organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-1H-pyrazole-4-carbaldehyde

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 March 2012; accepted 13 March 2012; online 17 March 2012)

In the title mol­ecule, C10H8N2O, the five- and six-membered rings form a dihedral angle of 10.14 (9)°. The aldehyde group is almost coplanar with the pyrazole ring to which it is connected [O—C—C—C torsion angle = −179.35 (17)°]. In the crystal, inversion dimers are linked by four C—H⋯O inter­actions as the carbonyl O atom accepts two such bonds. The dimeric aggregates are linked into supra­molecular layers in the ac plane by C—H⋯π and ππ [ring centroid(pyrrole)⋯ring centroid(phen­yl) = 3.8058 (10) Å] inter­actions.

Related literature

For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003[Kane, J. L. Jr, Hirth, B. H., Laing, D., Gourlie, B. B., Nahill, S. & Barsomian, G. (2003). Bioorg. Med. Chem. Lett. 13, 4463-4466.]). For related structures, see: Asiri, Al-Youbi, et al. (2012[Asiri, A. M., Al-Youbi, A. O., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o794.]); Asiri, Faidallah et al. (2012[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o764.]). For the synthesis, see: Vera-DiVaio et al. (2009[Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295-302.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2O

  • Mr = 172.18

  • Monoclinic, P 21 /n

  • a = 11.1657 (10) Å

  • b = 5.0858 (4) Å

  • c = 15.3034 (11) Å

  • β = 111.130 (9)°

  • V = 810.60 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.972, Tmax = 0.986

  • 3485 measured reflections

  • 1814 independent reflections

  • 1359 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.136

  • S = 0.99

  • 1814 reflections

  • 151 parameters

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.960 (19) 2.432 (19) 3.379 (2) 168.6 (13)
C10—H10⋯O1i 0.978 (19) 2.335 (19) 3.303 (2) 170.8 (16)
C8—H8⋯Cg1ii 0.978 (18) 2.947 (18) 3.761 (2) 141.4 (14)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural studies of pyrazole derivatives (Asiri, Al-Youbi, et al., 2012; Asiri, Faidallah et al., 2012), of interest, for example, owing to their anti-bacterial activity (Kane et al., 2003), the title compound, 1-phenyl-1H-pyrazole-4-carbaldehyde (I), was investigated crystallographically.

In (I), Fig. 1, the dihedral angle between the five- and six-membered rings is 10.14 (9) °, indicating a slight twist in the molecule. The aldehyde group is co-planar with the pyrazole ring to which it is connected as seen in the value of the O1—C1—C2—C3 torsion angle of -179.35 (17)°.

Inversion related molecules are connected into dimers via C—H···O interactions involving a bifurcated carbonyl-O atom, Table 1. Dimers are linked into supramolecular layers in the ac plane via C—H···π and ππ interactions occurring between the five- and six-membered rings [ring centroid···ring centroid distance = 3.8058 (10) Å, angle of inclination = 10.14 (9)° for symmetry operation: x, -1 + y, z], Fig. 2 and Table 1. Layers stack with no specific intermolecular interactions between them, Fig. 3.

Related literature top

For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003). For related structures, see: Asiri, Al-Youbi, et al. (2012); Asiri, Faidallah et al. (2012). For the synthesis, see: Vera-DiVaio et al. (2009).

Experimental top

N,N-Dimethylformamide (25.6 ml, 0.33 mmol) was stirred in around flask within an ice-bath and POCl3 (21.6 ml, 0.23 mmol) was added drop-wise. Then N-phenylpyrazole was added (4.4 ml, 0.033 mmol) to this cold mixture. The reaction was allowed to warm to room temperature and then heated at reflux for 6 h. The temperature was kept at 368–373 K. When the reaction was completed, the contents were poured onto crushed ice and made weakly alkaline with a saturated solution of sodium carbonate. The solid was filtered off, washed with water and recrystallized from ethanol. Yield: 65%. M.pt. 358–359 K. (lit. 358 K; Vera-DiVaio et al., 2009).

Refinement top

H-atoms were freely refined; the range of C—H bond lengths is 0.960 (17)–1.023 (18) Å. Owing to poor agreement, the (3 2 6) reflection was omitted from the final cycles of refinement.

Structure description top

In continuation of structural studies of pyrazole derivatives (Asiri, Al-Youbi, et al., 2012; Asiri, Faidallah et al., 2012), of interest, for example, owing to their anti-bacterial activity (Kane et al., 2003), the title compound, 1-phenyl-1H-pyrazole-4-carbaldehyde (I), was investigated crystallographically.

In (I), Fig. 1, the dihedral angle between the five- and six-membered rings is 10.14 (9) °, indicating a slight twist in the molecule. The aldehyde group is co-planar with the pyrazole ring to which it is connected as seen in the value of the O1—C1—C2—C3 torsion angle of -179.35 (17)°.

Inversion related molecules are connected into dimers via C—H···O interactions involving a bifurcated carbonyl-O atom, Table 1. Dimers are linked into supramolecular layers in the ac plane via C—H···π and ππ interactions occurring between the five- and six-membered rings [ring centroid···ring centroid distance = 3.8058 (10) Å, angle of inclination = 10.14 (9)° for symmetry operation: x, -1 + y, z], Fig. 2 and Table 1. Layers stack with no specific intermolecular interactions between them, Fig. 3.

For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003). For related structures, see: Asiri, Al-Youbi, et al. (2012); Asiri, Faidallah et al. (2012). For the synthesis, see: Vera-DiVaio et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the ac plane in (I). The C—H···O, C—H···π and ππ interactions are shown as orange, purple and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I). The C—H···O, C—H···π and ππ interactions are shown as orange, purple and blue dashed lines, respectively.
1-Phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C10H8N2OF(000) = 360
Mr = 172.18Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1251 reflections
a = 11.1657 (10) Åθ = 2.8–27.5°
b = 5.0858 (4) ŵ = 0.10 mm1
c = 15.3034 (11) ÅT = 100 K
β = 111.130 (9)°Prism, light-brown
V = 810.60 (11) Å30.30 × 0.30 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1814 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1359 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 56
Tmin = 0.972, Tmax = 0.986l = 1913
3485 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050All H-atom parameters refined
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0732P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
1814 reflectionsΔρmax = 0.28 e Å3
151 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (4)
Crystal data top
C10H8N2OV = 810.60 (11) Å3
Mr = 172.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1657 (10) ŵ = 0.10 mm1
b = 5.0858 (4) ÅT = 100 K
c = 15.3034 (11) Å0.30 × 0.30 × 0.15 mm
β = 111.130 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1814 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1359 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.050
3485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136All H-atom parameters refined
S = 0.99Δρmax = 0.28 e Å3
1814 reflectionsΔρmin = 0.26 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11384 (11)0.2706 (2)0.62516 (8)0.0286 (4)
N10.26714 (12)0.9228 (3)0.52304 (9)0.0196 (3)
N20.38346 (13)0.9268 (3)0.59584 (9)0.0247 (4)
C10.21644 (15)0.3842 (3)0.65682 (11)0.0230 (4)
C20.25665 (15)0.6026 (3)0.61478 (11)0.0209 (4)
C30.37465 (16)0.7329 (3)0.65005 (12)0.0245 (4)
C40.18990 (15)0.7336 (3)0.53228 (11)0.0204 (4)
C50.24267 (15)1.1131 (3)0.45059 (10)0.0196 (4)
C60.34207 (16)1.2698 (3)0.44624 (11)0.0226 (4)
C70.31714 (17)1.4569 (4)0.37669 (12)0.0248 (4)
C80.19463 (17)1.4863 (4)0.31105 (11)0.0247 (4)
C90.09706 (17)1.3272 (4)0.31553 (12)0.0263 (4)
C100.11990 (16)1.1412 (3)0.38573 (12)0.0242 (4)
H10.2818 (16)0.327 (4)0.7201 (13)0.022 (4)*
H30.4456 (17)0.689 (4)0.7089 (13)0.027 (5)*
H40.1060 (17)0.707 (3)0.4858 (12)0.022 (5)*
H60.4267 (19)1.239 (4)0.4903 (14)0.033 (5)*
H70.3846 (16)1.567 (4)0.3715 (12)0.023 (5)*
H80.1801 (15)1.619 (4)0.2621 (12)0.019 (4)*
H90.0057 (18)1.351 (4)0.2696 (14)0.037 (5)*
H100.0500 (15)1.030 (4)0.3886 (12)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (7)0.0306 (8)0.0274 (6)0.0045 (5)0.0063 (5)0.0006 (6)
N10.0183 (7)0.0214 (8)0.0154 (6)0.0002 (5)0.0015 (5)0.0005 (6)
N20.0193 (7)0.0286 (8)0.0194 (7)0.0011 (6)0.0013 (6)0.0005 (6)
C10.0229 (9)0.0254 (9)0.0184 (8)0.0017 (7)0.0046 (7)0.0011 (7)
C20.0205 (8)0.0216 (9)0.0186 (7)0.0007 (6)0.0047 (6)0.0032 (7)
C30.0225 (9)0.0270 (10)0.0192 (8)0.0005 (7)0.0018 (7)0.0001 (7)
C40.0182 (8)0.0220 (9)0.0185 (7)0.0007 (6)0.0035 (7)0.0038 (7)
C50.0230 (8)0.0197 (9)0.0142 (7)0.0011 (6)0.0042 (6)0.0017 (6)
C60.0196 (9)0.0263 (10)0.0191 (8)0.0015 (7)0.0038 (7)0.0026 (7)
C70.0271 (9)0.0243 (9)0.0238 (8)0.0024 (7)0.0103 (7)0.0034 (8)
C80.0313 (9)0.0205 (9)0.0209 (8)0.0021 (7)0.0076 (7)0.0027 (8)
C90.0242 (9)0.0253 (10)0.0236 (8)0.0031 (7)0.0017 (7)0.0037 (8)
C100.0212 (9)0.0222 (9)0.0251 (8)0.0010 (7)0.0034 (7)0.0002 (8)
Geometric parameters (Å, º) top
O1—C11.2168 (19)C5—C101.380 (2)
N1—C41.333 (2)C5—C61.387 (2)
N1—N21.3731 (17)C6—C71.379 (2)
N1—C51.422 (2)C6—H60.96 (2)
N2—C31.315 (2)C7—C81.383 (2)
C1—C21.435 (2)C7—H70.963 (18)
C1—H11.023 (18)C8—C91.379 (3)
C2—C41.384 (2)C8—H80.978 (18)
C2—C31.398 (2)C9—C101.384 (2)
C3—H30.986 (18)C9—H91.016 (18)
C4—H40.960 (17)C10—H100.977 (17)
C4—N1—N2112.57 (12)C10—C5—N1119.55 (14)
C4—N1—C5128.61 (13)C6—C5—N1119.75 (14)
N2—N1—C5118.81 (13)C7—C6—C5119.40 (15)
C3—N2—N1103.68 (13)C7—C6—H6122.1 (12)
O1—C1—C2126.22 (15)C5—C6—H6118.4 (12)
O1—C1—H1119.3 (10)C6—C7—C8120.47 (16)
C2—C1—H1114.5 (10)C6—C7—H7121.1 (11)
C4—C2—C3104.28 (15)C8—C7—H7118.4 (11)
C4—C2—C1129.01 (15)C9—C8—C7119.52 (17)
C3—C2—C1126.71 (15)C9—C8—H8121.9 (10)
N2—C3—C2112.73 (14)C7—C8—H8118.6 (10)
N2—C3—H3121.7 (11)C8—C9—C10120.80 (16)
C2—C3—H3125.6 (11)C8—C9—H9120.6 (11)
N1—C4—C2106.74 (14)C10—C9—H9118.5 (11)
N1—C4—H4121.3 (10)C5—C10—C9119.10 (16)
C2—C4—H4131.9 (11)C5—C10—H10120.7 (10)
C10—C5—C6120.70 (15)C9—C10—H10120.2 (10)
C4—N1—N2—C30.04 (18)N2—N1—C5—C10169.04 (14)
C5—N1—N2—C3179.12 (14)C4—N1—C5—C6170.62 (15)
O1—C1—C2—C41.2 (3)N2—N1—C5—C610.5 (2)
O1—C1—C2—C3179.35 (17)C10—C5—C6—C70.6 (2)
N1—N2—C3—C20.16 (19)N1—C5—C6—C7178.94 (14)
C4—C2—C3—N20.3 (2)C5—C6—C7—C80.8 (3)
C1—C2—C3—N2179.83 (16)C6—C7—C8—C90.0 (3)
N2—N1—C4—C20.21 (18)C7—C8—C9—C101.0 (3)
C5—N1—C4—C2179.18 (15)C6—C5—C10—C90.4 (3)
C3—C2—C4—N10.29 (17)N1—C5—C10—C9179.95 (15)
C1—C2—C4—N1179.81 (16)C8—C9—C10—C51.2 (3)
C4—N1—C5—C109.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.960 (19)2.432 (19)3.379 (2)168.6 (13)
C10—H10···O1i0.978 (19)2.335 (19)3.303 (2)170.8 (16)
C8—H8···Cg1ii0.978 (18)2.947 (18)3.761 (2)141.4 (14)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2O
Mr172.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.1657 (10), 5.0858 (4), 15.3034 (11)
β (°) 111.130 (9)
V3)810.60 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.972, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3485, 1814, 1359
Rint0.050
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 0.99
No. of reflections1814
No. of parameters151
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.960 (19)2.432 (19)3.379 (2)168.6 (13)
C10—H10···O1i0.978 (19)2.335 (19)3.303 (2)170.8 (16)
C8—H8···Cg1ii0.978 (18)2.947 (18)3.761 (2)141.4 (14)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o794.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o764.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKane, J. L. Jr, Hirth, B. H., Laing, D., Gourlie, B. B., Nahill, S. & Barsomian, G. (2003). Bioorg. Med. Chem. Lett. 13, 4463–4466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds