organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Dihex­yl­oxy-2,5-bis­­(2-nitro­phen­yl)benzene

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 5 March 2012; accepted 6 March 2012; online 10 March 2012)

The title compound, C30H36N2O6, was prepared via twofold Suzuki coupling of a diboronic acid with bromo­nitro­benzene. The mol­ecule is located on a crystallographic inversion centre. The lateral benzene ring and the central ring make a dihedral angle of 48.75 (14)° and the nitro group is twisted by 41.47 (13)° out of the plane of the benzene ring. The nitro and hex­yloxy groups are in close proximity and the hex­yloxy chain adopts an all-anti conformation.

Related literature

For the synthesis of carbazoles and heteroanalogous carbazoles, see: Letessier et al. (2011[Letessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2494.]); Dassonneville et al. (2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]); Nissen & Detert (2011[Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2854.]); Letessier & Detert (2012[Letessier, J. & Detert, H. (2012). Synthesis, 44, 290-296.]). For the Cadogan reaction, see: Cadogan (1962[Cadogan, J. I. G. (1962). Q. Rev. 16, 208-239.]). For Suzuki cross-couplings see Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]). For π-systems for optoelectronic applications, see: Nemkovich et al. (2009[Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275-281.]). For structures of substituted p-terphenyls, see: Jones et al. (2005[Jones, P. G., Kuś, P. & Pasewicz, A. (2005). Acta Cryst. E61, o1895-o1896.]), Moschel et al. (2011[Moschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425.]). For torsion in biphenyls, see: Miao et al. (2009[Miao, S.-B., Deng, D.-S., Liu, X.-M. & Ji, B.-M. (2009). Acta Cryst. E65, o2314.]); Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1357-o1358.]).

[Scheme 1]

Experimental

Crystal data
  • C30H36N2O6

  • Mr = 520.61

  • Monoclinic, P 21 /n

  • a = 7.9314 (4) Å

  • b = 19.2029 (17) Å

  • c = 9.1247 (5) Å

  • β = 96.368 (5)°

  • V = 1381.17 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.44 × 0.30 × 0.20 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 8154 measured reflections

  • 3331 independent reflections

  • 2610 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.07

  • 3331 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

As part of a larger project on the synthesis of carbazoles and heteroanalogous carbazoles (Letessier et al. 2011, Dassonneville et al. 2011, Nissen & Detert 2011, Letessier & Detert 2012) the Cadogan reaction (Cadogan 1962) appeared to be a suitable method for the construction of larger planar π-systems for optoelectronic applications (Nemkovich et al. 2009). The title compond was prepared as an intermediate for the synthesis of dihexyloxy-indolocarbazole.

The title compound crystallizes in a centrosymmetrical conformation with a highly twisted dinitroterphenyl core and hexyloxy chains in an all-anti conformation. The dihedral angle of the mean planes of the central and the lateral ring is 131.25 (14)° with the ortho-substituents nitro- and hexyloxy in close proximity. The distance N10 - O13 (nitro-hexyloxy) is only 2.710 (2) Å. The nitro group is twisted out of the plane of the adjacent benzene ring, the dihedral angle is 138.53 (13)° pointing towards the adjacent o-hexyloxy group. A o-methyl substitution on on a biphenyl linkage is sufficient to open the dihedral angle from 9.45 ° (Fischer et al. 2007) to more than 63° (Jones et al. 2005). The twist (131.25°) found in the title compound - though o,o-disubstituted on both biphenyl linkages - is significantly smaller. This can result from an electronic attraction between N10 (nitro) and O13 (hexyloxy). Miao et al. (2009) reported a dihedral angle of 60.5° in the fourfold o-substituted 2,2-dimethoxy-6,6-dinitrobiphenyl.

Related literature top

For the synthesis of carbazoles and heteroanalogous carbazoles, see: Letessier et al. (2011); Dassonneville et al. (2011); Nissen & Detert (2011); Letessier & Detert (2012). For the Cadogan reaction, see: Cadogan (1962). For Suzuki cross-couplings see Miyaura & Suzuki (1995). For π-systems for optoelectronic applications, see: Nemkovich et al. (2009). For structures of substituted p-terphenyls, see: Jones et al. (2005), Moschel et al. (2011). For torsion in biphenyls, see: Miao et al. (2009); Fischer et al. (2007).

Experimental top

Synthesis: A mixture of 2,5-dihexyloxy-1,4-phenylenediboronic acid (500 mg, 1.37 mmol), 1-bromo-2-nitrobenzene (553 mg, 2.74 mmol), Pd(PPh3)3 (79 mg, 0.067 mmol) in dimethoxyethane (10 ml) was stirred for 45 min at 298 K. An aqueous solution of Na2CO3 (1M, 8.2 ml) was added and the mixture heated to 353 K for 18 h. The cooled mixture was poured into water (40 ml) and the product was isolated by extraction with dichloromethane (3 x 15 ml), washing the pooled solutions with brine (2 x 10 ml), drying (Na2SO4) and crystallization from chloroform/pentane. Yield: 495 mg (70%) of a yellow solid with m. p. 438 - 440 K. Rf = 0.41 (silica gel, petroleum ether/ethyl acetate 9/1).

Refinement top

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Structure description top

As part of a larger project on the synthesis of carbazoles and heteroanalogous carbazoles (Letessier et al. 2011, Dassonneville et al. 2011, Nissen & Detert 2011, Letessier & Detert 2012) the Cadogan reaction (Cadogan 1962) appeared to be a suitable method for the construction of larger planar π-systems for optoelectronic applications (Nemkovich et al. 2009). The title compond was prepared as an intermediate for the synthesis of dihexyloxy-indolocarbazole.

The title compound crystallizes in a centrosymmetrical conformation with a highly twisted dinitroterphenyl core and hexyloxy chains in an all-anti conformation. The dihedral angle of the mean planes of the central and the lateral ring is 131.25 (14)° with the ortho-substituents nitro- and hexyloxy in close proximity. The distance N10 - O13 (nitro-hexyloxy) is only 2.710 (2) Å. The nitro group is twisted out of the plane of the adjacent benzene ring, the dihedral angle is 138.53 (13)° pointing towards the adjacent o-hexyloxy group. A o-methyl substitution on on a biphenyl linkage is sufficient to open the dihedral angle from 9.45 ° (Fischer et al. 2007) to more than 63° (Jones et al. 2005). The twist (131.25°) found in the title compound - though o,o-disubstituted on both biphenyl linkages - is significantly smaller. This can result from an electronic attraction between N10 (nitro) and O13 (hexyloxy). Miao et al. (2009) reported a dihedral angle of 60.5° in the fourfold o-substituted 2,2-dimethoxy-6,6-dinitrobiphenyl.

For the synthesis of carbazoles and heteroanalogous carbazoles, see: Letessier et al. (2011); Dassonneville et al. (2011); Nissen & Detert (2011); Letessier & Detert (2012). For the Cadogan reaction, see: Cadogan (1962). For Suzuki cross-couplings see Miyaura & Suzuki (1995). For π-systems for optoelectronic applications, see: Nemkovich et al. (2009). For structures of substituted p-terphenyls, see: Jones et al. (2005), Moschel et al. (2011). For torsion in biphenyls, see: Miao et al. (2009); Fischer et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. Second part of the molecule labeled with a generated applying symmetry code 1 - x, 1 - y, 1 - z.
1,4-Dihexyloxy-2,5-bis(2-nitrophenyl)benzene top
Crystal data top
C30H36N2O6F(000) = 556
Mr = 520.61Dx = 1.252 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7928 reflections
a = 7.9314 (4) Åθ = 3.2–29.1°
b = 19.2029 (17) ŵ = 0.09 mm1
c = 9.1247 (5) ÅT = 193 K
β = 96.368 (5)°Block, yellow
V = 1381.17 (16) Å30.44 × 0.30 × 0.20 mm
Z = 2
Data collection top
Stoe IPDS 2T
diffractometer
2610 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.026
Plane graphite monochromatorθmax = 28.0°, θmin = 3.2°
Detector resolution: 6.67 pixels mm-1h = 1010
ω scank = 2522
8154 measured reflectionsl = 1210
3331 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.4038P]
where P = (Fo2 + 2Fc2)/3
3331 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C30H36N2O6V = 1381.17 (16) Å3
Mr = 520.61Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.9314 (4) ŵ = 0.09 mm1
b = 19.2029 (17) ÅT = 193 K
c = 9.1247 (5) Å0.44 × 0.30 × 0.20 mm
β = 96.368 (5)°
Data collection top
Stoe IPDS 2T
diffractometer
2610 reflections with I > 2σ(I)
8154 measured reflectionsRint = 0.026
3331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
3331 reflectionsΔρmin = 0.27 e Å3
173 parameters
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3): δ = 7.95 (dd, 3J = 8.5 Hz, 4J= 1.2 Hz, 2 H, 3-H); 7.64 (dt, 3J = 7.5 Hz, 4J = 1.4 Hz, 2 H, 4-H); 7.49 - 7.45 (m, 4 H); 6.83 (s, 2 H, 2-H); 3.81 (bs (t), 4 H, O—CH2); 1.59 - 1.54 (m, 4 H); 1.25 - 1.18 (m, 12 H); 0.80 (t, 3J = 6.9 Hz, 6 H, CH3).

13C-NMR (75 MHz, CDCl3): δ = 149.7 (s, 2-C), 149.5 (s), 132.9 (s), 132.6 (d), 132.5 (d), 128.1 (d), 127.8 (s), 123.9 (d), 113.4 (d), 69.1 (t), 31.3 (t), 28.8 (t), 25.4 (t), 22.5 (t), 13.8 (q).

IR (ATR): ν = 3734, 3585, 3070, 2944, 2869, 2855, 2363, 2334, 1608, 1573, 1530, 1510, 1469, 1441, 1387, 1358, 1290, 1255, 1209, 1165, 1144, 1025, 997, 870, 860.

MS (EI): m/z = 520 (100%, M+.).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46215 (15)0.52525 (7)0.35512 (14)0.0240 (3)
C20.35820 (15)0.54228 (7)0.46442 (14)0.0252 (3)
C30.60362 (16)0.48321 (8)0.39358 (14)0.0264 (3)
H30.67560.47170.32060.032*
C40.43305 (15)0.55452 (7)0.20336 (14)0.0232 (3)
C50.57076 (16)0.58310 (8)0.14150 (15)0.0299 (3)
H50.68010.58110.19560.036*
C60.55321 (18)0.61424 (8)0.00394 (16)0.0338 (3)
H60.65020.63180.03620.041*
C70.39481 (18)0.61991 (8)0.07522 (16)0.0309 (3)
H70.38200.64320.16760.037*
C80.25493 (17)0.59149 (7)0.01925 (15)0.0273 (3)
H80.14560.59450.07320.033*
C90.27660 (15)0.55862 (7)0.11640 (14)0.0225 (3)
N100.12608 (13)0.52343 (6)0.16019 (12)0.0271 (3)
O110.01207 (12)0.55180 (6)0.13048 (12)0.0381 (3)
O120.14470 (14)0.46637 (6)0.21901 (12)0.0380 (3)
O130.22425 (12)0.58564 (6)0.42244 (10)0.0314 (2)
C140.11269 (18)0.60345 (9)0.52871 (16)0.0330 (3)
H14A0.17480.63000.61060.040*
H14B0.06650.56070.56990.040*
C150.02962 (17)0.64694 (9)0.45359 (16)0.0330 (3)
H15A0.01890.68740.40550.040*
H15B0.09460.61880.37580.040*
C160.1481 (2)0.67270 (12)0.5597 (2)0.0560 (6)
H16A0.17930.63280.62010.067*
H16B0.08620.70670.62740.067*
C170.30865 (18)0.70652 (8)0.49024 (18)0.0344 (3)
H17A0.27810.74650.42990.041*
H17B0.37150.67260.42310.041*
C180.4239 (3)0.73189 (14)0.5993 (3)0.0670 (7)
H18A0.44920.69240.66310.080*
H18B0.36260.76750.66320.080*
C190.5889 (2)0.76264 (11)0.5319 (3)0.0602 (6)
H19A0.56620.80480.47670.090*
H19B0.65920.77450.61010.090*
H19C0.64880.72870.46500.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (5)0.0341 (7)0.0187 (6)0.0020 (5)0.0005 (4)0.0030 (5)
C20.0172 (5)0.0358 (7)0.0218 (6)0.0056 (5)0.0005 (4)0.0031 (5)
C30.0204 (6)0.0391 (7)0.0199 (6)0.0049 (5)0.0027 (5)0.0037 (5)
C40.0202 (5)0.0296 (6)0.0198 (6)0.0027 (5)0.0023 (4)0.0032 (5)
C50.0189 (6)0.0436 (8)0.0271 (7)0.0031 (5)0.0017 (5)0.0039 (6)
C60.0302 (7)0.0441 (8)0.0285 (7)0.0111 (6)0.0094 (6)0.0021 (6)
C70.0375 (7)0.0326 (7)0.0229 (6)0.0045 (6)0.0040 (5)0.0024 (5)
C80.0260 (6)0.0322 (7)0.0228 (6)0.0003 (5)0.0010 (5)0.0010 (5)
C90.0186 (5)0.0268 (6)0.0219 (6)0.0002 (5)0.0020 (4)0.0012 (5)
N100.0210 (5)0.0398 (7)0.0201 (5)0.0036 (5)0.0009 (4)0.0006 (5)
O110.0178 (4)0.0605 (7)0.0353 (6)0.0027 (4)0.0006 (4)0.0021 (5)
O120.0358 (5)0.0425 (6)0.0351 (6)0.0098 (5)0.0014 (4)0.0114 (5)
O130.0239 (4)0.0492 (6)0.0213 (5)0.0155 (4)0.0029 (4)0.0003 (4)
C140.0277 (6)0.0471 (9)0.0254 (7)0.0141 (6)0.0078 (5)0.0025 (6)
C150.0248 (6)0.0453 (8)0.0288 (7)0.0118 (6)0.0030 (5)0.0009 (6)
C160.0502 (10)0.0811 (14)0.0402 (9)0.0427 (10)0.0203 (8)0.0197 (9)
C170.0254 (6)0.0330 (7)0.0459 (9)0.0059 (6)0.0090 (6)0.0019 (6)
C180.0543 (11)0.0902 (16)0.0615 (13)0.0435 (11)0.0297 (10)0.0211 (12)
C190.0324 (8)0.0556 (12)0.0951 (17)0.0150 (8)0.0188 (10)0.0009 (11)
Geometric parameters (Å, º) top
C1—C31.3952 (18)O13—C141.4250 (15)
C1—C21.4014 (17)C14—C151.5065 (19)
C1—C41.4886 (18)C14—H14A0.9900
C2—O131.3705 (15)C14—H14B0.9900
C2—C3i1.3867 (19)C15—C161.506 (2)
C3—C2i1.3867 (19)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C4—C51.3963 (18)C16—C171.505 (2)
C4—C91.3990 (17)C16—H16A0.9900
C5—C61.383 (2)C16—H16B0.9900
C5—H50.9500C17—C181.505 (2)
C6—C71.382 (2)C17—H17A0.9900
C6—H60.9500C17—H17B0.9900
C7—C81.3838 (19)C18—C191.503 (3)
C7—H70.9500C18—H18A0.9900
C8—C91.3831 (18)C18—H18B0.9900
C8—H80.9500C19—H19A0.9800
C9—N101.4655 (16)C19—H19B0.9800
N10—O121.2218 (16)C19—H19C0.9800
N10—O111.2268 (15)
C3—C1—C2118.44 (12)O13—C14—H14B110.0
C3—C1—C4119.33 (11)C15—C14—H14B110.0
C2—C1—C4122.08 (11)H14A—C14—H14B108.4
O13—C2—C3i123.90 (11)C16—C15—C14112.27 (12)
O13—C2—C1116.22 (11)C16—C15—H15A109.2
C3i—C2—C1119.85 (12)C14—C15—H15A109.2
C2i—C3—C1121.70 (11)C16—C15—H15B109.2
C2i—C3—H3119.2C14—C15—H15B109.2
C1—C3—H3119.2H15A—C15—H15B107.9
C5—C4—C9115.65 (12)C17—C16—C15115.45 (14)
C5—C4—C1118.49 (11)C17—C16—H16A108.4
C9—C4—C1125.82 (11)C15—C16—H16A108.4
C6—C5—C4122.16 (12)C17—C16—H16B108.4
C6—C5—H5118.9C15—C16—H16B108.4
C4—C5—H5118.9H16A—C16—H16B107.5
C7—C6—C5120.15 (12)C18—C17—C16114.11 (15)
C7—C6—H6119.9C18—C17—H17A108.7
C5—C6—H6119.9C16—C17—H17A108.7
C6—C7—C8119.71 (13)C18—C17—H17B108.7
C6—C7—H7120.1C16—C17—H17B108.7
C8—C7—H7120.1H17A—C17—H17B107.6
C9—C8—C7119.02 (12)C19—C18—C17114.93 (19)
C9—C8—H8120.5C19—C18—H18A108.5
C7—C8—H8120.5C17—C18—H18A108.5
C8—C9—C4123.21 (12)C19—C18—H18B108.5
C8—C9—N10115.49 (11)C17—C18—H18B108.5
C4—C9—N10121.17 (11)H18A—C18—H18B107.5
O12—N10—O11123.84 (12)C18—C19—H19A109.5
O12—N10—C9118.09 (11)C18—C19—H19B109.5
O11—N10—C9118.01 (12)H19A—C19—H19B109.5
C2—O13—C14118.44 (10)C18—C19—H19C109.5
O13—C14—C15108.30 (11)H19A—C19—H19C109.5
O13—C14—H14A110.0H19B—C19—H19C109.5
C15—C14—H14A110.0
C3—C1—C2—O13177.82 (12)C7—C8—C9—N10173.60 (12)
C4—C1—C2—O132.17 (19)C5—C4—C9—C83.0 (2)
C3—C1—C2—C3i0.7 (2)C1—C4—C9—C8174.57 (13)
C4—C1—C2—C3i176.30 (13)C5—C4—C9—N10172.61 (12)
C2—C1—C3—C2i0.7 (2)C1—C4—C9—N109.8 (2)
C4—C1—C3—C2i176.44 (13)C8—C9—N10—O12138.53 (13)
C3—C1—C4—C544.37 (18)C4—C9—N10—O1237.39 (18)
C2—C1—C4—C5131.25 (14)C8—C9—N10—O1138.71 (17)
C3—C1—C4—C9138.15 (14)C4—C9—N10—O11145.37 (13)
C2—C1—C4—C946.2 (2)C3i—C2—O13—C142.8 (2)
C9—C4—C5—C60.8 (2)C1—C2—O13—C14178.78 (13)
C1—C4—C5—C6176.95 (13)C2—O13—C14—C15176.02 (12)
C4—C5—C6—C72.1 (2)O13—C14—C15—C16175.95 (16)
C5—C6—C7—C82.9 (2)C14—C15—C16—C17170.43 (16)
C6—C7—C8—C90.8 (2)C15—C16—C17—C18179.81 (19)
C7—C8—C9—C42.2 (2)C16—C17—C18—C19177.1 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H36N2O6
Mr520.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)7.9314 (4), 19.2029 (17), 9.1247 (5)
β (°) 96.368 (5)
V3)1381.17 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.30 × 0.20
Data collection
DiffractometerStoe IPDS 2T
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8154, 3331, 2610
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.07
No. of reflections3331
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to Heinz Kolshorn for invaluable discussions and the NMR spectra.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCadogan, J. I. G. (1962). Q. Rev. 16, 208–239.  CrossRef CAS Web of Science Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1357–o1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. G., Kuś, P. & Pasewicz, A. (2005). Acta Cryst. E61, o1895–o1896.  CSD CrossRef IUCr Journals Google Scholar
First citationLetessier, J. & Detert, H. (2012). Synthesis, 44, 290–296.  CAS Google Scholar
First citationLetessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiao, S.-B., Deng, D.-S., Liu, X.-M. & Ji, B.-M. (2009). Acta Cryst. E65, o2314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationMoschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275–281.  Web of Science CrossRef CAS Google Scholar
First citationNissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2854.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds