0021 (11)0.0035 (11)
O10.0456 (10)0.0396 (8)0.0743 (11)0.0113 (7)0.0040 (8)0.0042 (8)
O20.0547 (10)0.0493 (9)0.0533 (10)0.0031 (8)0.0010 (8)0.0097 (8)
O30.0334 (9)0.0503 (9)0.0741 (12)0.0118 (7)0.0018 (8)0.0018 (8)
O40.0548 (12)0.0705 (12)0.0998 (15)0.0224 (10)0.0286 (11)0.0036 (11)
O50.0424 (10)0.0716 (11)0.0606 (10)0.0096 (9)0.0145 (8)0.0055 (9)
Cl0.0911 (8)0.430 (3)0.0770 (6)0.0500 (13)0.0245 (6)0.0210 (12)
Geometric parameters (Å, º) top
C1—O31.473 (3)C13—H13A0.9700
C1—C21.476 (3)C13—H13B0.9700
C1—C101.531 (3)C14—H14A0.9600
C1—H10.9800C14—H14B0.9600
C2—O51.436 (3)C14—H14C0.9600
C2—C31.461 (3)C15—H15A0.9600
C2—H20.9800C15—H15B0.9600
C3—O51.444 (3)C15—H15C0.9600
C3—C41.502 (4)C16—N11.461 (3)
C3—C141.503 (3)C16—C171.502 (4)
C4—C51.530 (3)C16—H16A0.9700
C4—H4A0.9700C16—H16B0.9700
C4—H4B0.9700C17—N21.450 (3)
C5—C61.500 (3)C17—H17A0.9700
C5—H5A0.9700C17—H17B0.9700
C5—H5B0.9700C18—N21.460 (4)
C6—O11.449 (3)C18—C191.500 (4)
C6—C71.478 (3)C18—H18A0.9700
C6—H60.9800C18—H18B0.9700
C7—O11.443 (3)C19—N11.458 (3)
C7—C151.508 (3)C19—H19A0.9700
C7—C81.516 (3)C19—H19B0.9700
C8—O21.409 (3)C20—C211.379 (5)
C8—C91.540 (3)C20—C251.393 (5)
C8—H80.9800C20—N21.409 (4)
C9—C101.545 (3)C21—C221.386 (5)
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700C22—C231.353 (7)
C10—C111.526 (3)C22—H220.9300
C10—H100.9800C23—C241.350 (8)
C11—C121.501 (4)C23—Cl1.737 (4)
C11—C131.520 (3)C24—C251.386 (6)
C11—H110.9800C24—H240.9300
C12—O41.199 (3)C25—H250.9300
C12—O31.335 (3)O2—H2A0.8200
C13—N11.465 (3)
O3—C1—C2106.49 (17)N1—C13—H13A108.9
O3—C1—C10104.81 (17)C11—C13—H13A108.9
C2—C1—C10112.58 (17)N1—C13—H13B108.9
O3—C1—H1110.9C11—C13—H13B108.9
C2—C1—H1110.9H13A—C13—H13B107.7
C10—C1—H1110.9C3—C14—H14A109.5
O5—C2—C359.81 (14)C3—C14—H14B109.5
O5—C2—C1119.30 (18)H14A—C14—H14B109.5
C3—C2—C1125.7 (2)C3—C14—H14C109.5
O5—C2—H2113.8H14A—C14—H14C109.5
C3—C2—H2113.8H14B—C14—H14C109.5
C1—C2—H2113.8C7—C15—H15A109.5
O5—C3—C259.26 (14)C7—C15—H15B109.5
O5—C3—C4114.4 (2)H15A—C15—H15B109.5
C2—C3—C4115.1 (2)C7—C15—H15C109.5
O5—C3—C14113.6 (2)H15A—C15—H15C109.5
C2—C3—C14123.9 (2)H15B—C15—H15C109.5
C4—C3—C14116.8 (2)N1—C16—C17110.8 (2)
C3—C4—C5113.5 (2)N1—C16—H16A109.5
C3—C4—H4A108.9C17—C16—H16A109.5
C5—C4—H4A108.9N1—C16—H16B109.5
C3—C4—H4B108.9C17—C16—H16B109.5
C5—C4—H4B108.9H16A—C16—H16B108.1
H4A—C4—H4B107.7N2—C17—C16111.8 (2)
C6—C5—C4113.5 (2)N2—C17—H17A109.3
C6—C5—H5A108.9C16—C17—H17A109.3
C4—C5—H5A108.9N2—C17—H17B109.3
C6—C5—H5B108.9C16—C17—H17B109.3
C4—C5—H5B108.9H17A—C17—H17B107.9
H5A—C5—H5B107.7N2—C18—C19111.9 (2)
O1—C6—C759.07 (14)N2—C18—H18A109.2
O1—C6—C5117.00 (19)C19—C18—H18A109.2
C7—C6—C5124.9 (2)N2—C18—H18B109.2
O1—C6—H6114.7C19—C18—H18B109.2
C7—C6—H6114.7H18A—C18—H18B107.9
C5—C6—H6114.7N1—C19—C18111.2 (2)
O1—C7—C659.48 (13)N1—C19—H19A109.4
O1—C7—C15113.19 (19)C18—C19—H19A109.4
C6—C7—C15122.9 (2)N1—C19—H19B109.4
O1—C7—C8117.09 (19)C18—C19—H19B109.4
C6—C7—C8121.41 (19)H19A—C19—H19B108.0
C15—C7—C8111.7 (2)C21—C20—C25116.9 (3)
O2—C8—C7110.80 (18)C21—C20—N2121.2 (3)
O2—C8—C9112.11 (18)C25—C20—N2121.9 (3)
C7—C8—C9111.63 (18)C20—C21—C22121.1 (4)
O2—C8—H8107.3C20—C21—H21119.4
C7—C8—H8107.3C22—C21—H21119.4
C9—C8—H8107.3C23—C22—C21120.6 (5)
C8—C9—C10114.54 (17)C23—C22—H22119.7
C8—C9—H9A108.6C21—C22—H22119.7
C10—C9—H9A108.6C24—C23—C22120.0 (4)
C8—C9—H9B108.6C24—C23—Cl120.2 (5)
C10—C9—H9B108.6C22—C23—Cl119.7 (6)
H9A—C9—H9B107.6C23—C24—C25120.3 (5)
C11—C10—C1101.98 (17)C23—C24—H24119.8
C11—C10—C9116.96 (19)C25—C24—H24119.8
C1—C10—C9114.46 (18)C24—C25—C20121.1 (5)
C11—C10—H10107.6C24—C25—H25119.5
C1—C10—H10107.6C20—C25—H25119.5
C9—C10—H10107.6C19—N1—C16107.29 (19)
C12—C11—C13110.6 (2)C19—N1—C13109.5 (2)
C12—C11—C10102.57 (19)C16—N1—C13111.6 (2)
C13—C11—C10116.78 (19)C20—N2—C17116.2 (2)
C12—C11—H11108.9C20—N2—C18116.1 (2)
C13—C11—H11108.9C17—N2—C18111.7 (2)
C10—C11—H11108.9C7—O1—C661.45 (14)
O4—C12—O3120.6 (2)C8—O2—H2A109.5
O4—C12—C11128.6 (3)C12—O3—C1110.04 (18)
O3—C12—C11110.8 (2)C2—O5—C360.93 (14)
N1—C13—C11113.45 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.822.142.943 (2)166
C1—H1···O4i0.982.373.271 (3)152
C10—H10···O1ii0.982.413.329 (3)153
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC25H33ClN2O5
Mr476.98
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.0138 (3), 10.7218 (5), 28.0174 (13)
V3)2407.32 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.33 × 0.17 × 0.04
Data collection
DiffractometerAgilent Xcalibur Sapphire1 long nozzle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13518, 4328, 3315
Rint0.030
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.03
No. of reflections4328
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21
Absolute structureFlack (1983), 1836 Friedel pairs
Absolute structure parameter0.03 (13)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.822.142.943 (2)166
C1—H1···O4i0.982.373.271 (3)152
C10—H10···O1ii0.982.413.329 (3)153
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y1/2, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCastaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635–639.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds