organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(Benzyl­amino)­phen­yl]-2,6-di­methyl­quinoline N-oxide

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 12 March 2012; accepted 13 March 2012; online 17 March 2012)

The title compound, C24H22N2O, was obtained in a two-step procedure from the corresponding 4-(2-iodo­phen­yl)quinoline. The quinoline system is approximately planar [maximum deviation from the least-squares plane = 0.021 (2) Å]. The planes of the quinoline system and the phenyl ring subtend a dihedral angle of 78.08 (8)°. In the crystal, pairs of mol­ecules are connected via a center of symmetry and linked by a pair of angular N—H⋯O hydrogen bond. These dimers form columns oriented along the c axis.

Related literature

For aminations of iodo­lium salts, see: Letessier et al. (2011a[Letessier, J., Schollmeyer, D. & Detert, H. (2011a). Acta Cryst. E67, o2494.],b[Letessier, J., Schollmeyer, D. & Detert, H. (2011b). Acta Cryst. E67, o2341.]), Letessier & Detert (2012[Letessier, J. & Detert, H. (2012). Synthesis, 44, 290-296.]). For quinoline N-oxides, see: Moreno-Fuquen et al. (2007[Moreno-Fuquen, R., Shankland, K. & Fabbiani, F. P. A. (2007). Acta Cryst. E63, o2891.]); Ivashevskaja et al. (2002[Ivashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P. & Chernyshev, V. V. (2002). Acta Cryst. E58, o920-o922.]); Fahl­quist et al. (2006[Fahlquist, H., Healy, P. C., Young, D. J. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o3805-o3807.]). For heteroanalogous carbazoles, see: Dassonneville et al. (2010[Dassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665.], 2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]); Nissen & Detert (2011[Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2854.]). For Buchwald-Hartwig amination, see: Hartwig (1999[Hartwig, J. F. (1999). Pure Appl. Chem. 71, 1416-1423.]); Muci & Buchwald (2002[Muci, A. R. & Buchwald, S. L. (2002). Top. Curr. Chem. 219, 131-209.]). For twist of o-substituted biaryls, see: Miao et al. (2009[Miao, S.-B., Deng, D.-S., Liu, X.-M. & Ji, B.-M. (2009). Acta Cryst. E65, o2314.]); Moschel et al. (2011[Moschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N2O

  • Mr = 354.44

  • Monoclinic, P 21 /n

  • a = 10.1656 (3) Å

  • b = 14.1135 (5) Å

  • c = 12.9372 (4) Å

  • β = 91.547 (3)°

  • V = 1855.46 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 193 K

  • 0.26 × 0.18 × 0.18 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 18005 measured reflections

  • 3120 independent reflections

  • 2803 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 1.10

  • 3120 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O24i 0.96 2.03 2.7852 (17) 134
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2011)[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]; data reduction: X-RED (Stoe & Cie, 2011)[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

As part of a larger project on the synthesis of heteroanalogous carbazoles (Dassonneville et al. (2011), Dassonneville et al. (2010); Nissen & Detert (2011) iodolium salts became interesting as intermediates. Their twofold Buchwald-Hartwig amination with primary amines results in the formation of the pyrrole ring leading to carbazoles (Letessier et al. (2011a)) or carbolines (Letessier et al. (2011b), Letessier & Detert (2012)). The attempted formation of a benzo-quinolino-annulated iodolium salt via oxidation of the 4-(2-iodophenyl)quinoline and electrophilic ring closure failed. A mixture of two compounds, probably the iodosophenyl-quinoline and the iodophenyl-quinoline-N-oxide was obtained instead. Upon standing in chloroform solution, the former slowly isomerizes to the latter compound. Buchwald-Hartwig amination of the inseparable mixture with benzyl amine and Pd2(dba)3/Xantphos as catalytic system results in the formation of the title compound (ca 35%).

The title compound crystallizes as a centrosymmetric dimer stabilized by hydrogen bonding from the amino group to the N-oxide. The dimers are arranged in independent columns along the c axis. The bonds N7—H7 (0.9629 Å) and H7—O24 (2.03 Å) open an angle of 134°.

The quinoline framework is essentially planar with a maximal deviation of 0.021 (2) Å at C17 from the mean square plane. The dihedral angle between the mean planes of the quinoline and the adjacent phenyl ring is 64.61 (6)° and the mean planes of the phenyl rings open an angle of 78.08 (8)°. The amino group is coplanar with the mean plane of the phenyl ring: C8—N7-phenyl: 0.128 (2)°.

Related literature top

For aminations of iodolium salts, see: Letessier et al. (2011a,b), Letessier & Detert (2012). For quinoline N-oxides, see: Moreno-Fuquen et al. (2007); Ivashevskaja et al. (2002); Fahlquist et al. (2006). For heteroanalogous carbazoles, see: Dassonneville et al. (2010, 2011); Nissen & Detert (2011). For Buchwald-Hartwig amination, see: Hartwig (1999); Muci & Buchwald (2002). For torsion of o-substituted biaryls, see: Miao et al. (2009); Moschel et al. (2011).

Experimental top

2,6-Dimethyl-4-(2-iodophenyl)quinoline (53.9 mg, 0.15 mmol) was dissolved in 1.5 ml of dichloromethane in a flame-dried Schlenk tube and at 273 K. 11.6 µL(17.1 mg, 0.15 mmol) of trifluoromethane sulfonic acid were added. While stirring and cooling, mCPBA (38.8 mg, 0.23 mmol) was added. After 10 min trifluoromethansulfonic acid (23.3 µL, 34.2 mg, 0.3 mmol) was added and stirring continued for 30 min. The solvent was removed in vacuo, diethyl ether (5 ml) was added. An oily layer separated which crystallized upon standing for 8 h. The crystalline solid was isolated by suction filtration and washed with cold ether. Yield: 27.8 mg of a mixture of two compounds (ca 1: 0.6). In a Schlenk tube, this product (380 mg) was suspended in toluene (10 ml) and benzyl amine (96.4 mg, 0.9 mmol), Pd2(dba)3 (27.6 mg, 0.03 mmol), Xanthphos (52.2 mg, 0.09 mmol) and Cs2CO3 (684.3 mg, 2.1 mmol) were added. The mixture was stirred over night at 373 K, cooled, filtered through celite and the filter cake was washed with ethyl acetate (50 ml). The pooled organic solutions were washed with water, brine, and dried over MgSO4. After removal of the solvents in vacuo, the residue was purified by chromatography on Al2O3 with gradient elution starting with petroleum ether, followed by ethyl acetate and finally methanol. yield: 124.2 mg (0.35 mmol) of the title compound (Rf = 0.68 SiO2, ethyl acetate/methanol = 1/1) as yellow crystals with m. p. = 497 - 499 K. 4-(2-(Benzylamino)phenyl-2,6-dimethylquinoline (60 mg, 0.18 mmol, colorless solid, m. p. = 448 - 450 K) was isolated as a first fraction (Rf = 0.56 (SiO2, petroleum ether/ethyl acetate = 1/1)

Refinement top

All hydrogen atom were located in a difference Fourier map. Nevertheless, they were refined using a riding model with N—H = 0.96 Å, C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom) and with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Structure description top

As part of a larger project on the synthesis of heteroanalogous carbazoles (Dassonneville et al. (2011), Dassonneville et al. (2010); Nissen & Detert (2011) iodolium salts became interesting as intermediates. Their twofold Buchwald-Hartwig amination with primary amines results in the formation of the pyrrole ring leading to carbazoles (Letessier et al. (2011a)) or carbolines (Letessier et al. (2011b), Letessier & Detert (2012)). The attempted formation of a benzo-quinolino-annulated iodolium salt via oxidation of the 4-(2-iodophenyl)quinoline and electrophilic ring closure failed. A mixture of two compounds, probably the iodosophenyl-quinoline and the iodophenyl-quinoline-N-oxide was obtained instead. Upon standing in chloroform solution, the former slowly isomerizes to the latter compound. Buchwald-Hartwig amination of the inseparable mixture with benzyl amine and Pd2(dba)3/Xantphos as catalytic system results in the formation of the title compound (ca 35%).

The title compound crystallizes as a centrosymmetric dimer stabilized by hydrogen bonding from the amino group to the N-oxide. The dimers are arranged in independent columns along the c axis. The bonds N7—H7 (0.9629 Å) and H7—O24 (2.03 Å) open an angle of 134°.

The quinoline framework is essentially planar with a maximal deviation of 0.021 (2) Å at C17 from the mean square plane. The dihedral angle between the mean planes of the quinoline and the adjacent phenyl ring is 64.61 (6)° and the mean planes of the phenyl rings open an angle of 78.08 (8)°. The amino group is coplanar with the mean plane of the phenyl ring: C8—N7-phenyl: 0.128 (2)°.

For aminations of iodolium salts, see: Letessier et al. (2011a,b), Letessier & Detert (2012). For quinoline N-oxides, see: Moreno-Fuquen et al. (2007); Ivashevskaja et al. (2002); Fahlquist et al. (2006). For heteroanalogous carbazoles, see: Dassonneville et al. (2010, 2011); Nissen & Detert (2011). For Buchwald-Hartwig amination, see: Hartwig (1999); Muci & Buchwald (2002). For torsion of o-substituted biaryls, see: Miao et al. (2009); Moschel et al. (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
4-[2-(Benzylamino)phenyl]-2,6-dimethylquinoline N-oxide top
Crystal data top
C24H22N2OF(000) = 752
Mr = 354.44Dx = 1.269 Mg m3
Monoclinic, P21/nMelting point: 449 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 10.1656 (3) ÅCell parameters from 27155 reflections
b = 14.1135 (5) Åθ = 3.1–68.2°
c = 12.9372 (4) ŵ = 0.61 mm1
β = 91.547 (3)°T = 193 K
V = 1855.46 (11) Å3Needle, yellow
Z = 40.26 × 0.18 × 0.18 mm
Data collection top
Stoe IPDS 2T
diffractometer
2803 reflections with I > 2σ(I)
Radiation source: Incoatec microSource CuRint = 0.034
X-ray mirror monochromatorθmax = 66.5°, θmin = 4.6°
Detector resolution: 6.67 pixels mm-1h = 1212
rotation method scansk = 1616
18005 measured reflectionsl = 1313
3120 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.099P)2 + 0.2406P]
where P = (Fo2 + 2Fc2)/3
3120 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H22N2OV = 1855.46 (11) Å3
Mr = 354.44Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.1656 (3) ŵ = 0.61 mm1
b = 14.1135 (5) ÅT = 193 K
c = 12.9372 (4) Å0.26 × 0.18 × 0.18 mm
β = 91.547 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
2803 reflections with I > 2σ(I)
18005 measured reflectionsRint = 0.034
3120 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.10Δρmax = 0.17 e Å3
3120 reflectionsΔρmin = 0.18 e Å3
246 parameters
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3): δ = 8.71 (d, 3J = 8.9 Hz, 1 H), 7.59 (dd, 3J = 8.9 Hz, 4 J = 1.7 Hz, 1 H), 7.43 (s, 1 H), 7.36 - 7.16 (m, 7 H), 7.11 (dd, 3 J = 7.4 Hz, 4J = 1.5 Hz, 1 H), 6.84 (t, 3J = 7.4 Hz, 1 H), 6.75 (d, 3J = 8.2 Hz, 1 H), 4.30 (s, 2 H, CH2), 2.71 (s, 3 H, CH3), 2.47 (s, 3 H, CH3).

13C-NMR (75 MHz, CDCl3): δ = 145.6, 144.0, 140.4, 139.7, 137.0, 133.4, 131.8, 130.3, 129.4, 128.3 (2 C), 128.0, 126.7 (2 C), 126.5, 125.5, 125.1, 121.8, 119.4, 115.7, 110.4, 45.9, 21.0, 18.2.

IR (ATR) ν = 3324, 3016, 2910, 2857, 1597, 1573, 1520, 1410, 1385, 1319, 1300, 1237, 1201, 1162, 1105, 982, 925, 872, 823, 795, 738, 699 cm-1.

ESI-MS: 355.2 (M+H)+

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71651 (14)0.61537 (10)0.20685 (11)0.0467 (4)
C20.77995 (15)0.65594 (11)0.12222 (12)0.0519 (4)
H20.74100.70890.08800.062*
C30.89744 (16)0.62050 (12)0.08793 (13)0.0561 (4)
H30.93840.64960.03090.067*
C40.95605 (15)0.54320 (12)0.13561 (13)0.0570 (4)
H41.03720.51900.11220.068*
C50.89426 (14)0.50159 (11)0.21827 (13)0.0520 (4)
H50.93440.44850.25130.062*
C60.77536 (14)0.53505 (10)0.25443 (11)0.0461 (4)
N70.60350 (13)0.65335 (9)0.24471 (10)0.0533 (4)
H70.56850.62370.30510.064*
C80.53902 (15)0.73596 (11)0.20054 (12)0.0533 (4)
H8A0.60680.78440.18660.064*
H8B0.47950.76270.25240.064*
C90.46014 (14)0.71777 (10)0.10157 (12)0.0507 (4)
C100.46398 (16)0.78089 (11)0.01988 (13)0.0572 (4)
H100.52010.83460.02490.069*
C110.38731 (18)0.76708 (12)0.06926 (14)0.0637 (5)
H110.39140.81100.12470.076*
C120.30522 (17)0.68959 (13)0.07725 (15)0.0640 (5)
H120.25160.68050.13770.077*
C130.30119 (17)0.62530 (13)0.00294 (16)0.0660 (5)
H130.24560.57130.00280.079*
C140.37786 (16)0.63914 (12)0.09166 (14)0.0608 (4)
H140.37440.59450.14650.073*
C150.71631 (14)0.48715 (10)0.34537 (12)0.0474 (4)
C15A0.59375 (14)0.43752 (10)0.33858 (12)0.0491 (4)
C160.51672 (14)0.43056 (10)0.24628 (13)0.0520 (4)
H160.54610.46130.18580.062*
C170.40017 (15)0.38053 (11)0.24148 (15)0.0596 (4)
C180.35773 (17)0.33600 (13)0.33235 (18)0.0695 (5)
H180.27700.30200.33020.083*
C190.42868 (17)0.34010 (12)0.42324 (17)0.0670 (5)
H190.39780.30920.48320.080*
C19A0.54775 (15)0.39039 (11)0.42727 (13)0.0549 (4)
N200.62225 (14)0.39157 (10)0.51958 (11)0.0584 (4)
C210.73692 (17)0.43875 (11)0.52665 (13)0.0567 (4)
C220.78247 (16)0.48609 (11)0.43914 (12)0.0529 (4)
H220.86360.51920.44520.063*
C230.31976 (18)0.37395 (14)0.14289 (18)0.0732 (5)
H23A0.24380.41650.14650.110*
H23B0.28900.30870.13300.110*
H23C0.37390.39240.08460.110*
O240.57999 (13)0.34483 (10)0.59927 (10)0.0755 (4)
C250.8079 (2)0.43775 (15)0.62843 (14)0.0725 (5)
H25A0.88720.47700.62480.109*
H25B0.83280.37260.64620.109*
H25C0.75050.46310.68150.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0483 (8)0.0467 (8)0.0453 (8)0.0049 (6)0.0027 (6)0.0022 (6)
C20.0552 (8)0.0504 (8)0.0504 (9)0.0038 (6)0.0054 (6)0.0039 (6)
C30.0553 (9)0.0606 (9)0.0529 (9)0.0096 (7)0.0093 (7)0.0038 (7)
C40.0469 (8)0.0643 (10)0.0603 (10)0.0025 (7)0.0106 (7)0.0007 (7)
C50.0482 (8)0.0514 (8)0.0565 (9)0.0014 (6)0.0029 (7)0.0016 (6)
C60.0469 (7)0.0450 (7)0.0464 (8)0.0060 (6)0.0025 (6)0.0020 (6)
N70.0584 (8)0.0509 (7)0.0513 (8)0.0061 (5)0.0123 (6)0.0076 (5)
C80.0588 (9)0.0458 (8)0.0557 (9)0.0033 (6)0.0101 (7)0.0010 (6)
C90.0492 (8)0.0465 (8)0.0569 (9)0.0076 (6)0.0108 (6)0.0007 (6)
C100.0603 (9)0.0472 (8)0.0641 (10)0.0020 (7)0.0032 (7)0.0051 (7)
C110.0701 (10)0.0568 (9)0.0638 (11)0.0095 (8)0.0024 (8)0.0065 (8)
C120.0578 (9)0.0650 (10)0.0688 (11)0.0128 (8)0.0036 (8)0.0081 (8)
C130.0590 (10)0.0599 (10)0.0792 (12)0.0035 (7)0.0018 (8)0.0045 (8)
C140.0603 (9)0.0541 (9)0.0683 (11)0.0014 (7)0.0103 (8)0.0060 (8)
C150.0491 (8)0.0420 (7)0.0513 (9)0.0026 (6)0.0068 (6)0.0002 (6)
C15A0.0494 (8)0.0400 (7)0.0584 (9)0.0041 (6)0.0122 (6)0.0014 (6)
C160.0507 (8)0.0435 (8)0.0621 (10)0.0006 (6)0.0084 (7)0.0015 (6)
C170.0486 (8)0.0467 (8)0.0838 (12)0.0007 (6)0.0078 (8)0.0028 (7)
C180.0492 (9)0.0546 (9)0.1052 (16)0.0036 (7)0.0162 (9)0.0077 (9)
C190.0559 (9)0.0568 (10)0.0895 (13)0.0044 (7)0.0254 (9)0.0170 (8)
C19A0.0535 (8)0.0469 (8)0.0651 (11)0.0093 (6)0.0174 (7)0.0074 (7)
N200.0649 (8)0.0536 (8)0.0578 (9)0.0140 (6)0.0227 (6)0.0111 (6)
C210.0651 (9)0.0525 (8)0.0530 (10)0.0118 (7)0.0120 (7)0.0027 (7)
C220.0574 (8)0.0491 (8)0.0523 (9)0.0026 (6)0.0052 (7)0.0007 (6)
C230.0560 (10)0.0622 (10)0.1011 (15)0.0063 (8)0.0062 (9)0.0083 (9)
O240.0814 (8)0.0774 (9)0.0694 (9)0.0177 (6)0.0337 (7)0.0280 (6)
C250.0907 (13)0.0757 (12)0.0512 (10)0.0172 (10)0.0075 (9)0.0057 (8)
Geometric parameters (Å, º) top
C1—N71.370 (2)C13—H130.9500
C1—C21.407 (2)C14—H140.9500
C1—C61.415 (2)C15—C221.371 (2)
C2—C31.379 (2)C15—C15A1.430 (2)
C2—H20.9500C15A—C161.414 (2)
C3—C41.381 (2)C15A—C19A1.417 (2)
C3—H30.9500C16—C171.379 (2)
C4—C51.385 (2)C16—H160.9500
C4—H40.9500C17—C181.411 (3)
C5—C61.390 (2)C17—C231.499 (3)
C5—H50.9500C18—C191.364 (3)
C6—C151.497 (2)C18—H180.9500
N7—C81.448 (2)C19—C19A1.403 (2)
N7—H70.9629C19—H190.9500
C8—C91.514 (2)C19A—N201.397 (2)
C8—H8A0.9900N20—O241.3064 (17)
C8—H8B0.9900N20—C211.343 (2)
C9—C101.384 (2)C21—C221.404 (2)
C9—C141.393 (2)C21—C251.484 (3)
C10—C111.388 (2)C22—H220.9500
C10—H100.9500C23—H23A0.9800
C11—C121.378 (3)C23—H23B0.9800
C11—H110.9500C23—H23C0.9800
C12—C131.380 (3)C25—H25A0.9800
C12—H120.9500C25—H25B0.9800
C13—C141.384 (3)C25—H25C0.9800
N7—C1—C2121.68 (14)C9—C14—H14119.6
N7—C1—C6120.44 (13)C22—C15—C15A117.05 (14)
C2—C1—C6117.85 (13)C22—C15—C6120.19 (13)
C3—C2—C1121.45 (15)C15A—C15—C6122.70 (14)
C3—C2—H2119.3C16—C15A—C19A117.66 (14)
C1—C2—H2119.3C16—C15A—C15123.22 (14)
C2—C3—C4120.66 (15)C19A—C15A—C15119.10 (15)
C2—C3—H3119.7C17—C16—C15A121.95 (15)
C4—C3—H3119.7C17—C16—H16119.0
C3—C4—C5118.73 (15)C15A—C16—H16119.0
C3—C4—H4120.6C16—C17—C18118.18 (17)
C5—C4—H4120.6C16—C17—C23121.20 (16)
C4—C5—C6122.15 (15)C18—C17—C23120.62 (15)
C4—C5—H5118.9C19—C18—C17122.21 (16)
C6—C5—H5118.9C19—C18—H18118.9
C5—C6—C1119.14 (13)C17—C18—H18118.9
C5—C6—C15118.80 (13)C18—C19—C19A119.28 (17)
C1—C6—C15122.01 (13)C18—C19—H19120.4
C1—N7—C8123.31 (13)C19A—C19—H19120.4
C1—N7—H7116.8N20—C19A—C19119.02 (15)
C8—N7—H7119.8N20—C19A—C15A120.24 (14)
N7—C8—C9114.90 (13)C19—C19A—C15A120.72 (17)
N7—C8—H8A108.5O24—N20—C21119.97 (15)
C9—C8—H8A108.5O24—N20—C19A119.11 (14)
N7—C8—H8B108.5C21—N20—C19A120.91 (13)
C9—C8—H8B108.5N20—C21—C22119.03 (15)
H8A—C8—H8B107.5N20—C21—C25117.11 (15)
C10—C9—C14118.15 (15)C22—C21—C25123.85 (16)
C10—C9—C8120.76 (14)C15—C22—C21123.65 (15)
C14—C9—C8121.04 (14)C15—C22—H22118.2
C9—C10—C11121.16 (16)C21—C22—H22118.2
C9—C10—H10119.4C17—C23—H23A109.5
C11—C10—H10119.4C17—C23—H23B109.5
C12—C11—C10119.94 (16)H23A—C23—H23B109.5
C12—C11—H11120.0C17—C23—H23C109.5
C10—C11—H11120.0H23A—C23—H23C109.5
C11—C12—C13119.73 (16)H23B—C23—H23C109.5
C11—C12—H12120.1C21—C25—H25A109.5
C13—C12—H12120.1C21—C25—H25B109.5
C12—C13—C14120.23 (16)H25A—C25—H25B109.5
C12—C13—H13119.9C21—C25—H25C109.5
C14—C13—H13119.9H25A—C25—H25C109.5
C13—C14—C9120.79 (16)H25B—C25—H25C109.5
C13—C14—H14119.6
N7—C1—C2—C3176.45 (14)C6—C15—C15A—C161.0 (2)
C6—C1—C2—C31.6 (2)C22—C15—C15A—C19A0.2 (2)
C1—C2—C3—C40.5 (2)C6—C15—C15A—C19A177.09 (13)
C2—C3—C4—C50.3 (2)C19A—C15A—C16—C170.5 (2)
C3—C4—C5—C60.1 (2)C15—C15A—C16—C17178.62 (14)
C4—C5—C6—C11.3 (2)C15A—C16—C17—C180.4 (2)
C4—C5—C6—C15178.91 (14)C15A—C16—C17—C23179.98 (14)
N7—C1—C6—C5176.09 (14)C16—C17—C18—C190.8 (3)
C2—C1—C6—C52.0 (2)C23—C17—C18—C19179.66 (16)
N7—C1—C6—C151.4 (2)C17—C18—C19—C19A0.2 (3)
C2—C1—C6—C15179.53 (13)C18—C19—C19A—N20177.79 (14)
C2—C1—N7—C81.3 (2)C18—C19—C19A—C15A0.7 (2)
C6—C1—N7—C8179.29 (13)C16—C15A—C19A—N20177.44 (12)
C1—N7—C8—C977.05 (18)C15—C15A—C19A—N200.8 (2)
N7—C8—C9—C10138.41 (15)C16—C15A—C19A—C191.1 (2)
N7—C8—C9—C1444.11 (19)C15—C15A—C19A—C19179.29 (14)
C14—C9—C10—C110.6 (2)C19—C19A—N20—O240.9 (2)
C8—C9—C10—C11176.96 (14)C15A—C19A—N20—O24177.63 (13)
C9—C10—C11—C120.2 (2)C19—C19A—N20—C21179.90 (15)
C10—C11—C12—C131.0 (3)C15A—C19A—N20—C211.4 (2)
C11—C12—C13—C140.9 (3)O24—N20—C21—C22178.06 (13)
C12—C13—C14—C90.0 (3)C19A—N20—C21—C220.9 (2)
C10—C9—C14—C130.7 (2)O24—N20—C21—C252.3 (2)
C8—C9—C14—C13176.86 (15)C19A—N20—C21—C25178.73 (13)
C5—C6—C15—C2261.76 (19)C15A—C15—C22—C210.6 (2)
C1—C6—C15—C22115.76 (16)C6—C15—C22—C21176.72 (14)
C5—C6—C15—C15A115.43 (16)N20—C21—C22—C150.1 (2)
C1—C6—C15—C15A67.05 (19)C25—C21—C22—C15179.72 (15)
C22—C15—C15A—C16178.31 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O24i0.962.032.7852 (17)134
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H22N2O
Mr354.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)10.1656 (3), 14.1135 (5), 12.9372 (4)
β (°) 91.547 (3)
V3)1855.46 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.26 × 0.18 × 0.18
Data collection
DiffractometerStoe IPDS 2T
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18005, 3120, 2803
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 1.10
No. of reflections3120
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O24i0.962.032.7852 (17)134
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to Heinz Kolshorn for the NMR spectra and invaluable discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationFahlquist, H., Healy, P. C., Young, D. J. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o3805–o3807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHartwig, J. F. (1999). Pure Appl. Chem. 71, 1416–1423.  Web of Science CrossRef Google Scholar
First citationIvashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P. & Chernyshev, V. V. (2002). Acta Cryst. E58, o920–o922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLetessier, J. & Detert, H. (2012). Synthesis, 44, 290–296.  CAS Google Scholar
First citationLetessier, J., Schollmeyer, D. & Detert, H. (2011a). Acta Cryst. E67, o2494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLetessier, J., Schollmeyer, D. & Detert, H. (2011b). Acta Cryst. E67, o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiao, S.-B., Deng, D.-S., Liu, X.-M. & Ji, B.-M. (2009). Acta Cryst. E65, o2314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Shankland, K. & Fabbiani, F. P. A. (2007). Acta Cryst. E63, o2891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuci, A. R. & Buchwald, S. L. (2002). Top. Curr. Chem. 219, 131–209.  CrossRef CAS Google Scholar
First citationNissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2854.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds