organic compounds
1-Phenyl-1H-pyrazole-4-carbaldehyde
aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
In the title molecule, C10H8N2O, the five- and six-membered rings form a dihedral angle of 10.14 (9)°. The aldehyde group is almost coplanar with the pyrazole ring to which it is connected [O—C—C—C torsion angle = −179.35 (17)°]. In the crystal, inversion dimers are linked by four C—H⋯O interactions as the carbonyl O atom accepts two such bonds. The dimeric aggregates are linked into supramolecular layers in the ac plane by C—H⋯π and π–π [ring centroid(pyrrole)⋯ring centroid(phenyl) = 3.8058 (10) Å] interactions.
Related literature
For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003). For related structures, see: Asiri, Al-Youbi, et al. (2012); Asiri, Faidallah et al. (2012). For the synthesis, see: Vera-DiVaio et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812010896/bt5843sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812010896/bt5843Isup2.hkl
N,N-Dimethylformamide (25.6 ml, 0.33 mmol) was stirred in around flask within an ice-bath and POCl3 (21.6 ml, 0.23 mmol) was added drop-wise. Then N-phenylpyrazole was added (4.4 ml, 0.033 mmol) to this cold mixture. The reaction was allowed to warm to room temperature and then heated at reflux for 6 h. The temperature was kept at 368–373 K. When the reaction was completed, the contents were poured onto crushed ice and made weakly alkaline with a
of sodium carbonate. The solid was filtered off, washed with water and recrystallized from ethanol. Yield: 65%. M.pt. 358–359 K. (lit. 358 K; Vera-DiVaio et al., 2009).H-atoms were freely refined; the range of C—H bond lengths is 0.960 (17)–1.023 (18) Å. Owing to poor agreement, the (3 2 6) reflection was omitted from the final cycles of refinement.
In continuation of structural studies of pyrazole derivatives (Asiri, Al-Youbi, et al., 2012; Asiri, Faidallah et al., 2012), of interest, for example, owing to their anti-bacterial activity (Kane et al., 2003), the title compound, 1-phenyl-1H-pyrazole-4-carbaldehyde (I), was investigated crystallographically.
In (I), Fig. 1, the dihedral angle between the five- and six-membered rings is 10.14 (9) °, indicating a slight twist in the molecule. The aldehyde group is co-planar with the pyrazole ring to which it is connected as seen in the value of the O1—C1—C2—C3 torsion angle of -179.35 (17)°.
Inversion related molecules are connected into dimers via C—H···O interactions involving a bifurcated carbonyl-O atom, Table 1. Dimers are linked into supramolecular layers in the ac plane via C—H···π and π—π interactions occurring between the five- and six-membered rings [ring centroid···ring centroid distance = 3.8058 (10) Å, angle of inclination = 10.14 (9)° for x, -1 + y, z], Fig. 2 and Table 1. Layers stack with no specific intermolecular interactions between them, Fig. 3.
For the anti-bacterial properties of pyrazole derivatives, see: Kane et al. (2003). For related structures, see: Asiri, Al-Youbi, et al. (2012); Asiri, Faidallah et al. (2012). For the synthesis, see: Vera-DiVaio et al. (2009).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C10H8N2O | F(000) = 360 |
Mr = 172.18 | Dx = 1.411 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1251 reflections |
a = 11.1657 (10) Å | θ = 2.8–27.5° |
b = 5.0858 (4) Å | µ = 0.10 mm−1 |
c = 15.3034 (11) Å | T = 100 K |
β = 111.130 (9)° | Prism, light-brown |
V = 810.60 (11) Å3 | 0.30 × 0.30 × 0.15 mm |
Z = 4 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 1814 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1359 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.050 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 27.6°, θmin = 2.8° |
ω scan | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −5→6 |
Tmin = 0.972, Tmax = 0.986 | l = −19→13 |
3485 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | All H-atom parameters refined |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0732P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.001 |
1814 reflections | Δρmax = 0.28 e Å−3 |
151 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.013 (4) |
C10H8N2O | V = 810.60 (11) Å3 |
Mr = 172.18 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.1657 (10) Å | µ = 0.10 mm−1 |
b = 5.0858 (4) Å | T = 100 K |
c = 15.3034 (11) Å | 0.30 × 0.30 × 0.15 mm |
β = 111.130 (9)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 1814 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1359 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.986 | Rint = 0.050 |
3485 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.136 | All H-atom parameters refined |
S = 0.99 | Δρmax = 0.28 e Å−3 |
1814 reflections | Δρmin = −0.26 e Å−3 |
151 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.11384 (11) | 0.2706 (2) | 0.62516 (8) | 0.0286 (4) | |
N1 | 0.26714 (12) | 0.9228 (3) | 0.52304 (9) | 0.0196 (3) | |
N2 | 0.38346 (13) | 0.9268 (3) | 0.59584 (9) | 0.0247 (4) | |
C1 | 0.21644 (15) | 0.3842 (3) | 0.65682 (11) | 0.0230 (4) | |
C2 | 0.25665 (15) | 0.6026 (3) | 0.61478 (11) | 0.0209 (4) | |
C3 | 0.37465 (16) | 0.7329 (3) | 0.65005 (12) | 0.0245 (4) | |
C4 | 0.18990 (15) | 0.7336 (3) | 0.53228 (11) | 0.0204 (4) | |
C5 | 0.24267 (15) | 1.1131 (3) | 0.45059 (10) | 0.0196 (4) | |
C6 | 0.34207 (16) | 1.2698 (3) | 0.44624 (11) | 0.0226 (4) | |
C7 | 0.31714 (17) | 1.4569 (4) | 0.37669 (12) | 0.0248 (4) | |
C8 | 0.19463 (17) | 1.4863 (4) | 0.31105 (11) | 0.0247 (4) | |
C9 | 0.09706 (17) | 1.3272 (4) | 0.31553 (12) | 0.0263 (4) | |
C10 | 0.11990 (16) | 1.1412 (3) | 0.38573 (12) | 0.0242 (4) | |
H1 | 0.2818 (16) | 0.327 (4) | 0.7201 (13) | 0.022 (4)* | |
H3 | 0.4456 (17) | 0.689 (4) | 0.7089 (13) | 0.027 (5)* | |
H4 | 0.1060 (17) | 0.707 (3) | 0.4858 (12) | 0.022 (5)* | |
H6 | 0.4267 (19) | 1.239 (4) | 0.4903 (14) | 0.033 (5)* | |
H7 | 0.3846 (16) | 1.567 (4) | 0.3715 (12) | 0.023 (5)* | |
H8 | 0.1801 (15) | 1.619 (4) | 0.2621 (12) | 0.019 (4)* | |
H9 | 0.0057 (18) | 1.351 (4) | 0.2696 (14) | 0.037 (5)* | |
H10 | 0.0500 (15) | 1.030 (4) | 0.3886 (12) | 0.023 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0250 (7) | 0.0306 (8) | 0.0274 (6) | −0.0045 (5) | 0.0063 (5) | −0.0006 (6) |
N1 | 0.0183 (7) | 0.0214 (8) | 0.0154 (6) | 0.0002 (5) | 0.0015 (5) | −0.0005 (6) |
N2 | 0.0193 (7) | 0.0286 (8) | 0.0194 (7) | −0.0011 (6) | −0.0013 (6) | 0.0005 (6) |
C1 | 0.0229 (9) | 0.0254 (9) | 0.0184 (8) | 0.0017 (7) | 0.0046 (7) | −0.0011 (7) |
C2 | 0.0205 (8) | 0.0216 (9) | 0.0186 (7) | 0.0007 (6) | 0.0047 (6) | −0.0032 (7) |
C3 | 0.0225 (9) | 0.0270 (10) | 0.0192 (8) | 0.0005 (7) | 0.0018 (7) | 0.0001 (7) |
C4 | 0.0182 (8) | 0.0220 (9) | 0.0185 (7) | −0.0007 (6) | 0.0035 (7) | −0.0038 (7) |
C5 | 0.0230 (8) | 0.0197 (9) | 0.0142 (7) | 0.0011 (6) | 0.0042 (6) | −0.0017 (6) |
C6 | 0.0196 (9) | 0.0263 (10) | 0.0191 (8) | −0.0015 (7) | 0.0038 (7) | −0.0026 (7) |
C7 | 0.0271 (9) | 0.0243 (9) | 0.0238 (8) | −0.0024 (7) | 0.0103 (7) | −0.0034 (8) |
C8 | 0.0313 (9) | 0.0205 (9) | 0.0209 (8) | 0.0021 (7) | 0.0076 (7) | 0.0027 (8) |
C9 | 0.0242 (9) | 0.0253 (10) | 0.0236 (8) | 0.0031 (7) | 0.0017 (7) | 0.0037 (8) |
C10 | 0.0212 (9) | 0.0222 (9) | 0.0251 (8) | −0.0010 (7) | 0.0034 (7) | 0.0002 (8) |
O1—C1 | 1.2168 (19) | C5—C10 | 1.380 (2) |
N1—C4 | 1.333 (2) | C5—C6 | 1.387 (2) |
N1—N2 | 1.3731 (17) | C6—C7 | 1.379 (2) |
N1—C5 | 1.422 (2) | C6—H6 | 0.96 (2) |
N2—C3 | 1.315 (2) | C7—C8 | 1.383 (2) |
C1—C2 | 1.435 (2) | C7—H7 | 0.963 (18) |
C1—H1 | 1.023 (18) | C8—C9 | 1.379 (3) |
C2—C4 | 1.384 (2) | C8—H8 | 0.978 (18) |
C2—C3 | 1.398 (2) | C9—C10 | 1.384 (2) |
C3—H3 | 0.986 (18) | C9—H9 | 1.016 (18) |
C4—H4 | 0.960 (17) | C10—H10 | 0.977 (17) |
C4—N1—N2 | 112.57 (12) | C10—C5—N1 | 119.55 (14) |
C4—N1—C5 | 128.61 (13) | C6—C5—N1 | 119.75 (14) |
N2—N1—C5 | 118.81 (13) | C7—C6—C5 | 119.40 (15) |
C3—N2—N1 | 103.68 (13) | C7—C6—H6 | 122.1 (12) |
O1—C1—C2 | 126.22 (15) | C5—C6—H6 | 118.4 (12) |
O1—C1—H1 | 119.3 (10) | C6—C7—C8 | 120.47 (16) |
C2—C1—H1 | 114.5 (10) | C6—C7—H7 | 121.1 (11) |
C4—C2—C3 | 104.28 (15) | C8—C7—H7 | 118.4 (11) |
C4—C2—C1 | 129.01 (15) | C9—C8—C7 | 119.52 (17) |
C3—C2—C1 | 126.71 (15) | C9—C8—H8 | 121.9 (10) |
N2—C3—C2 | 112.73 (14) | C7—C8—H8 | 118.6 (10) |
N2—C3—H3 | 121.7 (11) | C8—C9—C10 | 120.80 (16) |
C2—C3—H3 | 125.6 (11) | C8—C9—H9 | 120.6 (11) |
N1—C4—C2 | 106.74 (14) | C10—C9—H9 | 118.5 (11) |
N1—C4—H4 | 121.3 (10) | C5—C10—C9 | 119.10 (16) |
C2—C4—H4 | 131.9 (11) | C5—C10—H10 | 120.7 (10) |
C10—C5—C6 | 120.70 (15) | C9—C10—H10 | 120.2 (10) |
C4—N1—N2—C3 | 0.04 (18) | N2—N1—C5—C10 | −169.04 (14) |
C5—N1—N2—C3 | 179.12 (14) | C4—N1—C5—C6 | −170.62 (15) |
O1—C1—C2—C4 | 1.2 (3) | N2—N1—C5—C6 | 10.5 (2) |
O1—C1—C2—C3 | −179.35 (17) | C10—C5—C6—C7 | 0.6 (2) |
N1—N2—C3—C2 | 0.16 (19) | N1—C5—C6—C7 | −178.94 (14) |
C4—C2—C3—N2 | −0.3 (2) | C5—C6—C7—C8 | −0.8 (3) |
C1—C2—C3—N2 | −179.83 (16) | C6—C7—C8—C9 | 0.0 (3) |
N2—N1—C4—C2 | −0.21 (18) | C7—C8—C9—C10 | 1.0 (3) |
C5—N1—C4—C2 | −179.18 (15) | C6—C5—C10—C9 | 0.4 (3) |
C3—C2—C4—N1 | 0.29 (17) | N1—C5—C10—C9 | 179.95 (15) |
C1—C2—C4—N1 | 179.81 (16) | C8—C9—C10—C5 | −1.2 (3) |
C4—N1—C5—C10 | 9.9 (3) |
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.960 (19) | 2.432 (19) | 3.379 (2) | 168.6 (13) |
C10—H10···O1i | 0.978 (19) | 2.335 (19) | 3.303 (2) | 170.8 (16) |
C8—H8···Cg1ii | 0.978 (18) | 2.947 (18) | 3.761 (2) | 141.4 (14) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H8N2O |
Mr | 172.18 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 11.1657 (10), 5.0858 (4), 15.3034 (11) |
β (°) | 111.130 (9) |
V (Å3) | 810.60 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.30 × 0.30 × 0.15 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.972, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3485, 1814, 1359 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.136, 0.99 |
No. of reflections | 1814 |
No. of parameters | 151 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.28, −0.26 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.960 (19) | 2.432 (19) | 3.379 (2) | 168.6 (13) |
C10—H10···O1i | 0.978 (19) | 2.335 (19) | 3.303 (2) | 170.8 (16) |
C8—H8···Cg1ii | 0.978 (18) | 2.947 (18) | 3.761 (2) | 141.4 (14) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: aasiri2@kau.edu.sa.
Acknowledgements
The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Asiri, A. M., Al-Youbi, A. O., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o794. CSD CrossRef IUCr Journals Google Scholar
Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o764. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kane, J. L. Jr, Hirth, B. H., Laing, D., Gourlie, B. B., Nahill, S. & Barsomian, G. (2003). Bioorg. Med. Chem. Lett. 13, 4463–4466. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302. Web of Science PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of structural studies of pyrazole derivatives (Asiri, Al-Youbi, et al., 2012; Asiri, Faidallah et al., 2012), of interest, for example, owing to their anti-bacterial activity (Kane et al., 2003), the title compound, 1-phenyl-1H-pyrazole-4-carbaldehyde (I), was investigated crystallographically.
In (I), Fig. 1, the dihedral angle between the five- and six-membered rings is 10.14 (9) °, indicating a slight twist in the molecule. The aldehyde group is co-planar with the pyrazole ring to which it is connected as seen in the value of the O1—C1—C2—C3 torsion angle of -179.35 (17)°.
Inversion related molecules are connected into dimers via C—H···O interactions involving a bifurcated carbonyl-O atom, Table 1. Dimers are linked into supramolecular layers in the ac plane via C—H···π and π—π interactions occurring between the five- and six-membered rings [ring centroid···ring centroid distance = 3.8058 (10) Å, angle of inclination = 10.14 (9)° for symmetry operation: x, -1 + y, z], Fig. 2 and Table 1. Layers stack with no specific intermolecular interactions between them, Fig. 3.