organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-(Furan-2-yl­methyl­­idene)-2,3-di­hydro-1H-inden-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 March 2012; accepted 9 March 2012; online 14 March 2012)

In the title compound, C14H10O2, the five-membered ring of the inden-1-one residue is almost planar (r.m.s. deviation = 0.035 Å). A twist about the single bond linking the two residues is evident [C—C—C—C torsion angle = −13.2 (5)°]. The three-dimensional architecture is stabilized by C—H⋯O (involving the trifurcated carbonyl O atom), C—H⋯π and ππ inter­actions [between the five- and six-membered rings of inden-1-one residues; ring centroid–centroid distance = 3.7983 (17) Å]. The sample studied was a non-merohedral twin; the minor component refined to approximately 36%.

Related literature

For the biological activity of related species, see: Vera-DiVaio et al. (2009[Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295-302.]). For related structures, see: Asiri et al. (2012a[Asiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o755.],b[Asiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o814.]). For the treatment of twinned data, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O2

  • Mr = 210.22

  • Monoclinic, P 21 /c

  • a = 5.9333 (8) Å

  • b = 7.6605 (6) Å

  • c = 22.386 (3) Å

  • β = 91.582 (14)°

  • V = 1017.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.978, Tmax = 0.995

  • 5052 measured reflections

  • 3274 independent reflections

  • 2683 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.251

  • S = 1.10

  • 3274 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.56 3.414 (4) 149
C8—H8A⋯O1ii 0.99 2.37 3.343 (4) 166
C14—H14⋯O1iii 0.95 2.45 3.372 (4) 164
C8—H8BCg1iv 0.99 2.70 3.517 (3) 140
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 2-furan-2-ylmethylene-indan-1-one (I), has been investigated crystallographically in connection with recent structural studies on related derivatives (Asiri et al., 2012a; Asiri et al., 2012b). The motivation for the original synthesis of (I) is its relationship to biologically active compounds (Vera-DiVaio et al., 2009).

In the molecule of (I), Fig. 1, the five-membered ring of the inden-1-one residue is planar with the r.m.s. deviation for the five atoms = 0.035 Å [maximum deviations = 0.031 (2) for the C9 atom and -0.026 (3) for the C8 atom]. A twist in the molecule about the C10—C11 bond is evident with the C9—C10—C11—C12 torsion angle being -13.2 (5)°. The configuration about the C9C10 bond [1.346 (4) Å] is E.

The carbonyl-O1 atom is tri-furcated, forming three C—H···O interactions which lead to a three-dimensional architecture. Additional interactions in the crystal packing include C—H···π interactions, Table 1, as well as ππ contacts between the five- and six-membered rings of inden-1-one residue [ring centroid···centroid distance = 3.7983 (17) Å, angle of inclination = 1.02 (14)° for symmetry operation 1 - x, -y, 1 - z], Fig. 2.

Related literature top

For the biological activity of related species, see: Vera-DiVaio et al. (2009). For related structures, see: Asiri et al. (2012a,b). For the treatment of twinned data, see: Spek (2009).

Experimental top

A solution of the furan-2-carboxaldehyde (0.95 g, 0.01 M) in ethanol (20 ml) was added to a stirred solution of 1-indanone (1.3 g,0.01 M) in (20%) ethanolic KOH (20 ml), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured into water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from ethanol. Yield: 92%. M.pt: 393–395 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The studied sample was a non-merohedral twin (the twin law is 1 0 0.015, 0 1 0, 0 0 1). The twin domains were separated by using the TwinRotMat routine in PLATON (Spek, 2009) and the minor component refined to 0.362 (3).

Structure description top

The title compound, 2-furan-2-ylmethylene-indan-1-one (I), has been investigated crystallographically in connection with recent structural studies on related derivatives (Asiri et al., 2012a; Asiri et al., 2012b). The motivation for the original synthesis of (I) is its relationship to biologically active compounds (Vera-DiVaio et al., 2009).

In the molecule of (I), Fig. 1, the five-membered ring of the inden-1-one residue is planar with the r.m.s. deviation for the five atoms = 0.035 Å [maximum deviations = 0.031 (2) for the C9 atom and -0.026 (3) for the C8 atom]. A twist in the molecule about the C10—C11 bond is evident with the C9—C10—C11—C12 torsion angle being -13.2 (5)°. The configuration about the C9C10 bond [1.346 (4) Å] is E.

The carbonyl-O1 atom is tri-furcated, forming three C—H···O interactions which lead to a three-dimensional architecture. Additional interactions in the crystal packing include C—H···π interactions, Table 1, as well as ππ contacts between the five- and six-membered rings of inden-1-one residue [ring centroid···centroid distance = 3.7983 (17) Å, angle of inclination = 1.02 (14)° for symmetry operation 1 - x, -y, 1 - z], Fig. 2.

For the biological activity of related species, see: Vera-DiVaio et al. (2009). For related structures, see: Asiri et al. (2012a,b). For the treatment of twinned data, see: Spek (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O, C—H···π and ππ interactions are shown as orange, brown and purple dashed lines, respectively.
(2E)-2-(Furan-2-ylmethylidene)-2,3-dihydro-1H-inden-1-one top
Crystal data top
C14H10O2F(000) = 440
Mr = 210.22Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1169 reflections
a = 5.9333 (8) Åθ = 2.7–27.5°
b = 7.6605 (6) ŵ = 0.09 mm1
c = 22.386 (3) ÅT = 100 K
β = 91.582 (14)°Plate, light-brown
V = 1017.1 (2) Å30.25 × 0.25 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3274 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2683 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.086
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 99
Tmin = 0.978, Tmax = 0.995l = 2829
5052 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.251H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1697P)2 + 0.358P]
where P = (Fo2 + 2Fc2)/3
3274 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H10O2V = 1017.1 (2) Å3
Mr = 210.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9333 (8) ŵ = 0.09 mm1
b = 7.6605 (6) ÅT = 100 K
c = 22.386 (3) Å0.25 × 0.25 × 0.05 mm
β = 91.582 (14)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3274 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2683 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.995Rint = 0.086
5052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.251H-atom parameters constrained
S = 1.10Δρmax = 0.49 e Å3
3274 reflectionsΔρmin = 0.38 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8036 (3)0.1044 (3)0.41473 (10)0.0225 (5)
O20.3114 (4)0.3830 (3)0.25105 (10)0.0247 (6)
C10.6426 (5)0.1749 (3)0.43739 (13)0.0158 (6)
C20.6084 (5)0.2043 (3)0.50122 (13)0.0165 (6)
C30.7489 (5)0.1602 (4)0.55034 (14)0.0198 (6)
H30.88880.10280.54490.024*
C40.6783 (5)0.2028 (4)0.60685 (14)0.0248 (7)
H40.77240.17620.64060.030*
C50.4707 (6)0.2842 (4)0.61507 (14)0.0249 (7)
H50.42480.31000.65440.030*
C60.3307 (5)0.3279 (4)0.56689 (14)0.0217 (7)
H60.19020.38400.57270.026*
C70.4012 (5)0.2875 (3)0.50936 (14)0.0174 (6)
C80.2794 (5)0.3192 (4)0.44983 (13)0.0173 (6)
H8A0.13650.25260.44690.021*
H8B0.24640.44480.44390.021*
C90.4447 (5)0.2549 (3)0.40530 (14)0.0171 (6)
C100.4384 (5)0.2705 (4)0.34539 (14)0.0176 (6)
H100.56280.22460.32470.021*
C110.2621 (5)0.3496 (4)0.31001 (14)0.0195 (6)
C120.0463 (5)0.4025 (4)0.31992 (15)0.0237 (7)
H120.03040.39510.35650.028*
C130.0413 (6)0.4706 (4)0.26501 (16)0.0274 (8)
H130.18810.51650.25760.033*
C140.1252 (5)0.4571 (4)0.22545 (15)0.0248 (7)
H140.11350.49460.18500.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0194 (11)0.0244 (11)0.0235 (12)0.0027 (9)0.0027 (9)0.0039 (9)
O20.0255 (12)0.0295 (11)0.0186 (11)0.0028 (10)0.0054 (9)0.0042 (9)
C10.0176 (14)0.0118 (12)0.0178 (14)0.0041 (11)0.0043 (11)0.0015 (11)
C20.0193 (15)0.0099 (12)0.0200 (15)0.0036 (11)0.0035 (11)0.0008 (11)
C30.0190 (14)0.0170 (13)0.0229 (15)0.0047 (12)0.0074 (11)0.0033 (12)
C40.0303 (18)0.0219 (15)0.0217 (16)0.0050 (13)0.0100 (13)0.0099 (12)
C50.0370 (19)0.0245 (15)0.0131 (14)0.0084 (14)0.0009 (13)0.0016 (12)
C60.0230 (16)0.0201 (14)0.0221 (15)0.0078 (13)0.0014 (12)0.0004 (12)
C70.0208 (15)0.0106 (11)0.0205 (15)0.0046 (11)0.0030 (11)0.0005 (11)
C80.0172 (15)0.0148 (12)0.0197 (14)0.0006 (11)0.0011 (11)0.0028 (11)
C90.0149 (14)0.0127 (12)0.0233 (15)0.0041 (11)0.0037 (11)0.0002 (12)
C100.0151 (14)0.0166 (13)0.0211 (15)0.0026 (11)0.0029 (11)0.0033 (11)
C110.0256 (15)0.0161 (13)0.0166 (15)0.0000 (12)0.0046 (12)0.0015 (11)
C120.0223 (16)0.0281 (15)0.0204 (16)0.0048 (13)0.0033 (11)0.0011 (13)
C130.032 (2)0.0290 (16)0.0210 (16)0.0024 (15)0.0080 (12)0.0009 (14)
C140.0253 (18)0.0261 (15)0.0224 (17)0.0044 (13)0.0097 (12)0.0065 (13)
Geometric parameters (Å, º) top
O1—C11.220 (4)C6—H60.9500
O2—C141.355 (4)C7—C81.518 (4)
O2—C111.384 (4)C8—C91.501 (4)
C1—C21.466 (4)C8—H8A0.9900
C1—C91.491 (4)C8—H8B0.9900
C2—C71.401 (4)C9—C101.346 (4)
C2—C31.403 (4)C10—C111.429 (4)
C3—C41.383 (5)C10—H100.9500
C3—H30.9500C11—C121.367 (4)
C4—C51.398 (5)C12—C131.420 (4)
C4—H40.9500C12—H120.9500
C5—C61.384 (4)C13—C141.349 (5)
C5—H50.9500C13—H130.9500
C6—C71.400 (5)C14—H140.9500
C14—O2—C11106.8 (2)C9—C8—H8A111.2
O1—C1—C2127.2 (3)C7—C8—H8A111.2
O1—C1—C9126.6 (3)C9—C8—H8B111.2
C2—C1—C9106.1 (2)C7—C8—H8B111.2
C7—C2—C3120.8 (3)H8A—C8—H8B109.1
C7—C2—C1110.0 (3)C10—C9—C1121.1 (3)
C3—C2—C1129.2 (3)C10—C9—C8129.2 (3)
C4—C3—C2118.2 (3)C1—C9—C8109.6 (2)
C4—C3—H3120.9C9—C10—C11126.1 (3)
C2—C3—H3120.9C9—C10—H10116.9
C3—C4—C5121.1 (3)C11—C10—H10116.9
C3—C4—H4119.5C12—C11—O2108.9 (3)
C5—C4—H4119.5C12—C11—C10135.2 (3)
C6—C5—C4121.2 (3)O2—C11—C10115.9 (3)
C6—C5—H5119.4C11—C12—C13106.9 (3)
C4—C5—H5119.4C11—C12—H12126.6
C5—C6—C7118.4 (3)C13—C12—H12126.6
C5—C6—H6120.8C14—C13—C12106.4 (3)
C7—C6—H6120.8C14—C13—H13126.8
C6—C7—C2120.4 (3)C12—C13—H13126.8
C6—C7—C8128.7 (3)C13—C14—O2111.0 (3)
C2—C7—C8110.9 (3)C13—C14—H14124.5
C9—C8—C7103.1 (2)O2—C14—H14124.5
O1—C1—C2—C7179.3 (3)O1—C1—C9—C106.6 (4)
C9—C1—C2—C72.9 (3)C2—C1—C9—C10171.3 (3)
O1—C1—C2—C30.2 (5)O1—C1—C9—C8177.2 (3)
C9—C1—C2—C3177.6 (3)C2—C1—C9—C85.0 (3)
C7—C2—C3—C40.6 (4)C7—C8—C9—C10170.9 (3)
C1—C2—C3—C4179.9 (3)C7—C8—C9—C15.0 (3)
C2—C3—C4—C51.3 (4)C1—C9—C10—C11177.8 (3)
C3—C4—C5—C61.2 (5)C8—C9—C10—C112.4 (5)
C4—C5—C6—C70.4 (4)C14—O2—C11—C120.4 (3)
C5—C6—C7—C20.2 (4)C14—O2—C11—C10180.0 (2)
C5—C6—C7—C8179.2 (3)C9—C10—C11—C1213.2 (5)
C3—C2—C7—C60.1 (4)C9—C10—C11—O2167.3 (3)
C1—C2—C7—C6179.5 (2)O2—C11—C12—C130.2 (3)
C3—C2—C7—C8179.3 (2)C10—C11—C12—C13179.4 (3)
C1—C2—C7—C80.3 (3)C11—C12—C13—C140.6 (4)
C6—C7—C8—C9177.6 (3)C12—C13—C14—O20.9 (4)
C2—C7—C8—C93.3 (3)C11—O2—C14—C130.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.563.414 (4)149
C8—H8A···O1ii0.992.373.343 (4)166
C14—H14···O1iii0.952.453.372 (4)164
C8—H8B···Cg1iv0.992.703.517 (3)140
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10O2
Mr210.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.9333 (8), 7.6605 (6), 22.386 (3)
β (°) 91.582 (14)
V3)1017.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.978, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
5052, 3274, 2683
Rint0.086
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.251, 1.10
No. of reflections3274
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.38

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.563.414 (4)149
C8—H8A···O1ii0.992.373.343 (4)166
C14—H14···O1iii0.952.453.372 (4)164
C8—H8B···Cg1iv0.992.703.517 (3)140
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o755.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o814.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds