organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl[2-(phenyl­sulfon­yl)propan-2-yl]-λ5-phosphane­thione

aInstitut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
*Correspondence e-mail: vgessner@uni-wuerzburg.de

(Received 4 March 2012; accepted 7 March 2012; online 14 March 2012)

The title compound, C21H21O2PS2, was obtained from the corresponding dilithio methandiide by treatment with iodo­methane. The bond lengths and angles deviate considerably from those in the dimetallated compound. These differences are most pronounced in the PCS backbone. While the title compound features C—P and C—S distances of 1.9082 (17) and 1.8348 (17) Å, respectively, the dianion showed C—Pav distances shortened by 11% [1.710 (4) Å] and C—S distances shortened by 12% [1.614 (3) Å]. Additionally, the P—C—S angle experiences a contraction by methyl­ation of the dianion from 121.4 (2) to 111.96 (9)° in the title compound.

Related literature

For background to precursors for dilithio methandiides, see: Kasani et al. (1999[Kasani, A., Babu, R. P. K., McDonald, R. & Cavell, R. G. (1999). Angew. Chem. Int. Ed. 38, 1483-1484.]); Ong & Stephan (1999[Ong, C. M. & Stephan, D. W. (1999). J. Am. Chem. Soc. 121, 2939-2940.]); Cantat et al. (2006[Cantat, T., Ricard, L., Le Floch, P. & Mézailles, P. (2006). Organometallics, 25, 4965-4976.], 2008[Cantat, T., Mézailles, P., Auffrant, A. & Le Floch, P. (2008). Dalton Trans. pp. 1957-1972.]); Cavell et al. (2001[Cavell, R. G., Kamalesh Babu, R. P. & Aparna, K. (2001). J. Organomet. Chem. 617, 158-169.]); Harder (2011[Harder, S. (2011). Coord. Chem. Rev. 255, 1252-1267.]); Gessner (2011[Gessner, V. H. (2011). Organometallics, 30, 4228-4231.]); Gessner & Schröter (2012[Gessner, V. H. & Schröter, P. (2012). Angew. Chem. Int. Ed. Submitted.]); Cooper et al. (2010[Cooper, O. J., Wooles, A. J., McMaster, J., Lewis, W., Blaker, A. J. & Liddle, S. T. (2010). Angew. Chem. Int. Ed. 49, 5570-5573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21O2PS2

  • Mr = 400.47

  • Orthorhombic, P 21 21 21

  • a = 8.2137 (7) Å

  • b = 14.3714 (13) Å

  • c = 16.6728 (15) Å

  • V = 1968.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 K

  • 0.26 × 0.2 × 0.16 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.980

  • 30953 measured reflections

  • 3457 independent reflections

  • 3373 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.04

  • 3457 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1467 Friedel pairs

  • Flack parameter: 0.03 (5)

Table 1
Selected bond lengths (Å)

S2—O2 1.4347 (13)
S2—O1 1.4389 (13)
S2—C16 1.7734 (16)
S2—C13 1.8348 (17)
P1—C1 1.8178 (17)
P1—C7 1.8263 (17)
P1—C13 1.9082 (17)
P1—S1 1.9515 (6)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Methylene compounds with two anion stabilizing substituents, such as phosphonium or sulfonyl moieties, have become interesting reagents due to their possible transformation into the corresponding methandiide by double deprotonation. (Kasani et al., 1999; Ong et al., 1999; Cantat et al., 2006) These geminal dianions have caught special attention because of their unique electronic properties and structures, which enabled the isolation of a planar four-coordinate carbon atom (Cooper et al., 2010). Additionally, these dianionic species have proven to be efficient ligand systems for the construction of novel carbene complexes, which differ from the known Fischer and Schrock-type complexes. Thereby, a huge variety of different compounds incorporating early and late transition metals as well as lanthanoids and actinoids have been reported (Cavell et al., 2001; Cantat et al., 2008; Harder, 2011).

As part of our studies on dilithio methandiides we developed a new methylene coumpound with both, a thiophosphinoyl and a sulfonyl moiety (Gessner, 2011; Gessner et al., 2012). This compound is easily converted into its dianionic congener, which features strongly distorted geometries of the metallated carbon atoms, which can be explained by a novel bonding mode of a sp2-hybridized carbon with the two lithium atoms. Treatment of the dilithio methandiide with iodomethane furnished the dimethylated titel compound. The bond lengths and angles are comparable to the protonated analogue, but deviate considerably from the dimetallated compound. These differences are most pronounced in the PCS backbone. While the title compound features C—P and C—S distances of 1.908 (2) and 1.835 (2) Å, respectively, the dianion showed C—Pav distances shortened by 11% [1.710 (4) Å] and C—S distances shortened by 12% [1.614 (3) Å] (Gessner et al., 2012). Additionally, the P—C—S angle experiences a contraction by methylation of the dianion from 121.4 (2)° to 112.0 (1)° in the title compound. This is the result of the re-hybridization from a sp2-hybridized carbon in the methandiide to an sp3-hybridized carbon in the title compound.

Related literature top

For background to precursors for dilithio methandiides, see: Kasani et al. (1999); Ong et al. (1999); Cantat et al. (2006, 2008); Cavell et al. (2001); Harder (2011); Gessner (2011); Gessner & Schröter (2012); Cooper et al. (2010).

Experimental top

284 mg (2.00 mmol) iodomethane were added to a suspension of 405 mg (0.20 mmol, equates to 0.81 mmol per molecule) of the corresponding dilithio methandiide in 20 ml THF at room temperature. After stirring for 4 h the mixture was treated with 20 ml of an aqueous ammonia solution (25%) and the mixture extracted with diethyl ether. Drying over sodium sulfate and removal of the solvent in vacuo afforded the crude product as orange oil. The product was obtained as colorless solid after purification by flash chromatography (eluent: pentane/diethyl ether= 1:1, RF = 0.33) on silica (285 mg, 0.71 mmol; 88%). Single crystals were grown by slow evaporation of a solution of the title compound in THF. 1H NMR (500.1 MHz, CDCl3): δ = 1.63 (d, 2JHP = 15.6 Hz, 2H; PCCH3), 7.47–7.58 (m, 6H; CHPPh + CHSPh), 7.62 (tt, 3JHH = 7.49 Hz, 4JHH = 1.24 Hz, 1H; CHSPh,para),7.77 (dd, 3JHH =8.46 Hz, 4JHH =1.22 Hz, 2H; CHSPh,ortho),8.36–8.40 (m, 4H; CHPh,ortho).13C NMR (125.8 MHz, CDCl3): δ = 22.8 [d, 2JCP = 2.2 Hz; PC(CH3)2], 67.8 [d, 1JCP = 34.1 Hz; PC(CH3)2], 128.0(d, 2JCP = 12.8 Hz; CHortho), 128.7 (CHSPh), 129.3 (d, 1JCP = 80.4 Hz; Cipso), 130.3 (CHSPh), 132.0 (d, 4JCP = 3.2 Hz; CHpara), 133.9 (CHSPh,para), 134.2 (d, 3JCP = 10.3 Hz; CHmeta), 140.1 (d, 3JCP = 0.8 Hz; SCPh). 31P{H} NMR (162.0 MHz, CDCl3):δ = 58.7. Anal. Calcd for C19H17PO2S2:C, 62.98; H, 5.29; S 16.01. Found: C, 63.14; H, 5.31; S 16.41.

Refinement top

H atoms were located in a difference map and refined as riding with C-H ranging from 0.95Å to 0.98Å and U(H) set to 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Methylene compounds with two anion stabilizing substituents, such as phosphonium or sulfonyl moieties, have become interesting reagents due to their possible transformation into the corresponding methandiide by double deprotonation. (Kasani et al., 1999; Ong et al., 1999; Cantat et al., 2006) These geminal dianions have caught special attention because of their unique electronic properties and structures, which enabled the isolation of a planar four-coordinate carbon atom (Cooper et al., 2010). Additionally, these dianionic species have proven to be efficient ligand systems for the construction of novel carbene complexes, which differ from the known Fischer and Schrock-type complexes. Thereby, a huge variety of different compounds incorporating early and late transition metals as well as lanthanoids and actinoids have been reported (Cavell et al., 2001; Cantat et al., 2008; Harder, 2011).

As part of our studies on dilithio methandiides we developed a new methylene coumpound with both, a thiophosphinoyl and a sulfonyl moiety (Gessner, 2011; Gessner et al., 2012). This compound is easily converted into its dianionic congener, which features strongly distorted geometries of the metallated carbon atoms, which can be explained by a novel bonding mode of a sp2-hybridized carbon with the two lithium atoms. Treatment of the dilithio methandiide with iodomethane furnished the dimethylated titel compound. The bond lengths and angles are comparable to the protonated analogue, but deviate considerably from the dimetallated compound. These differences are most pronounced in the PCS backbone. While the title compound features C—P and C—S distances of 1.908 (2) and 1.835 (2) Å, respectively, the dianion showed C—Pav distances shortened by 11% [1.710 (4) Å] and C—S distances shortened by 12% [1.614 (3) Å] (Gessner et al., 2012). Additionally, the P—C—S angle experiences a contraction by methylation of the dianion from 121.4 (2)° to 112.0 (1)° in the title compound. This is the result of the re-hybridization from a sp2-hybridized carbon in the methandiide to an sp3-hybridized carbon in the title compound.

For background to precursors for dilithio methandiides, see: Kasani et al. (1999); Ong et al. (1999); Cantat et al. (2006, 2008); Cavell et al. (2001); Harder (2011); Gessner (2011); Gessner & Schröter (2012); Cooper et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Diphenyl[2-(phenylsulfonyl)propan-2-yl]-λ5-phosphanethione top
Crystal data top
C21H21O2PS2Dx = 1.352 Mg m3
Mr = 400.47Melting point: 410 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3457 reflections
a = 8.2137 (7) Åθ = 1.9–25°
b = 14.3714 (13) ŵ = 0.37 mm1
c = 16.6728 (15) ÅT = 173 K
V = 1968.1 (3) Å3Block, colourless
Z = 40.26 × 0.2 × 0.16 mm
F(000) = 840
Data collection top
Bruker APEX CCD
diffractometer
3457 independent reflections
Radiation source: fine-focus sealed tube3373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 99
Tmin = 0.973, Tmax = 0.980k = 1717
30953 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.2311P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.006
3457 reflectionsΔρmax = 0.27 e Å3
237 parametersΔρmin = 0.13 e Å3
0 restraintsAbsolute structure: Flack (1983), 1467 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Crystal data top
C21H21O2PS2V = 1968.1 (3) Å3
Mr = 400.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2137 (7) ŵ = 0.37 mm1
b = 14.3714 (13) ÅT = 173 K
c = 16.6728 (15) Å0.26 × 0.2 × 0.16 mm
Data collection top
Bruker APEX CCD
diffractometer
3457 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3373 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.980Rint = 0.040
30953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.13 e Å3
3457 reflectionsAbsolute structure: Flack (1983), 1467 Friedel pairs
237 parametersAbsolute structure parameter: 0.03 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.17343 (5)0.02033 (3)0.10827 (2)0.03362 (11)
P10.00880 (5)0.07757 (3)0.25295 (3)0.03106 (11)
S10.08167 (6)0.16347 (4)0.33619 (3)0.04775 (14)
O10.01826 (15)0.06395 (9)0.09446 (8)0.0433 (3)
C120.2075 (2)0.07773 (11)0.24561 (11)0.0352 (4)
H120.17070.08820.19230.042*
O20.21542 (19)0.06103 (9)0.06291 (8)0.0501 (4)
C130.1913 (2)0.00806 (11)0.21520 (10)0.0337 (4)
C170.4808 (2)0.07625 (13)0.06696 (11)0.0396 (4)
H170.50250.01220.05770.048*
C210.2932 (2)0.19798 (12)0.10399 (13)0.0441 (4)
H210.18790.21720.12070.053*
C160.3273 (2)0.10474 (11)0.09172 (10)0.0334 (4)
C60.0079 (2)0.21832 (12)0.14063 (12)0.0428 (4)
H60.09790.2340.15940.051*
C20.2416 (2)0.12018 (13)0.14386 (12)0.0429 (4)
H20.29710.06720.16430.051*
C70.14183 (19)0.00496 (11)0.29077 (10)0.0326 (4)
C200.4151 (3)0.26272 (14)0.09151 (14)0.0558 (5)
H200.3930.3270.09910.067*
C110.3259 (2)0.13455 (13)0.27833 (12)0.0426 (4)
H110.37020.18390.24730.051*
C90.3160 (3)0.04939 (16)0.40124 (13)0.0542 (5)
H90.35340.03960.45450.065*
C180.6012 (2)0.14149 (15)0.05597 (12)0.0487 (5)
H180.70710.12240.040.058*
C30.3162 (3)0.17589 (13)0.08735 (13)0.0510 (5)
H30.42320.16150.06960.061*
C40.2356 (3)0.25289 (13)0.05628 (12)0.0463 (5)
H40.28640.29090.0170.056*
C150.2017 (2)0.08108 (14)0.26490 (11)0.0428 (4)
H15A0.19190.06570.3220.064*
H15B0.11320.12320.24940.064*
H15C0.30660.11150.25520.064*
C100.3803 (2)0.12028 (14)0.35551 (13)0.0499 (5)
H100.46240.15940.37730.06*
C80.1966 (2)0.00755 (14)0.36918 (12)0.0452 (4)
H80.15140.05580.40110.054*
C50.0821 (3)0.27321 (12)0.08296 (12)0.0463 (5)
H50.02590.32550.06170.056*
C140.3465 (2)0.06516 (15)0.22535 (14)0.0509 (5)
H14A0.44010.02880.20670.076*
H14B0.33810.12250.19380.076*
H14C0.36110.08090.28210.076*
C10.0864 (2)0.14097 (11)0.17107 (10)0.0317 (3)
C190.5685 (3)0.23456 (15)0.06813 (12)0.0523 (5)
H190.6520.27940.06040.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0321 (2)0.0363 (2)0.0325 (2)0.00442 (18)0.00327 (17)0.00215 (17)
P10.0248 (2)0.0357 (2)0.0327 (2)0.00245 (16)0.00071 (17)0.00384 (16)
S10.0398 (2)0.0565 (3)0.0469 (3)0.0057 (2)0.0028 (2)0.0196 (2)
O10.0308 (6)0.0597 (8)0.0395 (7)0.0048 (6)0.0033 (5)0.0047 (6)
C120.0282 (8)0.0387 (8)0.0388 (9)0.0012 (7)0.0004 (7)0.0033 (8)
O20.0647 (9)0.0389 (7)0.0468 (7)0.0110 (6)0.0159 (7)0.0096 (6)
C130.0262 (8)0.0406 (9)0.0343 (8)0.0002 (7)0.0015 (7)0.0020 (7)
C170.0384 (10)0.0442 (9)0.0362 (9)0.0016 (8)0.0051 (8)0.0022 (8)
C210.0409 (10)0.0395 (9)0.0520 (11)0.0027 (8)0.0034 (9)0.0023 (8)
C160.0301 (8)0.0363 (8)0.0336 (9)0.0033 (7)0.0003 (7)0.0019 (7)
C60.0393 (10)0.0383 (9)0.0507 (11)0.0063 (8)0.0059 (9)0.0019 (8)
C20.0367 (9)0.0391 (9)0.0528 (11)0.0073 (8)0.0037 (9)0.0119 (8)
C70.0262 (8)0.0381 (9)0.0334 (9)0.0019 (6)0.0014 (6)0.0044 (7)
C200.0681 (14)0.0369 (9)0.0625 (14)0.0084 (10)0.0144 (12)0.0073 (9)
C110.0316 (9)0.0410 (9)0.0551 (11)0.0013 (8)0.0035 (8)0.0105 (8)
C90.0466 (11)0.0731 (13)0.0428 (11)0.0010 (10)0.0133 (10)0.0128 (10)
C180.0327 (10)0.0758 (13)0.0376 (10)0.0093 (10)0.0010 (8)0.0072 (9)
C30.0427 (10)0.0493 (10)0.0610 (12)0.0003 (10)0.0104 (10)0.0145 (10)
C40.0602 (13)0.0377 (9)0.0410 (10)0.0101 (9)0.0042 (9)0.0057 (8)
C150.0343 (9)0.0573 (11)0.0369 (9)0.0097 (8)0.0008 (7)0.0075 (8)
C100.0339 (10)0.0558 (11)0.0599 (13)0.0003 (9)0.0081 (9)0.0244 (10)
C80.0415 (10)0.0577 (11)0.0366 (9)0.0013 (9)0.0046 (8)0.0010 (8)
C50.0596 (12)0.0297 (8)0.0495 (11)0.0037 (9)0.0166 (10)0.0038 (8)
C140.0277 (9)0.0625 (12)0.0623 (12)0.0066 (9)0.0042 (9)0.0142 (10)
C10.0296 (8)0.0291 (7)0.0363 (9)0.0011 (7)0.0050 (7)0.0027 (6)
C190.0512 (12)0.0626 (13)0.0431 (11)0.0239 (11)0.0102 (10)0.0102 (9)
Geometric parameters (Å, º) top
S2—O21.4347 (13)C7—C81.394 (3)
S2—O11.4389 (13)C20—C191.380 (3)
S2—C161.7734 (16)C20—H200.9500
S2—C131.8348 (17)C11—C101.378 (3)
P1—C11.8178 (17)C11—H110.9500
P1—C71.8263 (17)C9—C101.378 (3)
P1—C131.9082 (17)C9—C81.384 (3)
P1—S11.9515 (6)C9—H90.9500
C12—C111.382 (2)C18—C191.379 (3)
C12—C71.397 (2)C18—H180.9500
C12—H120.9500C3—C41.390 (3)
C13—C141.526 (2)C3—H30.9500
C13—C151.528 (2)C4—C51.368 (3)
C17—C181.375 (3)C4—H40.9500
C17—C161.388 (2)C15—H15A0.9800
C17—H170.9500C15—H15B0.9800
C21—C201.382 (3)C15—H15C0.9800
C21—C161.384 (2)C10—H100.9500
C21—H210.9500C8—H80.9500
C6—C11.382 (2)C5—H50.9500
C6—C51.385 (3)C14—H14A0.9800
C6—H60.9500C14—H14B0.9800
C2—C31.380 (3)C14—H14C0.9800
C2—C11.386 (3)C19—H190.9500
C2—H20.9500
O2—S2—O1118.92 (9)C10—C11—C12120.60 (18)
O2—S2—C16107.71 (8)C10—C11—H11119.7
O1—S2—C16107.96 (8)C12—C11—H11119.7
O2—S2—C13108.16 (8)C10—C9—C8119.67 (19)
O1—S2—C13108.87 (7)C10—C9—H9120.2
C16—S2—C13104.26 (8)C8—C9—H9120.2
C1—P1—C7107.07 (8)C17—C18—C19120.1 (2)
C1—P1—C13110.64 (8)C17—C18—H18119.9
C7—P1—C13107.83 (8)C19—C18—H18119.9
C1—P1—S1110.42 (6)C2—C3—C4120.36 (19)
C7—P1—S1111.90 (6)C2—C3—H3119.8
C13—P1—S1108.95 (6)C4—C3—H3119.8
C11—C12—C7120.08 (17)C5—C4—C3119.18 (19)
C11—C12—H12120.0C5—C4—H4120.4
C7—C12—H12120.0C3—C4—H4120.4
C14—C13—C15110.14 (16)C13—C15—H15A109.5
C14—C13—S2107.12 (13)C13—C15—H15B109.5
C15—C13—S2110.18 (12)H15A—C15—H15B109.5
C14—C13—P1109.78 (12)C13—C15—H15C109.5
C15—C13—P1107.68 (11)H15A—C15—H15C109.5
S2—C13—P1111.96 (9)H15B—C15—H15C109.5
C18—C17—C16119.45 (17)C9—C10—C11120.16 (18)
C18—C17—H17120.3C9—C10—H10119.9
C16—C17—H17120.3C11—C10—H10119.9
C20—C21—C16118.89 (19)C9—C8—C7120.96 (19)
C20—C21—H21120.6C9—C8—H8119.5
C16—C21—H21120.6C7—C8—H8119.5
C21—C16—C17120.86 (17)C4—C5—C6120.64 (18)
C21—C16—S2119.68 (14)C4—C5—H5119.7
C17—C16—S2119.46 (13)C6—C5—H5119.7
C1—C6—C5120.52 (18)C13—C14—H14A109.5
C1—C6—H6119.7C13—C14—H14B109.5
C5—C6—H6119.7H14A—C14—H14B109.5
C3—C2—C1120.44 (17)C13—C14—H14C109.5
C3—C2—H2119.8H14A—C14—H14C109.5
C1—C2—H2119.8H14B—C14—H14C109.5
C8—C7—C12118.51 (16)C6—C1—C2118.84 (17)
C8—C7—P1117.30 (14)C6—C1—P1118.59 (14)
C12—C7—P1124.17 (13)C2—C1—P1122.23 (13)
C19—C20—C21120.42 (19)C20—C19—C18120.23 (19)
C19—C20—H20119.8C20—C19—H19119.9
C21—C20—H20119.8C18—C19—H19119.9

Experimental details

Crystal data
Chemical formulaC21H21O2PS2
Mr400.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.2137 (7), 14.3714 (13), 16.6728 (15)
V3)1968.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.26 × 0.2 × 0.16
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.973, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
30953, 3457, 3373
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.04
No. of reflections3457
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.13
Absolute structureFlack (1983), 1467 Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS90 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
S2—O21.4347 (13)P1—C11.8178 (17)
S2—O11.4389 (13)P1—C71.8263 (17)
S2—C161.7734 (16)P1—C131.9082 (17)
S2—C131.8348 (17)P1—S11.9515 (6)
 

Acknowledgements

VHG thanks the Deutsche Forschungsgemeinschaft, the Alexander von Humboldt Foundation and the Fonds der Chemischen Industrie for financial support as well as Professor Dr Holger Braunschweig for generous support.

References

First citationBruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCantat, T., Mézailles, P., Auffrant, A. & Le Floch, P. (2008). Dalton Trans. pp. 1957–1972.  Web of Science CrossRef Google Scholar
First citationCantat, T., Ricard, L., Le Floch, P. & Mézailles, P. (2006). Organometallics, 25, 4965–4976.  Web of Science CSD CrossRef CAS Google Scholar
First citationCavell, R. G., Kamalesh Babu, R. P. & Aparna, K. (2001). J. Organomet. Chem. 617, 158–169.  Web of Science CrossRef Google Scholar
First citationCooper, O. J., Wooles, A. J., McMaster, J., Lewis, W., Blaker, A. J. & Liddle, S. T. (2010). Angew. Chem. Int. Ed. 49, 5570–5573.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGessner, V. H. (2011). Organometallics, 30, 4228–4231.  Web of Science CSD CrossRef CAS Google Scholar
First citationGessner, V. H. & Schröter, P. (2012). Angew. Chem. Int. Ed. Submitted.  Google Scholar
First citationHarder, S. (2011). Coord. Chem. Rev. 255, 1252–1267.  Web of Science CrossRef CAS Google Scholar
First citationKasani, A., Babu, R. P. K., McDonald, R. & Cavell, R. G. (1999). Angew. Chem. Int. Ed. 38, 1483–1484.  Web of Science CrossRef CAS Google Scholar
First citationOng, C. M. & Stephan, D. W. (1999). J. Am. Chem. Soc. 121, 2939–2940.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds