organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(3,4-dimeth­­oxy­phen­yl)-2-[(1,3-dioxoisoindolin-2-yl)meth­yl]acrylate

aDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, bDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, and cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 10 March 2012; accepted 13 March 2012; online 17 March 2012)

In the title compound, C21H19NO6, the isoindole ring system is essentially planar [maximum deviation = 0.019 (2) Å for the N atom] and is oriented at a dihedral angle of 51.3 (1)° with respect to the benzene ring. The two meth­oxy groups are almost coplanar with the attached benzene ring [C—O—C—C = 3.7 (4) and 4.3 (4)°]. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(9) ring motif. In the crystal, mol­ecules are linked through bifurcated C—H⋯(O,O) hydrogen bonds having R12(5) ring motifs, forming chains along the b-axis direction. The crystal packing is further stabilzed by ππ inter­actions [centriod–centroid distance = 3.463 (1) Å].

Related literature

For background to the applications of isoindolins, see: Pendrak et al. (1994[Pendrak, L., Wittrock, S., Lambert, D. M. & Kingsbury, W. D. (1994). J. Org. Chem. 59, 2623.]); De Clerck (1995[De Clerck, E. (1995). J. Med. Chem. 38, 2491-2517.]); Stowers (1996[Stowers, J. R. (1996). Tetrahedron, 52, 3339-3354.]); Heaney & Shuhaibar (1995[Heaney, H. & Shuhaibar, K. F. (1995). Synlett, pp. 47-48.]). For related structures, see: Liu et al. (2004[Liu, X.-G., Feng, Y.-Q., Wu, P., Chen, X. & Li, F. (2004). Acta Cryst. E60, o2293-o2294.]); Liang & Li (2006[Liang, Z.-P. & Li, J. (2006). Acta Cryst. E62, o4436-o4437.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19NO6

  • Mr = 381.37

  • Monoclinic, P 21 /c

  • a = 15.0613 (8) Å

  • b = 7.6334 (4) Å

  • c = 16.6354 (8) Å

  • β = 93.522 (2)°

  • V = 1908.94 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.983

  • 21209 measured reflections

  • 5063 independent reflections

  • 3241 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.197

  • S = 1.06

  • 5063 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1 0.93 2.55 3.440 (3) 160
C4—H4⋯O5i 0.93 2.50 3.354 (3) 153
C4—H4⋯O6i 0.93 2.58 3.320 (4) 137
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoindolinones and their derivatives have been investigated widely due to their physiological and chemotherapeutic properties. Many compounds containing the isoindolinone skeleton have shown antiviral, antileukemic, antiinflammatory, antipsychotic and antiulcer properties (Pendrak et al., 1994; De Clerck, 1995). Isoindolinones are useful for the synthesis of various drugs and naturally occurring compounds (Stowers, 1996; Heaney & Shuhaibar, 1995). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The isoindole ring system is essentially planar [maximum deviation = 0.019 (2) Å for the N1 atom] and is oriented at a dihedral angle of 51.3 (1)° with respect to the benzene ring. The methyl acrylate (O3/O4/C10–C14) plane forms dihedral angles of 83.2 (1)° and 43.7 (1)°, respectively, with the isoindole and benzene rings. The two methoxy groups at C18 and C17 are almost coplanar with the attached benzene ring as evidenced by torsion angles of C21–O6–C18–C19 = 3.7 (4) and C20–O5–C17–C16 = 4.3 (4)°, respectively. The sum of bond angles around N1 (359.9°) indicates that N1 is in sp2 hybridization. The keto atoms O1 and O2 deviate by 0.034 (2) and -0.004 (2) Å, respectively, from the isoindole ring. The geometric parameters of the title molecule agrees well with those reported for similar structures (Liu et al., 2004, Liang & Li 2006).

The molecular structure is stabilized by C15—H15···O1 intramolecular hydrogen bond, forming S(9) ring motif (Bernstein et al., 1995) (Table 1). In the crystal, the molecules are linked by intermolecular C4—H4···O5i and C4—H4···O6i hydrogen bonds (Table 1; Symmetry code: (i) = 1 + x, y, z)) generating a bifurcated R12(5) ring motif, resulting in an extended one dimensional chains along the b axis (Fig. 2). The crystal packing is further stabilized by ππ interactions with centroid—centroid distances: Cg1—Cg2iii = 3.463 (1) Å and Cg2—Cg1iv = 3.463 (1) Å (Fig. 3; Cg1 and Cg2 are the centroids of N1/C1/C2/C7/C8 indole ring and C14–C19 benzene ring, respectively, symmetry code as in Fig. 3).

Related literature top

For background to the applications of isoindolins, see: Pendrak et al. (1994); De Clerck (1995); Stowers (1996); Heaney & Shuhaibar (1995). For related structures, see: Liu et al. (2004); Liang & Li (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 2,3-dihydro-1H-isoindole-1,3-dione (1 mmol, 0.147 g) and potassiumcarbonate (1.5 mmol, 0.207 g) in acetonitrile as solvent was stirred for 15 minutes at room temperature. To this solution, methyl (2Z)-2-(bromomethyl)-3-(3,4-dimethoxyphenyl)prop-2-enoate (1 mmol, 0.315 g) was added till the addition is complete. After the completion of the reaction as indicated by TLC, acetonitrile solvent was evaporated. Ethylacetate (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (0.375 g, 98% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Isoindolinones and their derivatives have been investigated widely due to their physiological and chemotherapeutic properties. Many compounds containing the isoindolinone skeleton have shown antiviral, antileukemic, antiinflammatory, antipsychotic and antiulcer properties (Pendrak et al., 1994; De Clerck, 1995). Isoindolinones are useful for the synthesis of various drugs and naturally occurring compounds (Stowers, 1996; Heaney & Shuhaibar, 1995). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The isoindole ring system is essentially planar [maximum deviation = 0.019 (2) Å for the N1 atom] and is oriented at a dihedral angle of 51.3 (1)° with respect to the benzene ring. The methyl acrylate (O3/O4/C10–C14) plane forms dihedral angles of 83.2 (1)° and 43.7 (1)°, respectively, with the isoindole and benzene rings. The two methoxy groups at C18 and C17 are almost coplanar with the attached benzene ring as evidenced by torsion angles of C21–O6–C18–C19 = 3.7 (4) and C20–O5–C17–C16 = 4.3 (4)°, respectively. The sum of bond angles around N1 (359.9°) indicates that N1 is in sp2 hybridization. The keto atoms O1 and O2 deviate by 0.034 (2) and -0.004 (2) Å, respectively, from the isoindole ring. The geometric parameters of the title molecule agrees well with those reported for similar structures (Liu et al., 2004, Liang & Li 2006).

The molecular structure is stabilized by C15—H15···O1 intramolecular hydrogen bond, forming S(9) ring motif (Bernstein et al., 1995) (Table 1). In the crystal, the molecules are linked by intermolecular C4—H4···O5i and C4—H4···O6i hydrogen bonds (Table 1; Symmetry code: (i) = 1 + x, y, z)) generating a bifurcated R12(5) ring motif, resulting in an extended one dimensional chains along the b axis (Fig. 2). The crystal packing is further stabilized by ππ interactions with centroid—centroid distances: Cg1—Cg2iii = 3.463 (1) Å and Cg2—Cg1iv = 3.463 (1) Å (Fig. 3; Cg1 and Cg2 are the centroids of N1/C1/C2/C7/C8 indole ring and C14–C19 benzene ring, respectively, symmetry code as in Fig. 3).

For background to the applications of isoindolins, see: Pendrak et al. (1994); De Clerck (1995); Stowers (1996); Heaney & Shuhaibar (1995). For related structures, see: Liu et al. (2004); Liang & Li (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing bifurcated C—H···O hydrogen bonds (dotted lines) generating R12(5) ring motifs, forming one dimensional extended chains along the b axis. Only the H atoms involved the hydrogen bonds are shown. [Symmetry codes:(i)1 + x, y, z; (ii)2 + x, y, z].
[Figure 3] Fig. 3. A view of the ππ interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denotes centroids of the N1/C1/C2/C7/C8 indole ring and C14–C19 benzene ring, respectively. [Symmetry codes: (iii)-x, 1/2 + y, 1/2 - z; (iv)-x, -1/2 + y, 1/2 - z].
(E)-Methyl 3-(3,4-dimethoxyphenyl)-2-[(1,3-dioxoisoindolin-2-yl)methyl]acrylate top
Crystal data top
C21H19NO6F(000) = 800
Mr = 381.37Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5078 reflections
a = 15.0613 (8) Åθ = 2.7–29.0°
b = 7.6334 (4) ŵ = 0.10 mm1
c = 16.6354 (8) ÅT = 293 K
β = 93.522 (2)°Block, colourless
V = 1908.94 (17) Å30.25 × 0.23 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5063 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.0 pixels mm-1θmax = 29.0°, θmin = 2.7°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 109
Tmin = 0.976, Tmax = 0.983l = 1422
21209 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.0874P)2 + 0.8631P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5063 reflectionsΔρmax = 0.26 e Å3
257 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C21H19NO6V = 1908.94 (17) Å3
Mr = 381.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0613 (8) ŵ = 0.10 mm1
b = 7.6334 (4) ÅT = 293 K
c = 16.6354 (8) Å0.25 × 0.23 × 0.17 mm
β = 93.522 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5063 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3241 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.983Rint = 0.036
21209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
5063 reflectionsΔρmin = 0.17 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14320 (11)0.1401 (2)0.33185 (10)0.0424 (4)
O10.09640 (11)0.0065 (3)0.21318 (10)0.0573 (5)
O30.16679 (10)0.1006 (2)0.45930 (10)0.0548 (4)
C140.13047 (13)0.0184 (3)0.32900 (12)0.0406 (5)
O50.35924 (10)0.1490 (3)0.20022 (11)0.0632 (5)
O20.23094 (13)0.2752 (3)0.43312 (11)0.0670 (5)
O60.37165 (11)0.0404 (3)0.34609 (11)0.0733 (6)
C110.09073 (13)0.1416 (3)0.44408 (11)0.0393 (5)
C130.05573 (13)0.0948 (3)0.37754 (12)0.0424 (5)
H130.06790.20170.40130.051*
O40.05602 (11)0.2889 (2)0.47147 (10)0.0562 (4)
C160.19917 (14)0.1059 (3)0.20806 (13)0.0464 (5)
H160.19400.14880.15620.056*
C150.12410 (13)0.0491 (3)0.25270 (13)0.0445 (5)
H150.06880.05660.23100.053*
C100.02695 (13)0.0361 (3)0.39320 (11)0.0382 (4)
C80.15518 (13)0.0666 (3)0.25730 (13)0.0434 (5)
C170.28144 (13)0.0993 (3)0.23975 (14)0.0456 (5)
C90.05918 (13)0.1426 (3)0.37010 (13)0.0415 (5)
H9A0.01450.19660.33370.050*
H9B0.06560.21480.41810.050*
C190.21432 (14)0.0266 (3)0.36066 (13)0.0460 (5)
H190.21990.07540.41130.055*
C180.28843 (13)0.0364 (3)0.31812 (13)0.0472 (5)
C10.22284 (15)0.2025 (3)0.36886 (15)0.0493 (5)
C70.25214 (15)0.0779 (3)0.24589 (15)0.0515 (6)
C20.29162 (14)0.1602 (3)0.31177 (16)0.0538 (6)
C120.11416 (19)0.3925 (4)0.52426 (17)0.0632 (7)
H12A0.15820.44810.49360.095*
H12B0.08010.48030.54990.095*
H12C0.14300.31830.56450.095*
C200.35659 (18)0.2005 (5)0.11918 (18)0.0733 (8)
H20A0.31930.30190.11570.110*
H20B0.41560.22810.09800.110*
H20C0.33300.10660.08850.110*
C30.38247 (17)0.1899 (4)0.3186 (2)0.0751 (9)
H30.40950.24600.36330.090*
C60.29985 (19)0.0199 (4)0.1836 (2)0.0729 (8)
H60.27270.03610.13900.087*
C210.3808 (2)0.0149 (7)0.42584 (19)0.1007 (14)
H21A0.36070.13380.43180.151*
H21B0.44210.00780.43800.151*
H21C0.34570.05910.46200.151*
C40.43088 (19)0.1328 (6)0.2565 (3)0.0924 (11)
H40.49200.15120.25890.111*
C50.3909 (2)0.0494 (6)0.1909 (3)0.0950 (12)
H50.42580.01140.15010.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0315 (8)0.0505 (10)0.0451 (9)0.0048 (7)0.0017 (7)0.0023 (8)
O10.0408 (8)0.0798 (12)0.0511 (9)0.0029 (8)0.0002 (7)0.0105 (8)
O30.0353 (8)0.0664 (11)0.0615 (10)0.0024 (7)0.0063 (7)0.0094 (8)
C140.0318 (9)0.0448 (11)0.0450 (11)0.0035 (8)0.0001 (8)0.0056 (9)
O50.0325 (8)0.0895 (14)0.0664 (11)0.0066 (8)0.0053 (7)0.0092 (10)
O20.0611 (11)0.0705 (12)0.0675 (11)0.0154 (9)0.0101 (9)0.0092 (10)
O60.0311 (8)0.1258 (18)0.0637 (11)0.0017 (10)0.0091 (7)0.0027 (11)
C110.0340 (10)0.0487 (12)0.0357 (9)0.0010 (8)0.0059 (7)0.0045 (9)
C130.0365 (10)0.0470 (12)0.0437 (10)0.0024 (9)0.0024 (8)0.0000 (9)
O40.0451 (9)0.0584 (10)0.0644 (10)0.0024 (7)0.0021 (7)0.0178 (8)
C160.0379 (11)0.0550 (13)0.0463 (11)0.0013 (9)0.0018 (9)0.0039 (10)
C150.0304 (9)0.0537 (13)0.0496 (11)0.0020 (9)0.0038 (8)0.0007 (10)
C100.0329 (9)0.0450 (11)0.0370 (9)0.0023 (8)0.0043 (7)0.0043 (8)
C80.0333 (10)0.0498 (12)0.0473 (11)0.0004 (9)0.0036 (8)0.0078 (9)
C170.0287 (10)0.0536 (13)0.0537 (12)0.0002 (9)0.0031 (8)0.0044 (10)
C90.0317 (10)0.0455 (12)0.0474 (11)0.0005 (8)0.0034 (8)0.0016 (9)
C190.0349 (10)0.0601 (14)0.0428 (11)0.0061 (9)0.0017 (8)0.0036 (10)
C180.0281 (9)0.0636 (14)0.0503 (12)0.0037 (9)0.0049 (8)0.0070 (10)
C10.0387 (11)0.0500 (13)0.0580 (13)0.0077 (9)0.0063 (9)0.0083 (11)
C70.0374 (11)0.0564 (14)0.0613 (13)0.0008 (10)0.0086 (10)0.0134 (11)
C20.0319 (11)0.0551 (14)0.0739 (16)0.0022 (10)0.0009 (10)0.0179 (12)
C120.0630 (16)0.0607 (16)0.0651 (15)0.0061 (12)0.0027 (12)0.0180 (13)
C200.0498 (15)0.096 (2)0.0717 (17)0.0044 (14)0.0136 (12)0.0157 (16)
C30.0358 (13)0.083 (2)0.105 (2)0.0079 (13)0.0043 (14)0.0220 (17)
C60.0498 (15)0.091 (2)0.0801 (18)0.0045 (14)0.0206 (13)0.0042 (16)
C210.0527 (17)0.184 (4)0.0680 (18)0.005 (2)0.0229 (14)0.006 (2)
C40.0316 (13)0.115 (3)0.131 (3)0.0001 (15)0.0126 (16)0.025 (2)
C50.0522 (17)0.117 (3)0.119 (3)0.0103 (19)0.0360 (19)0.013 (2)
Geometric parameters (Å, º) top
N1—C81.383 (3)C9—H9A0.9700
N1—C11.398 (3)C9—H9B0.9700
N1—C91.451 (3)C19—C181.371 (3)
O1—C81.205 (3)C19—H190.9300
O3—C111.200 (2)C1—C21.483 (4)
C14—C151.379 (3)C7—C21.367 (4)
C14—C191.399 (3)C7—C61.370 (4)
C14—C131.465 (3)C2—C31.385 (3)
O5—C171.362 (3)C12—H12A0.9600
O5—C201.407 (3)C12—H12B0.9600
O2—C11.204 (3)C12—H12C0.9600
O6—C181.364 (3)C20—H20A0.9600
O6—C211.407 (4)C20—H20B0.9600
C11—O41.332 (3)C20—H20C0.9600
C11—C101.479 (3)C3—C41.372 (5)
C13—C101.334 (3)C3—H30.9300
C13—H130.9300C6—C51.388 (4)
O4—C121.438 (3)C6—H60.9300
C16—C171.377 (3)C21—H21A0.9600
C16—C151.383 (3)C21—H21B0.9600
C16—H160.9300C21—H21C0.9600
C15—H150.9300C4—C51.370 (6)
C10—C91.505 (3)C4—H40.9300
C8—C71.487 (3)C5—H50.9300
C17—C181.399 (3)
C8—N1—C1112.17 (18)C19—C18—C17119.71 (19)
C8—N1—C9124.33 (17)O2—C1—N1125.8 (2)
C1—N1—C9123.38 (19)O2—C1—C2129.2 (2)
C15—C14—C19118.60 (19)N1—C1—C2104.9 (2)
C15—C14—C13124.16 (18)C2—C7—C6122.1 (2)
C19—C14—C13117.08 (19)C2—C7—C8107.8 (2)
C17—O5—C20117.79 (19)C6—C7—C8130.0 (3)
C18—O6—C21117.4 (2)C7—C2—C3121.3 (3)
O3—C11—O4122.55 (19)C7—C2—C1109.08 (19)
O3—C11—C10123.8 (2)C3—C2—C1129.6 (3)
O4—C11—C10113.62 (17)O4—C12—H12A109.5
C10—C13—C14130.6 (2)O4—C12—H12B109.5
C10—C13—H13114.7H12A—C12—H12B109.5
C14—C13—H13114.7O4—C12—H12C109.5
C11—O4—C12115.85 (19)H12A—C12—H12C109.5
C17—C16—C15120.5 (2)H12B—C12—H12C109.5
C17—C16—H16119.7O5—C20—H20A109.5
C15—C16—H16119.7O5—C20—H20B109.5
C14—C15—C16120.69 (19)H20A—C20—H20B109.5
C14—C15—H15119.7O5—C20—H20C109.5
C16—C15—H15119.7H20A—C20—H20C109.5
C13—C10—C11119.64 (19)H20B—C20—H20C109.5
C13—C10—C9124.47 (19)C4—C3—C2117.0 (3)
C11—C10—C9115.55 (17)C4—C3—H3121.5
O1—C8—N1124.68 (19)C2—C3—H3121.5
O1—C8—C7129.4 (2)C7—C6—C5116.3 (3)
N1—C8—C7105.93 (18)C7—C6—H6121.8
O5—C17—C16124.9 (2)C5—C6—H6121.8
O5—C17—C18115.70 (19)O6—C21—H21A109.5
C16—C17—C18119.35 (19)O6—C21—H21B109.5
N1—C9—C10113.80 (17)H21A—C21—H21B109.5
N1—C9—H9A108.8O6—C21—H21C109.5
C10—C9—H9A108.8H21A—C21—H21C109.5
N1—C9—H9B108.8H21B—C21—H21C109.5
C10—C9—H9B108.8C5—C4—C3121.3 (3)
H9A—C9—H9B107.7C5—C4—H4119.4
C18—C19—C14121.0 (2)C3—C4—H4119.4
C18—C19—H19119.5C4—C5—C6121.9 (3)
C14—C19—H19119.5C4—C5—H5119.0
O6—C18—C19124.6 (2)C6—C5—H5119.0
O6—C18—C17115.68 (19)
C15—C14—C13—C1047.1 (3)C14—C19—C18—O6176.9 (2)
C19—C14—C13—C10137.5 (2)C14—C19—C18—C174.3 (3)
O3—C11—O4—C123.1 (3)O5—C17—C18—O62.9 (3)
C10—C11—O4—C12177.31 (19)C16—C17—C18—O6177.6 (2)
C19—C14—C15—C160.7 (3)O5—C17—C18—C19176.0 (2)
C13—C14—C15—C16174.6 (2)C16—C17—C18—C193.5 (3)
C17—C16—C15—C141.4 (4)C8—N1—C1—O2178.5 (2)
C14—C13—C10—C11179.2 (2)C9—N1—C1—O25.3 (4)
C14—C13—C10—C97.8 (4)C8—N1—C1—C21.1 (2)
O3—C11—C10—C13178.0 (2)C9—N1—C1—C2175.14 (19)
O4—C11—C10—C131.6 (3)O1—C8—C7—C2178.8 (2)
O3—C11—C10—C98.4 (3)N1—C8—C7—C21.7 (3)
O4—C11—C10—C9172.04 (17)O1—C8—C7—C61.6 (4)
C1—N1—C8—O1178.7 (2)N1—C8—C7—C6177.9 (3)
C9—N1—C8—O15.1 (4)C6—C7—C2—C30.3 (4)
C1—N1—C8—C71.7 (2)C8—C7—C2—C3180.0 (2)
C9—N1—C8—C7174.50 (19)C6—C7—C2—C1178.6 (2)
C20—O5—C17—C164.3 (4)C8—C7—C2—C11.0 (3)
C20—O5—C17—C18175.2 (2)O2—C1—C2—C7179.6 (3)
C15—C16—C17—O5178.8 (2)N1—C1—C2—C70.0 (3)
C15—C16—C17—C180.7 (4)O2—C1—C2—C31.6 (5)
C8—N1—C9—C1066.3 (3)N1—C1—C2—C3178.8 (3)
C1—N1—C9—C10109.5 (2)C7—C2—C3—C40.1 (4)
C13—C10—C9—N1132.6 (2)C1—C2—C3—C4178.6 (3)
C11—C10—C9—N154.2 (2)C2—C7—C6—C50.1 (4)
C15—C14—C19—C182.2 (3)C8—C7—C6—C5179.6 (3)
C13—C14—C19—C18177.8 (2)C2—C3—C4—C50.4 (5)
C21—O6—C18—C193.7 (4)C3—C4—C5—C60.7 (6)
C21—O6—C18—C17177.4 (3)C7—C6—C5—C40.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.553.440 (3)160
C4—H4···O5i0.932.503.354 (3)153
C4—H4···O6i0.932.583.320 (4)137
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H19NO6
Mr381.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.0613 (8), 7.6334 (4), 16.6354 (8)
β (°) 93.522 (2)
V3)1908.94 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.23 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
21209, 5063, 3241
Rint0.036
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.197, 1.06
No. of reflections5063
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.553.440 (3)160
C4—H4···O5i0.932.503.354 (3)153.1
C4—H4···O6i0.932.583.320 (4)136.5
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Clerck, E. (1995). J. Med. Chem. 38, 2491–2517.  PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeaney, H. & Shuhaibar, K. F. (1995). Synlett, pp. 47–48.  CrossRef Google Scholar
First citationLiang, Z.-P. & Li, J. (2006). Acta Cryst. E62, o4436–o4437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-G., Feng, Y.-Q., Wu, P., Chen, X. & Li, F. (2004). Acta Cryst. E60, o2293–o2294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPendrak, L., Wittrock, S., Lambert, D. M. & Kingsbury, W. D. (1994). J. Org. Chem. 59, 2623.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStowers, J. R. (1996). Tetrahedron, 52, 3339–3354.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds