organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1037-o1038

Triprolidinium dichloranilate–chloranilic acid–methanol–water (2/1/2/2)

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 6 March 2012; accepted 7 March 2012; online 10 March 2012)

In the triprolidinium cation of the title compound {systematic name: 2-[1-(4-methyl­phen­yl)-3-(pyrrolidin-1-ium-1-yl)prop-1-en-1-yl]pyridin-1-ium bis­(2,5-dichloro-4-hy­droxy-3,6-dioxo­cyclo­hexa-1,4-dien-1-olate)–2,5-dichloro-3,6-dihy­droxy­cyclo­hexa-2,5-diene-1,4-dione–methanol–water (2/1/2/2)}, C19H24N22+·2C6HCl2O4·0.5C6H2Cl2O4·CH3OH·H2O, the N atoms on both the pyrrolidine and pyridine groups are protonated. The neutral chloranilic acid mol­ecule is on an inversion symmetry element and its hy­droxy H atoms are disordered over two positions with site-occupancy factors of 0.53 (6) and 0.47 (6). The methanol solvent mol­ecule is disordered over two positions in a 0.836 (4):0.164 (4) ratio. In the crystal, N—H⋯O, O—H⋯O and C—H⋯O inter­actions link the components. The crystal structure also features ππ inter­actions between the benzene rings [centroid–centroid distances = 3.5674 (15), 3.5225 (15) and 3.6347 (15) Å].

Related literature

For the synthesis and spectroscopic studies of charge-transfer complexes between chloranilic acid and some heterocyclic amines in ethanol, see: Al-Attas et al. (2009[Al-Attas, A. S., Habeeb, M. M. & Al-Raimi, D. S. (2009). J. Mol. Struct. 928, 158-170.]). For spectroscopic studies of the inter­action between triprolidine hydro­chloride and serum albumins, see: Sandhya et al. (2011[Sandhya, B., Hegde, A. H., Kalanur, S. S., Katrahalli, U. & Seetharamappa, J. (2011). J. Pharm. Biomed. Anal. 54, 1180-1186.]). For related structures, see: Adam et al. (2010[Adam, M. S., Parkin, A., Thomas, L. H. & Wilson, C. C. (2010). CrystEngComm, 12, 917-924.]); Dayananda et al. (2011[Dayananda, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2502.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Yathirajan, H. S., Al-arique, Q. N. M. H., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o497-o498.]); Gotoh et al. (2010[Gotoh, K., Maruyama, S. & Ishida, H. (2010). Acta Cryst. E66, o3255.]); Hakim Al-arique et al. (2010[Hakim Al-arique, Q. N. M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1507-o1508.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o163-o164.]); Parvez & Sabir (1997[Parvez, M. & Sabir, A. P. (1997). Acta Cryst. C53, 679-681.]); Udachin et al. (2011[Udachin, K. A., Zaman, M. B. & Ripmeester, J. A. (2011). Acta Cryst. E67, o2625.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N22+·2C6HCl2O4·0.5C6H2Cl2O4·CH4O·H2O

  • Mr = 850.88

  • Monoclinic, P 21 /n

  • a = 9.1633 (2) Å

  • b = 32.3720 (7) Å

  • c = 12.9834 (4) Å

  • β = 106.685 (3)°

  • V = 3689.17 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.16 mm−1

  • T = 123 K

  • 0.5 × 0.38 × 0.12 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.188, Tmax = 0.607

  • 25133 measured reflections

  • 7532 independent reflections

  • 6721 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 1.08

  • 7532 reflections

  • 510 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H4AA⋯O3A 0.84 2.15 2.629 (3) 116
O4A—H4AA⋯O1Wi 0.84 1.92 2.672 (3) 148
N1—H1C⋯O3A 0.93 1.78 2.699 (3) 167
O2B—H2BA⋯O1B 0.84 2.19 2.655 (3) 115
O2B—H2BA⋯O1Aii 0.84 2.50 3.012 (3) 121
O2B—H2BA⋯O2Aii 0.84 2.08 2.776 (3) 139
N2—H2C⋯O3B 0.88 2.55 2.900 (3) 104
N2—H2C⋯O4B 0.88 1.79 2.667 (3) 175
O2C—H2CA⋯O1Ciii 0.84 2.21 2.680 (4) 116
O1W—H1W1⋯O1S 0.90 (3) 2.06 (3) 2.882 (3) 152 (4)
O1W—H1W2⋯O2B 0.82 (5) 2.18 (4) 2.976 (3) 162 (4)
C1—H1B⋯O1Aiv 0.99 2.34 3.286 (5) 160
C3—H3A⋯O1Bv 0.99 2.47 3.138 (5) 124
C4—H4B⋯O2Avi 0.99 2.37 3.229 (3) 144
C4—H4B⋯O1Bv 0.99 2.34 2.994 (3) 123
C5—H5B⋯O1Bv 0.99 2.44 3.186 (3) 132
C9—H9A⋯Cl2Avi 0.95 2.82 3.525 (3) 131
C9—H9A⋯O2Avi 0.95 2.46 3.363 (3) 158
C18—H18A⋯Cl2Bi 0.95 2.68 3.467 (3) 140
C19—H19B⋯O1Aii 0.98 2.55 3.102 (4) 116
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+2; (iv) -x+2, -y+1, -z; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triprolidine (Systematic name: 2-[(E)-1-(4-methylphenyl)-3-pyrrolidin-1-yl-prop- 1-enyl]pyridine) is an over-the-counter antihistamine with anticholinergic properties. It is used to combat the symptoms associated with allergies and is sometimes combined with other cold medications designed to provide general relief for flu-like symptoms. Like many over-the-counter antihistamines, the most common side effect is drowsiness. Triprolidine is a quick acting drug that can clear congestion and stop runny noses in 15–30 minutes. The interaction between triprolidine hydrochloride (TRP) and serum albumins viz. bovine serum albumin (BSA) and human serum albumin (HSA) has been studied by spectroscopic methods (Sandhya et al., 2011).

Chloranilic acid is a strong dibasic organic acid which exhibits electron-acceptor properties on one hand and acidic properties leading to formation of hydrogen bonds on the other hand. In the case of stronger bases the proton-transfer, hydrogen bonded ion pairs will be formed which is interesting from the point of view of electron transfer reactions in biological systems. Also, protonation of the donor from acidic acceptors are generally a route for the formation of ion pair adducts. The synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol (Al-Attas, Habeeb & Al-Raimi, 2009) have been studied. The crystal structures of triprolidine tetrachlorocuprate (II) (Parvez & Sabir, 1997), triethylammonium hydrogen chloranilate (Gotoh et al., 2010), chloranilic acid: a redetermination at 100 K (Dutkiewicz et al., 2010), bis(3-picoline) chloranilate chloranilic acid (Adam et al., 2010), Gabapentin-lactum-chloranilic acid (Jasinski et al., 2010), bis(2-{[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methylsulfanyl}-1H,3H-benzimidazolium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate (Hakim Al-arique et al., 2010), bis(guanidinium) chloranilate (Udachin et al., 2011) and triprolinidium dipicrate (Dayananda et al., 2011) have been reported. In view of the importance of triprolidine, the paper reports the crystal structure of the title compound, (I).

As shown in Fig. 1, in the triprolidinium cation of (I), the N atoms on the pyridinium and pyrrolidine groups are protonated. The pyrrolidine group has an envelope conformation [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.378 (4) Å, φ(2) = 1252.8 (5)°].

The crystal structure is stabilized by N—H···O, O—H···O and C—H···O interactions (Table 1, Fig. 2). Furthermore, the crystal structure is stabilized via π-π interactions between the benzene rings [Cg3···Cg5(x, y, z) = 3.5674 (15) Å, Cg3···Cg5(-1/2 + x, 1/2 - y, -1/2 + z) = 3.5225 (15) Å, Cg4···Cg4(2 - x, 1 - y, -z) = 3.6347 (15) Å; where Cg3, Cg4 and g5 are the centroids of the C13—C18, C1A–C6A and C1B–C6B benzene rings, respectively].

Related literature top

For the synthesis and spectroscopic studies of charge-transfer complexes between chloranilic acid and some heterocyclic amines in ethanol, see: Al-Attas et al. (2009). For spectroscopic studies of the interaction between triprolidine hydrochloride and serum albumins, see: Sandhya et al. (2011). For related structures, see: Adam et al. (2010); Dayananda et al. (2011); Dutkiewicz et al. (2010); Gotoh et al. (2010); Hakim Al-arique et al. (2010); Jasinski et al. (2010); Parvez & Sabir (1997); Udachin et al. (2011). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

Triprolidine hydrochloride (3.148 g, 0.01 mol) in 10 ml of methanol was mixed with chloranilic acid (2.09 g, 0.01 mol) in 10 ml of methanol. The mixture was kept aside for three days at room temperature. The formed salt was filtered and dried in a vacuum desiccator over phosphorous pentoxide. The compound was recrystallized from methanol solution by slow evaporation (m.p.: 448–450 K with charring).

Refinement top

The atoms of the methanol solvent molecule are disordered over two positions with the site-occupancy factors of 0.836 (4) and 0.164 (4). The hydroxyl H atoms of the neutral chloranilate molecule lying on an inversion centre are disordered over two positions with the site-occupancy factors of 0.53 (6) and 0.47 (6). The water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O) and using the DFIX restraints for the O—H bond of 0.82 Å and the H···H distance of 1.297 Å. All of the remaining H atoms were placed in their calculated positions and refined using the riding model with C–H lengths of 0.84 Å (OH), 0.88 Å (NH), 0.93 Å (NH), 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). Their isotropic displacement parameters were set to 1.2 (NH, CH, CH2) or 1.5 (OH, CH3) times Ueq of the parent atom.

Structure description top

Triprolidine (Systematic name: 2-[(E)-1-(4-methylphenyl)-3-pyrrolidin-1-yl-prop- 1-enyl]pyridine) is an over-the-counter antihistamine with anticholinergic properties. It is used to combat the symptoms associated with allergies and is sometimes combined with other cold medications designed to provide general relief for flu-like symptoms. Like many over-the-counter antihistamines, the most common side effect is drowsiness. Triprolidine is a quick acting drug that can clear congestion and stop runny noses in 15–30 minutes. The interaction between triprolidine hydrochloride (TRP) and serum albumins viz. bovine serum albumin (BSA) and human serum albumin (HSA) has been studied by spectroscopic methods (Sandhya et al., 2011).

Chloranilic acid is a strong dibasic organic acid which exhibits electron-acceptor properties on one hand and acidic properties leading to formation of hydrogen bonds on the other hand. In the case of stronger bases the proton-transfer, hydrogen bonded ion pairs will be formed which is interesting from the point of view of electron transfer reactions in biological systems. Also, protonation of the donor from acidic acceptors are generally a route for the formation of ion pair adducts. The synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol (Al-Attas, Habeeb & Al-Raimi, 2009) have been studied. The crystal structures of triprolidine tetrachlorocuprate (II) (Parvez & Sabir, 1997), triethylammonium hydrogen chloranilate (Gotoh et al., 2010), chloranilic acid: a redetermination at 100 K (Dutkiewicz et al., 2010), bis(3-picoline) chloranilate chloranilic acid (Adam et al., 2010), Gabapentin-lactum-chloranilic acid (Jasinski et al., 2010), bis(2-{[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methylsulfanyl}-1H,3H-benzimidazolium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate (Hakim Al-arique et al., 2010), bis(guanidinium) chloranilate (Udachin et al., 2011) and triprolinidium dipicrate (Dayananda et al., 2011) have been reported. In view of the importance of triprolidine, the paper reports the crystal structure of the title compound, (I).

As shown in Fig. 1, in the triprolidinium cation of (I), the N atoms on the pyridinium and pyrrolidine groups are protonated. The pyrrolidine group has an envelope conformation [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.378 (4) Å, φ(2) = 1252.8 (5)°].

The crystal structure is stabilized by N—H···O, O—H···O and C—H···O interactions (Table 1, Fig. 2). Furthermore, the crystal structure is stabilized via π-π interactions between the benzene rings [Cg3···Cg5(x, y, z) = 3.5674 (15) Å, Cg3···Cg5(-1/2 + x, 1/2 - y, -1/2 + z) = 3.5225 (15) Å, Cg4···Cg4(2 - x, 1 - y, -z) = 3.6347 (15) Å; where Cg3, Cg4 and g5 are the centroids of the C13—C18, C1A–C6A and C1B–C6B benzene rings, respectively].

For the synthesis and spectroscopic studies of charge-transfer complexes between chloranilic acid and some heterocyclic amines in ethanol, see: Al-Attas et al. (2009). For spectroscopic studies of the interaction between triprolidine hydrochloride and serum albumins, see: Sandhya et al. (2011). For related structures, see: Adam et al. (2010); Dayananda et al. (2011); Dutkiewicz et al. (2010); Gotoh et al. (2010); Hakim Al-arique et al. (2010); Jasinski et al. (2010); Parvez & Sabir (1997); Udachin et al. (2011). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atom labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Only the major component of the disorder is shown.
[Figure 2] Fig. 2. Perspective view of the crystal packing and hydrogen bonding of (I) down the a axis. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted and only the major component of the disorder is shown.
2-[1-(4-methylphenyl)-3-(pyrrolidin-1-ium-1-yl)prop-1-en-1-yl]pyridin-1-ium bis(2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate)–2,5-dichloro- 3,6-dihydroxycyclohexa-2,5-diene-1,4-dione–methanol–water (2/1/2/2) top
Crystal data top
C19H24N22+·2C6HCl2O4·0.5C6H2Cl2O4·CH4O·H2OF(000) = 1752
Mr = 850.88Dx = 1.532 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 10725 reflections
a = 9.1633 (2) Åθ = 2.7–75.5°
b = 32.3720 (7) ŵ = 4.16 mm1
c = 12.9834 (4) ÅT = 123 K
β = 106.685 (3)°Plate, dark brown
V = 3689.17 (17) Å30.5 × 0.38 × 0.12 mm
Z = 4
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7532 independent reflections
Radiation source: Enhance (Cu) X-ray Source6721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 2.7°
ω scansh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 3940
Tmin = 0.188, Tmax = 0.607l = 1616
25133 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.065P)2 + 4.4856P]
where P = (Fo2 + 2Fc2)/3
7532 reflections(Δ/σ)max = 0.001
510 parametersΔρmax = 1.08 e Å3
4 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H24N22+·2C6HCl2O4·0.5C6H2Cl2O4·CH4O·H2OV = 3689.17 (17) Å3
Mr = 850.88Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.1633 (2) ŵ = 4.16 mm1
b = 32.3720 (7) ÅT = 123 K
c = 12.9834 (4) Å0.5 × 0.38 × 0.12 mm
β = 106.685 (3)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7532 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
6721 reflections with I > 2σ(I)
Tmin = 0.188, Tmax = 0.607Rint = 0.036
25133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0524 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.08 e Å3
7532 reflectionsΔρmin = 0.29 e Å3
510 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6083 (3)0.38941 (7)0.02161 (17)0.0253 (6)
N20.5846 (2)0.37690 (6)0.42666 (17)0.0219 (6)
C10.6360 (4)0.36770 (10)0.1171 (2)0.0396 (10)
C20.5318 (5)0.38991 (13)0.2126 (3)0.0566 (13)
C30.3923 (4)0.39853 (14)0.1786 (3)0.0562 (13)
C40.4523 (3)0.40954 (9)0.0600 (2)0.0329 (8)
C50.6297 (3)0.36064 (8)0.0717 (2)0.0256 (7)
C60.5944 (3)0.38106 (8)0.1656 (2)0.0262 (7)
C70.5387 (3)0.36176 (8)0.2373 (2)0.0237 (7)
C80.5085 (3)0.38700 (7)0.3248 (2)0.0229 (7)
C90.4040 (3)0.41905 (8)0.3069 (2)0.0271 (7)
C100.3852 (3)0.44096 (8)0.3946 (2)0.0300 (8)
C110.4688 (3)0.43054 (8)0.4977 (2)0.0279 (8)
C120.5685 (3)0.39775 (8)0.5118 (2)0.0243 (7)
C130.5056 (3)0.31700 (8)0.23996 (19)0.0240 (7)
C140.3774 (3)0.30343 (9)0.2686 (2)0.0302 (8)
C150.3474 (4)0.26157 (10)0.2725 (2)0.0375 (9)
C160.4406 (4)0.23209 (9)0.2476 (2)0.0376 (9)
C170.5687 (4)0.24541 (9)0.2205 (2)0.0346 (8)
C180.6013 (3)0.28713 (8)0.2174 (2)0.0292 (8)
C190.4090 (5)0.18638 (10)0.2523 (3)0.0536 (13)
Cl1A1.17727 (7)0.54478 (2)0.31560 (5)0.0301 (2)
Cl2A0.65597 (7)0.50251 (2)0.11080 (5)0.0304 (2)
O1A1.0309 (3)0.60103 (6)0.13472 (17)0.0373 (6)
O2A0.8198 (2)0.58421 (6)0.05149 (15)0.0294 (5)
O3A0.8213 (2)0.44654 (6)0.06840 (16)0.0326 (6)
O4A1.0396 (2)0.46331 (6)0.24478 (15)0.0292 (5)
C1A1.0377 (3)0.53290 (8)0.1979 (2)0.0244 (7)
C2A0.9846 (3)0.56589 (8)0.1210 (2)0.0240 (7)
C3A0.8602 (3)0.55558 (8)0.0146 (2)0.0239 (7)
C4A0.8028 (3)0.51523 (8)0.00329 (19)0.0235 (7)
C5A0.8605 (3)0.48339 (8)0.0769 (2)0.0236 (7)
C6A0.9862 (3)0.49402 (8)0.1777 (2)0.0234 (7)
Cl1B0.95280 (7)0.24300 (2)0.41301 (6)0.0322 (2)
Cl2B0.38936 (10)0.23353 (2)0.60046 (9)0.0526 (3)
O1B0.7894 (2)0.16893 (6)0.45954 (17)0.0319 (6)
O2B0.5596 (2)0.16314 (6)0.54515 (17)0.0314 (6)
O3B0.5501 (2)0.30750 (6)0.55902 (17)0.0323 (6)
O4B0.7820 (2)0.31432 (5)0.47158 (15)0.0257 (5)
C1B0.7997 (3)0.24176 (8)0.46650 (19)0.0229 (7)
C2B0.7414 (3)0.20213 (8)0.48159 (19)0.0236 (7)
C3B0.6074 (3)0.20037 (8)0.5271 (2)0.0252 (7)
C4B0.5425 (3)0.23515 (8)0.5487 (2)0.0275 (7)
C5B0.6020 (3)0.27584 (8)0.5340 (2)0.0244 (7)
C6B0.7379 (3)0.27837 (8)0.48720 (19)0.0227 (7)
Cl1C0.18813 (8)0.00452 (2)0.81624 (6)0.0405 (2)
O1C0.3493 (3)0.07006 (7)0.92826 (19)0.0422 (7)
O2C0.3816 (3)0.07432 (6)0.92023 (18)0.0380 (6)
C1C0.4153 (3)0.03683 (8)0.9587 (2)0.0279 (8)
C2C0.3582 (3)0.00227 (9)0.9176 (2)0.0287 (7)
C3C0.4335 (3)0.03859 (8)0.9551 (2)0.0275 (7)
O1S0.5299 (3)0.14776 (7)0.9411 (2)0.0366 (8)0.836 (4)
C1S0.6758 (5)0.16296 (13)1.0010 (4)0.0446 (14)0.836 (4)
O2S0.4348 (14)0.1470 (4)0.9421 (12)0.0366 (8)0.164 (4)
C2S0.298 (2)0.1688 (7)0.940 (2)0.0446 (14)0.164 (4)
O1W0.4911 (3)0.11809 (7)0.7256 (2)0.0500 (8)
H1A0.609400.338000.117700.0480*
H1B0.743800.370300.116700.0480*
H1C0.680200.410400.001000.0300*
H2A0.578800.415900.227700.0680*
H2B0.507500.372200.277500.0680*
H2C0.647400.355700.437700.0260*
H3A0.325700.373900.188900.0670*
H3B0.333800.421800.220200.0670*
H4A0.460700.439900.050300.0390*
H4B0.383900.398700.019600.0390*
H5A0.736300.350700.094100.0310*
H5B0.562300.336400.049100.0310*
H6A0.613200.409900.174900.0310*
H9A0.346000.426000.235800.0330*
H10A0.314600.463100.383400.0360*
H11A0.457900.445700.557700.0330*
H12A0.626100.389900.582300.0290*
H14A0.310600.323000.285400.0360*
H15A0.260400.253000.292800.0450*
H17A0.635100.225600.203700.0410*
H18A0.690500.295500.199600.0350*
H19A0.331100.182100.289500.0800*
H19B0.502900.172100.291400.0800*
H19C0.372700.175300.179100.0800*
H4AA0.998900.441100.217700.0350*
H2BA0.606500.145100.520600.0380*
H2CA0.445800.092500.949100.0460*0.53 (6)
H1CA0.403300.089700.960600.0510*0.47 (6)
H1S0.461600.163400.950500.0550*0.836 (4)
H1S10.755400.144800.989800.0670*0.836 (4)
H1S20.682100.163501.077600.0670*0.836 (4)
H1S30.689900.191000.976800.0670*0.836 (4)
H2S0.463000.132900.998600.0550*0.164 (4)
H2S10.216000.149000.936300.0670*0.164 (4)
H2S20.315400.185501.005400.0670*0.164 (4)
H2S30.269700.186900.876900.0670*0.164 (4)
H1W10.509 (6)0.1352 (12)0.782 (2)0.0750*
H1W20.526 (6)0.1329 (12)0.687 (3)0.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0281 (11)0.0271 (10)0.0237 (10)0.0086 (8)0.0121 (9)0.0049 (8)
N20.0219 (10)0.0215 (9)0.0227 (10)0.0015 (7)0.0073 (8)0.0007 (8)
C10.0541 (19)0.0407 (16)0.0315 (15)0.0100 (14)0.0243 (14)0.0120 (12)
C20.078 (3)0.066 (2)0.0261 (16)0.031 (2)0.0154 (16)0.0012 (15)
C30.050 (2)0.077 (3)0.0341 (18)0.0118 (18)0.0001 (15)0.0200 (17)
C40.0323 (14)0.0280 (13)0.0394 (15)0.0021 (11)0.0121 (12)0.0073 (11)
C50.0275 (12)0.0261 (12)0.0244 (12)0.0015 (9)0.0096 (10)0.0012 (9)
C60.0305 (13)0.0247 (12)0.0245 (12)0.0020 (10)0.0096 (10)0.0016 (9)
C70.0236 (12)0.0261 (12)0.0203 (11)0.0005 (9)0.0044 (9)0.0019 (9)
C80.0239 (12)0.0241 (11)0.0215 (12)0.0028 (9)0.0079 (9)0.0002 (9)
C90.0294 (13)0.0285 (12)0.0215 (12)0.0024 (10)0.0043 (10)0.0027 (9)
C100.0307 (13)0.0274 (13)0.0319 (14)0.0058 (10)0.0088 (11)0.0001 (10)
C110.0284 (13)0.0302 (13)0.0265 (13)0.0008 (10)0.0102 (10)0.0052 (10)
C120.0265 (12)0.0269 (12)0.0182 (11)0.0021 (9)0.0043 (9)0.0017 (9)
C130.0279 (12)0.0268 (12)0.0147 (11)0.0028 (9)0.0021 (9)0.0002 (9)
C140.0309 (13)0.0359 (14)0.0217 (12)0.0048 (11)0.0041 (10)0.0003 (10)
C150.0396 (16)0.0459 (17)0.0222 (13)0.0172 (13)0.0013 (11)0.0051 (11)
C160.0557 (19)0.0297 (14)0.0180 (12)0.0095 (12)0.0043 (12)0.0039 (10)
C170.0477 (17)0.0276 (13)0.0224 (13)0.0048 (12)0.0004 (12)0.0006 (10)
C180.0348 (14)0.0299 (13)0.0221 (12)0.0011 (10)0.0069 (10)0.0001 (10)
C190.077 (3)0.0346 (17)0.0345 (17)0.0173 (16)0.0076 (16)0.0073 (13)
Cl1A0.0304 (3)0.0339 (3)0.0225 (3)0.0066 (2)0.0019 (2)0.0053 (2)
Cl2A0.0264 (3)0.0360 (3)0.0240 (3)0.0046 (2)0.0004 (2)0.0010 (2)
O1A0.0485 (12)0.0256 (10)0.0335 (11)0.0067 (8)0.0051 (9)0.0019 (8)
O2A0.0291 (9)0.0286 (9)0.0290 (9)0.0004 (7)0.0062 (8)0.0045 (7)
O3A0.0330 (10)0.0255 (9)0.0342 (10)0.0055 (7)0.0013 (8)0.0004 (8)
O4A0.0310 (10)0.0265 (9)0.0253 (9)0.0024 (7)0.0006 (7)0.0017 (7)
C1A0.0224 (11)0.0307 (13)0.0183 (11)0.0014 (9)0.0031 (9)0.0041 (9)
C2A0.0250 (12)0.0250 (12)0.0231 (12)0.0016 (9)0.0088 (10)0.0040 (9)
C3A0.0216 (11)0.0280 (12)0.0239 (12)0.0025 (9)0.0092 (9)0.0014 (9)
C4A0.0190 (11)0.0301 (12)0.0198 (11)0.0011 (9)0.0028 (9)0.0026 (9)
C5A0.0218 (11)0.0265 (12)0.0230 (12)0.0026 (9)0.0072 (9)0.0036 (9)
C6A0.0219 (11)0.0284 (12)0.0199 (11)0.0007 (9)0.0062 (9)0.0003 (9)
Cl1B0.0295 (3)0.0312 (3)0.0419 (4)0.0047 (2)0.0199 (3)0.0024 (3)
Cl2B0.0561 (5)0.0320 (4)0.0915 (7)0.0010 (3)0.0562 (5)0.0018 (4)
O1B0.0337 (10)0.0257 (9)0.0384 (11)0.0038 (7)0.0135 (8)0.0029 (8)
O2B0.0343 (10)0.0238 (9)0.0406 (11)0.0008 (7)0.0181 (9)0.0023 (8)
O3B0.0374 (10)0.0271 (9)0.0386 (11)0.0042 (8)0.0209 (9)0.0011 (8)
O4B0.0252 (9)0.0242 (9)0.0280 (9)0.0027 (7)0.0083 (7)0.0028 (7)
C1B0.0190 (11)0.0303 (13)0.0198 (11)0.0030 (9)0.0060 (9)0.0008 (9)
C2B0.0217 (11)0.0278 (12)0.0191 (11)0.0050 (9)0.0025 (9)0.0003 (9)
C3B0.0274 (12)0.0262 (12)0.0203 (12)0.0001 (9)0.0043 (10)0.0013 (9)
C4B0.0256 (12)0.0321 (13)0.0278 (13)0.0007 (10)0.0125 (10)0.0010 (10)
C5B0.0260 (12)0.0267 (12)0.0201 (11)0.0043 (9)0.0061 (10)0.0022 (9)
C6B0.0209 (11)0.0274 (12)0.0178 (11)0.0018 (9)0.0025 (9)0.0021 (9)
Cl1C0.0273 (3)0.0485 (4)0.0392 (4)0.0011 (3)0.0006 (3)0.0051 (3)
O1C0.0395 (12)0.0353 (11)0.0474 (13)0.0103 (9)0.0055 (10)0.0020 (9)
O2C0.0399 (11)0.0314 (10)0.0379 (11)0.0089 (8)0.0037 (9)0.0012 (8)
C1C0.0278 (13)0.0277 (13)0.0304 (13)0.0035 (10)0.0118 (11)0.0012 (10)
C2C0.0196 (11)0.0412 (15)0.0248 (12)0.0004 (10)0.0057 (10)0.0015 (10)
C3C0.0291 (13)0.0266 (12)0.0296 (13)0.0037 (10)0.0131 (11)0.0040 (10)
O1S0.0376 (13)0.0251 (11)0.0524 (15)0.0004 (9)0.0216 (11)0.0056 (10)
C1S0.037 (2)0.041 (2)0.051 (3)0.0043 (15)0.0052 (19)0.0026 (19)
O2S0.0376 (13)0.0251 (11)0.0524 (15)0.0004 (9)0.0216 (11)0.0056 (10)
C2S0.037 (2)0.041 (2)0.051 (3)0.0043 (15)0.0052 (19)0.0026 (19)
O1W0.0708 (17)0.0330 (11)0.0515 (15)0.0025 (11)0.0260 (13)0.0042 (10)
Geometric parameters (Å, º) top
Cl1A—C1A1.731 (3)C16—C171.387 (5)
Cl2A—C4A1.741 (3)C16—C191.512 (4)
Cl1B—C1B1.735 (3)C17—C181.386 (4)
Cl2B—C4B1.722 (3)C1—H1A0.9900
Cl1C—C2C1.729 (3)C1—H1B0.9900
O1A—C2A1.209 (3)C2—H2A0.9900
O2A—C3A1.245 (3)C2—H2B0.9900
O3A—C5A1.242 (3)C3—H3A0.9900
O4A—C6A1.320 (3)C3—H3B0.9900
O4A—H4AA0.8400C4—H4A0.9900
O1B—C2B1.226 (3)C4—H4B0.9900
O2B—C3B1.326 (3)C5—H5A0.9900
O3B—C5B1.213 (3)C5—H5B0.9900
O4B—C6B1.267 (3)C6—H6A0.9500
O2B—H2BA0.8400C9—H9A0.9500
O1C—C1C1.242 (4)C10—H10A0.9500
O2C—C3C1.283 (3)C11—H11A0.9500
O1C—H1CA0.8400C12—H12A0.9500
O2C—H2CA0.8400C14—H14A0.9500
O1S—C1S1.427 (6)C15—H15A0.9500
O1S—H1S0.8400C17—H17A0.9500
N1—C51.496 (3)C18—H18A0.9500
N1—C41.519 (4)C19—H19A0.9800
N1—C11.509 (4)C19—H19C0.9800
N2—C81.346 (3)C19—H19B0.9800
N2—C121.339 (3)C1A—C6A1.343 (4)
O2S—C2S1.43 (2)C1A—C2A1.448 (4)
N1—H1C0.9300C2A—C3A1.554 (4)
N2—H2C0.8800C3A—C4A1.400 (4)
O2S—H2S0.8400C4A—C5A1.402 (4)
O1W—H1W20.82 (5)C5A—C6A1.514 (4)
O1W—H1W10.90 (3)C1B—C6B1.373 (4)
C1—C21.512 (5)C1B—C2B1.425 (4)
C2—C31.494 (6)C2B—C3B1.509 (4)
C3—C41.521 (5)C3B—C4B1.340 (4)
C5—C61.501 (4)C4B—C5B1.459 (4)
C6—C71.338 (4)C5B—C6B1.537 (4)
C7—C131.483 (4)C1C—C3Ci1.512 (4)
C7—C81.488 (4)C1C—C2C1.414 (4)
C8—C91.386 (4)C2C—C3C1.379 (4)
C9—C101.394 (4)C1S—H1S10.9800
C10—C111.380 (4)C1S—H1S20.9800
C11—C121.378 (4)C1S—H1S30.9800
C13—C181.392 (4)C2S—H2S30.9800
C13—C141.401 (4)C2S—H2S10.9800
C14—C151.387 (4)C2S—H2S20.9800
C15—C161.380 (5)
C6A—O4A—H4AA109.00C10—C11—H11A121.00
C3B—O2B—H2BA109.00C11—C12—H12A120.00
C1C—O1C—H1CA109.00N2—C12—H12A120.00
C3C—O2C—H2CA109.00C13—C14—H14A120.00
C1S—O1S—H1S109.00C15—C14—H14A120.00
C4—N1—C5115.2 (2)C16—C15—H15A119.00
C1—N1—C4107.1 (2)C14—C15—H15A119.00
C1—N1—C5111.2 (2)C18—C17—H17A120.00
C8—N2—C12122.7 (2)C16—C17—H17A119.00
C5—N1—H1C108.00C17—C18—H18A119.00
C4—N1—H1C108.00C13—C18—H18A119.00
C1—N1—H1C108.00H19A—C19—H19C109.00
C12—N2—H2C119.00C16—C19—H19B109.00
C8—N2—H2C119.00C16—C19—H19C110.00
C2S—O2S—H2S109.00H19A—C19—H19B109.00
H1W1—O1W—H1W297 (4)H19B—C19—H19C109.00
N1—C1—C2103.7 (3)C16—C19—H19A109.00
C1—C2—C3103.8 (3)Cl1A—C1A—C2A117.51 (19)
C2—C3—C4104.6 (3)C2A—C1A—C6A121.8 (2)
N1—C4—C3105.3 (2)Cl1A—C1A—C6A120.6 (2)
N1—C5—C6112.0 (2)C1A—C2A—C3A118.1 (2)
C5—C6—C7125.0 (2)O1A—C2A—C3A118.0 (2)
C6—C7—C13126.4 (2)O1A—C2A—C1A123.9 (2)
C8—C7—C13115.8 (2)O2A—C3A—C4A126.4 (2)
C6—C7—C8117.8 (2)C2A—C3A—C4A116.8 (2)
N2—C8—C9119.0 (2)O2A—C3A—C2A116.7 (2)
C7—C8—C9123.7 (2)Cl2A—C4A—C3A119.03 (19)
N2—C8—C7117.3 (2)C3A—C4A—C5A123.9 (2)
C8—C9—C10119.1 (2)Cl2A—C4A—C5A117.0 (2)
C9—C10—C11120.3 (2)O3A—C5A—C6A115.1 (2)
C10—C11—C12118.7 (2)C4A—C5A—C6A117.8 (2)
N2—C12—C11120.3 (2)O3A—C5A—C4A127.1 (2)
C7—C13—C14120.4 (2)O4A—C6A—C5A116.4 (2)
C7—C13—C18121.9 (2)C1A—C6A—C5A121.3 (2)
C14—C13—C18117.7 (2)O4A—C6A—C1A122.3 (2)
C13—C14—C15120.4 (3)C2B—C1B—C6B123.9 (3)
C14—C15—C16121.7 (3)Cl1B—C1B—C6B119.0 (2)
C15—C16—C19121.9 (3)Cl1B—C1B—C2B117.0 (2)
C17—C16—C19120.0 (3)O1B—C2B—C3B116.4 (2)
C15—C16—C17118.1 (3)C1B—C2B—C3B117.9 (2)
C16—C17—C18121.0 (3)O1B—C2B—C1B125.7 (3)
C13—C18—C17121.1 (3)C2B—C3B—C4B120.7 (2)
N1—C1—H1A111.00O2B—C3B—C4B122.5 (3)
C2—C1—H1A111.00O2B—C3B—C2B116.8 (2)
H1A—C1—H1B109.00Cl2B—C4B—C3B121.1 (2)
N1—C1—H1B111.00Cl2B—C4B—C5B117.1 (2)
C2—C1—H1B111.00C3B—C4B—C5B121.8 (3)
C3—C2—H2A111.00C4B—C5B—C6B118.4 (2)
C1—C2—H2B111.00O3B—C5B—C6B119.1 (2)
C1—C2—H2A111.00O3B—C5B—C4B122.5 (3)
H2A—C2—H2B109.00C1B—C6B—C5B117.3 (2)
C3—C2—H2B111.00O4B—C6B—C5B116.4 (2)
C4—C3—H3B111.00O4B—C6B—C1B126.4 (3)
H3A—C3—H3B109.00O1C—C1C—C2C124.2 (3)
C2—C3—H3A111.00C2C—C1C—C3Ci118.3 (2)
C4—C3—H3A111.00O1C—C1C—C3Ci117.5 (2)
C2—C3—H3B111.00C1C—C2C—C3C122.4 (2)
C3—C4—H4B111.00Cl1C—C2C—C3C118.9 (2)
C3—C4—H4A111.00Cl1C—C2C—C1C118.7 (2)
N1—C4—H4A111.00C1Ci—C3C—C2C119.2 (2)
H4A—C4—H4B109.00O2C—C3C—C2C123.2 (3)
N1—C4—H4B111.00O2C—C3C—C1Ci117.6 (2)
H5A—C5—H5B108.00O1S—C1S—H1S3109.00
C6—C5—H5A109.00O1S—C1S—H1S1109.00
N1—C5—H5B109.00O1S—C1S—H1S2109.00
C6—C5—H5B109.00H1S2—C1S—H1S3109.00
N1—C5—H5A109.00H1S1—C1S—H1S2109.00
C7—C6—H6A117.00H1S1—C1S—H1S3110.00
C5—C6—H6A118.00O2S—C2S—H2S2109.00
C10—C9—H9A120.00O2S—C2S—H2S3109.00
C8—C9—H9A120.00O2S—C2S—H2S1110.00
C11—C10—H10A120.00H2S1—C2S—H2S3110.00
C9—C10—H10A120.00H2S2—C2S—H2S3109.00
C12—C11—H11A121.00H2S1—C2S—H2S2110.00
C4—N1—C1—C222.8 (3)C1A—C2A—C3A—C4A3.1 (4)
C5—N1—C1—C2149.4 (3)O2A—C3A—C4A—Cl2A2.3 (4)
C1—N1—C4—C30.4 (3)O2A—C3A—C4A—C5A175.1 (3)
C5—N1—C4—C3123.9 (3)C2A—C3A—C4A—Cl2A176.54 (19)
C1—N1—C5—C6176.9 (2)C2A—C3A—C4A—C5A6.1 (4)
C4—N1—C5—C654.8 (3)Cl2A—C4A—C5A—O3A2.2 (4)
C8—N2—C12—C111.3 (4)Cl2A—C4A—C5A—C6A178.9 (2)
C12—N2—C8—C7179.0 (2)C3A—C4A—C5A—O3A175.2 (3)
C12—N2—C8—C93.0 (4)C3A—C4A—C5A—C6A3.7 (4)
N1—C1—C2—C337.7 (4)O3A—C5A—C6A—O4A0.1 (4)
C1—C2—C3—C438.2 (4)O3A—C5A—C6A—C1A178.9 (3)
C2—C3—C4—N123.8 (4)C4A—C5A—C6A—O4A179.1 (2)
N1—C5—C6—C7149.1 (3)C4A—C5A—C6A—C1A2.1 (4)
C5—C6—C7—C8179.2 (2)Cl1B—C1B—C2B—O1B0.4 (4)
C5—C6—C7—C131.9 (5)Cl1B—C1B—C2B—C3B179.48 (18)
C13—C7—C8—C9118.6 (3)C6B—C1B—C2B—O1B176.6 (3)
C6—C7—C13—C14142.1 (3)C6B—C1B—C2B—C3B2.5 (4)
C6—C7—C13—C1839.7 (4)Cl1B—C1B—C6B—O4B0.4 (4)
C8—C7—C13—C1439.0 (3)Cl1B—C1B—C6B—C5B179.70 (18)
C8—C7—C13—C18139.2 (3)C2B—C1B—C6B—O4B177.3 (2)
C6—C7—C8—C962.4 (4)C2B—C1B—C6B—C5B2.7 (4)
C13—C7—C8—N259.3 (3)O1B—C2B—C3B—O2B3.9 (3)
C6—C7—C8—N2119.7 (3)O1B—C2B—C3B—C4B176.7 (2)
N2—C8—C9—C102.6 (4)C1B—C2B—C3B—O2B176.9 (2)
C7—C8—C9—C10179.5 (3)C1B—C2B—C3B—C4B2.4 (4)
C8—C9—C10—C110.5 (4)O2B—C3B—C4B—Cl2B0.8 (4)
C9—C10—C11—C121.1 (4)O2B—C3B—C4B—C5B176.5 (2)
C10—C11—C12—N20.8 (4)C2B—C3B—C4B—Cl2B179.9 (2)
C7—C13—C14—C15179.2 (2)C2B—C3B—C4B—C5B2.8 (4)
C18—C13—C14—C150.9 (4)Cl2B—C4B—C5B—O3B1.8 (4)
C7—C13—C18—C17179.9 (2)Cl2B—C4B—C5B—C6B179.56 (18)
C14—C13—C18—C171.6 (4)C3B—C4B—C5B—O3B175.6 (3)
C13—C14—C15—C160.7 (4)C3B—C4B—C5B—C6B3.0 (4)
C14—C15—C16—C171.4 (4)O3B—C5B—C6B—O4B4.1 (4)
C14—C15—C16—C19179.7 (3)O3B—C5B—C6B—C1B175.8 (2)
C15—C16—C17—C180.7 (4)C4B—C5B—C6B—O4B177.2 (2)
C19—C16—C17—C18178.9 (3)C4B—C5B—C6B—C1B2.9 (3)
C16—C17—C18—C130.9 (4)O1C—C1C—C2C—Cl1C1.6 (4)
Cl1A—C1A—C2A—O1A0.7 (4)O1C—C1C—C2C—C3C178.6 (3)
Cl1A—C1A—C2A—C3A179.5 (2)C3Ci—C1C—C2C—Cl1C178.13 (19)
C6A—C1A—C2A—O1A177.9 (3)C3Ci—C1C—C2C—C3C1.6 (4)
C6A—C1A—C2A—C3A2.3 (4)O1C—C1C—C3Ci—O2Ci1.2 (4)
Cl1A—C1A—C6A—O4A0.8 (4)O1C—C1C—C3Ci—C2Ci178.7 (3)
Cl1A—C1A—C6A—C5A177.9 (2)C2C—C1C—C3Ci—O2Ci178.6 (3)
C2A—C1A—C6A—O4A176.4 (3)C2C—C1C—C3Ci—C2Ci1.5 (4)
C2A—C1A—C6A—C5A4.9 (4)Cl1C—C2C—C3C—O2C1.8 (4)
O1A—C2A—C3A—O2A2.3 (4)Cl1C—C2C—C3C—C1Ci178.1 (2)
O1A—C2A—C3A—C4A176.7 (3)C1C—C2C—C3C—O2C178.5 (3)
C1A—C2A—C3A—O2A178.0 (2)C1C—C2C—C3C—C1Ci1.6 (4)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H4AA···O3A0.842.152.629 (3)116
O4A—H4AA···O1Wii0.841.922.672 (3)148
N1—H1C···O3A0.931.782.699 (3)167
O2B—H2BA···O1B0.842.192.655 (3)115
O2B—H2BA···O1Aiii0.842.503.012 (3)121
O2B—H2BA···O2Aiii0.842.082.776 (3)139
N2—H2C···O3B0.882.552.900 (3)104
N2—H2C···O4B0.881.792.667 (3)175
O2C—H2CA···O1Ci0.842.212.680 (4)116
O1W—H1W1···O1S0.90 (3)2.06 (3)2.882 (3)152 (4)
O1W—H1W2···O2B0.82 (5)2.18 (4)2.976 (3)162 (4)
C1—H1B···O1Aiv0.992.343.286 (5)160
C3—H3A···O1Bv0.992.473.138 (5)124
C4—H4B···O2Avi0.992.373.229 (3)144
C4—H4B···O1Bv0.992.342.994 (3)123
C5—H5B···O1Bv0.992.443.186 (3)132
C9—H9A···Cl2Avi0.952.823.525 (3)131
C9—H9A···O2Avi0.952.463.363 (3)158
C18—H18A···Cl2Bii0.952.683.467 (3)140
C19—H19B···O1Aiii0.982.553.102 (4)116
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y+1/2, z1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y+1, z; (v) x1/2, y+1/2, z1/2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H24N22+·2C6HCl2O4·0.5C6H2Cl2O4·CH4O·H2O
Mr850.88
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.1633 (2), 32.3720 (7), 12.9834 (4)
β (°) 106.685 (3)
V3)3689.17 (17)
Z4
Radiation typeCu Kα
µ (mm1)4.16
Crystal size (mm)0.5 × 0.38 × 0.12
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.188, 0.607
No. of measured, independent and
observed [I > 2σ(I)] reflections
25133, 7532, 6721
Rint0.036
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.08
No. of reflections7532
No. of parameters510
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), CrysAlis RED (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H4AA···O3A0.842.152.629 (3)116
O4A—H4AA···O1Wi0.841.922.672 (3)148
N1—H1C···O3A0.931.782.699 (3)167
O2B—H2BA···O1B0.842.192.655 (3)115
O2B—H2BA···O1Aii0.842.503.012 (3)121
O2B—H2BA···O2Aii0.842.082.776 (3)139
N2—H2C···O3B0.882.552.900 (3)104
N2—H2C···O4B0.881.792.667 (3)175
O2C—H2CA···O1Ciii0.842.212.680 (4)116
O1W—H1W1···O1S0.90 (3)2.06 (3)2.882 (3)152 (4)
O1W—H1W2···O2B0.82 (5)2.18 (4)2.976 (3)162 (4)
C1—H1B···O1Aiv0.992.343.286 (5)160
C3—H3A···O1Bv0.992.473.138 (5)124
C4—H4B···O2Avi0.992.373.229 (3)144
C4—H4B···O1Bv0.992.342.994 (3)123
C5—H5B···O1Bv0.992.443.186 (3)132
C9—H9A···Cl2Avi0.952.823.525 (3)131
C9—H9A···O2Avi0.952.463.363 (3)158
C18—H18A···Cl2Bi0.952.683.467 (3)140
C19—H19B···O1Aii0.982.553.102 (4)116
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z+2; (iv) x+2, y+1, z; (v) x1/2, y+1/2, z1/2; (vi) x+1, y+1, z.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities and R. L. Fine Chem., Bangalore, India, for the gift sample of triprolidine hydro­chloride. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAdam, M. S., Parkin, A., Thomas, L. H. & Wilson, C. C. (2010). CrystEngComm, 12, 917–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAl-Attas, A. S., Habeeb, M. M. & Al-Raimi, D. S. (2009). J. Mol. Struct. 928, 158–170.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDayananda, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDutkiewicz, G., Yathirajan, H. S., Al-arique, Q. N. M. H., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o497–o498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K., Maruyama, S. & Ishida, H. (2010). Acta Cryst. E66, o3255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHakim Al-arique, Q. N. M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1507–o1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o163–o164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParvez, M. & Sabir, A. P. (1997). Acta Cryst. C53, 679–681.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSandhya, B., Hegde, A. H., Kalanur, S. S., Katrahalli, U. & Seetharamappa, J. (2011). J. Pharm. Biomed. Anal. 54, 1180–1186.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUdachin, K. A., Zaman, M. B. & Ripmeester, J. A. (2011). Acta Cryst. E67, o2625.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1037-o1038
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds