organic compounds
4-[2-(Benzylamino)phenyl]-2,6-dimethylquinoline N-oxide
aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The title compound, C24H22N2O, was obtained in a two-step procedure from the corresponding 4-(2-iodophenyl)quinoline. The quinoline system is approximately planar [maximum deviation from the least-squares plane = 0.021 (2) Å]. The planes of the quinoline system and the phenyl ring subtend a dihedral angle of 78.08 (8)°. In the crystal, pairs of molecules are connected via a center of symmetry and linked by a pair of angular N—H⋯O hydrogen bond. These dimers form columns oriented along the c axis.
Related literature
For aminations of iodolium salts, see: Letessier et al. (2011a,b), Letessier & Detert (2012). For quinoline N-oxides, see: Moreno-Fuquen et al. (2007); Ivashevskaja et al. (2002); Fahlquist et al. (2006). For heteroanalogous carbazoles, see: Dassonneville et al. (2010, 2011); Nissen & Detert (2011). For Buchwald-Hartwig amination, see: Hartwig (1999); Muci & Buchwald (2002). For twist of o-substituted biaryls, see: Miao et al. (2009); Moschel et al. (2011).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2011); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536812011002/bt5844sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812011002/bt5844Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812011002/bt5844Isup3.cml
2,6-Dimethyl-4-(2-iodophenyl)quinoline (53.9 mg, 0.15 mmol) was dissolved in 1.5 ml of dichloromethane in a flame-dried Schlenk tube and at 273 K. 11.6 µL(17.1 mg, 0.15 mmol) of trifluoromethane sulfonic acid were added. While stirring and cooling, mCPBA (38.8 mg, 0.23 mmol) was added. After 10 min trifluoromethansulfonic acid (23.3 µL, 34.2 mg, 0.3 mmol) was added and stirring continued for 30 min. The solvent was removed in vacuo, diethyl ether (5 ml) was added. An oily layer separated which crystallized upon standing for 8 h. The crystalline solid was isolated by suction filtration and washed with cold ether. Yield: 27.8 mg of a mixture of two compounds (ca 1: 0.6). In a Schlenk tube, this product (380 mg) was suspended in toluene (10 ml) and benzyl amine (96.4 mg, 0.9 mmol), Pd2(dba)3 (27.6 mg, 0.03 mmol), Xanthphos (52.2 mg, 0.09 mmol) and Cs2CO3 (684.3 mg, 2.1 mmol) were added. The mixture was stirred over night at 373 K, cooled, filtered through celite and the filter cake was washed with ethyl acetate (50 ml). The pooled organic solutions were washed with water, brine, and dried over MgSO4. After removal of the solvents in vacuo, the residue was purified by
on Al2O3 with starting with petroleum ether, followed by ethyl acetate and finally methanol. yield: 124.2 mg (0.35 mmol) of the title compound (Rf = 0.68 SiO2, ethyl acetate/methanol = 1/1) as yellow crystals with m. p. = 497 - 499 K. 4-(2-(Benzylamino)phenyl-2,6-dimethylquinoline (60 mg, 0.18 mmol, colorless solid, m. p. = 448 - 450 K) was isolated as a first fraction (Rf = 0.56 (SiO2, petroleum ether/ethyl acetate = 1/1)All hydrogen atom were located in a difference Fourier map. Nevertheless, they were refined using a riding model with N—H = 0.96 Å, C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom) and with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.
As part of a larger project on the synthesis of heteroanalogous carbazoles (Dassonneville et al. (2011), Dassonneville et al. (2010); Nissen & Detert (2011) iodolium salts became interesting as intermediates. Their twofold Buchwald-Hartwig amination with primary
results in the formation of the pyrrole ring leading to carbazoles (Letessier et al. (2011a)) or carbolines (Letessier et al. (2011b), Letessier & Detert (2012)). The attempted formation of a benzo-quinolino-annulated iodolium salt via oxidation of the 4-(2-iodophenyl)quinoline and electrophilic ring closure failed. A mixture of two compounds, probably the iodosophenyl-quinoline and the iodophenyl-quinoline-N-oxide was obtained instead. Upon standing in chloroform solution, the former slowly isomerizes to the latter compound. Buchwald-Hartwig amination of the inseparable mixture with benzyl amine and Pd2(dba)3/Xantphos as catalytic system results in the formation of the title compound (ca 35%).The title compound crystallizes as a centrosymmetric dimer stabilized by hydrogen bonding from the amino group to the N-oxide. The dimers are arranged in independent columns along the c axis. The bonds N7—H7 (0.9629 Å) and H7—O24 (2.03 Å) open an angle of 134°.
The quinoline framework is essentially planar with a maximal deviation of 0.021 (2) Å at C17 from the mean square plane. The dihedral angle between the mean planes of the quinoline and the adjacent phenyl ring is 64.61 (6)° and the mean planes of the phenyl rings open an angle of 78.08 (8)°. The amino group is coplanar with the mean plane of the phenyl ring: C8—N7-phenyl: 0.128 (2)°.
For aminations of iodolium salts, see: Letessier et al. (2011a,b), Letessier & Detert (2012). For quinoline N-oxides, see: Moreno-Fuquen et al. (2007); Ivashevskaja et al. (2002); Fahlquist et al. (2006). For heteroanalogous carbazoles, see: Dassonneville et al. (2010, 2011); Nissen & Detert (2011). For Buchwald-Hartwig amination, see: Hartwig (1999); Muci & Buchwald (2002). For torsion of o-substituted biaryls, see: Miao et al. (2009); Moschel et al. (2011).
Data collection: X-AREA (Stoe & Cie, 2011); cell
X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. |
C24H22N2O | F(000) = 752 |
Mr = 354.44 | Dx = 1.269 Mg m−3 |
Monoclinic, P21/n | Melting point: 449 K |
Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54178 Å |
a = 10.1656 (3) Å | Cell parameters from 27155 reflections |
b = 14.1135 (5) Å | θ = 3.1–68.2° |
c = 12.9372 (4) Å | µ = 0.61 mm−1 |
β = 91.547 (3)° | T = 193 K |
V = 1855.46 (11) Å3 | Needle, yellow |
Z = 4 | 0.26 × 0.18 × 0.18 mm |
Stoe IPDS 2T diffractometer | 2803 reflections with I > 2σ(I) |
Radiation source: Incoatec microSource Cu | Rint = 0.034 |
X-ray mirror monochromator | θmax = 66.5°, θmin = 4.6° |
Detector resolution: 6.67 pixels mm-1 | h = −12→12 |
rotation method scans | k = −16→16 |
18005 measured reflections | l = −13→13 |
3120 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.099P)2 + 0.2406P] where P = (Fo2 + 2Fc2)/3 |
3120 reflections | (Δ/σ)max < 0.001 |
246 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C24H22N2O | V = 1855.46 (11) Å3 |
Mr = 354.44 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 10.1656 (3) Å | µ = 0.61 mm−1 |
b = 14.1135 (5) Å | T = 193 K |
c = 12.9372 (4) Å | 0.26 × 0.18 × 0.18 mm |
β = 91.547 (3)° |
Stoe IPDS 2T diffractometer | 2803 reflections with I > 2σ(I) |
18005 measured reflections | Rint = 0.034 |
3120 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.17 e Å−3 |
3120 reflections | Δρmin = −0.18 e Å−3 |
246 parameters |
Experimental. 1H-NMR (400 MHz, CDCl3): δ = 8.71 (d, 3J = 8.9 Hz, 1 H), 7.59 (dd, 3J = 8.9 Hz, 4 J = 1.7 Hz, 1 H), 7.43 (s, 1 H), 7.36 - 7.16 (m, 7 H), 7.11 (dd, 3 J = 7.4 Hz, 4J = 1.5 Hz, 1 H), 6.84 (t, 3J = 7.4 Hz, 1 H), 6.75 (d, 3J = 8.2 Hz, 1 H), 4.30 (s, 2 H, CH2), 2.71 (s, 3 H, CH3), 2.47 (s, 3 H, CH3). 13C-NMR (75 MHz, CDCl3): δ = 145.6, 144.0, 140.4, 139.7, 137.0, 133.4, 131.8, 130.3, 129.4, 128.3 (2 C), 128.0, 126.7 (2 C), 126.5, 125.5, 125.1, 121.8, 119.4, 115.7, 110.4, 45.9, 21.0, 18.2. IR (ATR) ν = 3324, 3016, 2910, 2857, 1597, 1573, 1520, 1410, 1385, 1319, 1300, 1237, 1201, 1162, 1105, 982, 925, 872, 823, 795, 738, 699 cm-1. ESI-MS: 355.2 (M+H)+ |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.71651 (14) | 0.61537 (10) | 0.20685 (11) | 0.0467 (4) | |
C2 | 0.77995 (15) | 0.65594 (11) | 0.12222 (12) | 0.0519 (4) | |
H2 | 0.7410 | 0.7089 | 0.0880 | 0.062* | |
C3 | 0.89744 (16) | 0.62050 (12) | 0.08793 (13) | 0.0561 (4) | |
H3 | 0.9384 | 0.6496 | 0.0309 | 0.067* | |
C4 | 0.95605 (15) | 0.54320 (12) | 0.13561 (13) | 0.0570 (4) | |
H4 | 1.0372 | 0.5190 | 0.1122 | 0.068* | |
C5 | 0.89426 (14) | 0.50159 (11) | 0.21827 (13) | 0.0520 (4) | |
H5 | 0.9344 | 0.4485 | 0.2513 | 0.062* | |
C6 | 0.77536 (14) | 0.53505 (10) | 0.25443 (11) | 0.0461 (4) | |
N7 | 0.60350 (13) | 0.65335 (9) | 0.24471 (10) | 0.0533 (4) | |
H7 | 0.5685 | 0.6237 | 0.3051 | 0.064* | |
C8 | 0.53902 (15) | 0.73596 (11) | 0.20054 (12) | 0.0533 (4) | |
H8A | 0.6068 | 0.7844 | 0.1866 | 0.064* | |
H8B | 0.4795 | 0.7627 | 0.2524 | 0.064* | |
C9 | 0.46014 (14) | 0.71777 (10) | 0.10157 (12) | 0.0507 (4) | |
C10 | 0.46398 (16) | 0.78089 (11) | 0.01988 (13) | 0.0572 (4) | |
H10 | 0.5201 | 0.8346 | 0.0249 | 0.069* | |
C11 | 0.38731 (18) | 0.76708 (12) | −0.06926 (14) | 0.0637 (5) | |
H11 | 0.3914 | 0.8110 | −0.1247 | 0.076* | |
C12 | 0.30522 (17) | 0.68959 (13) | −0.07725 (15) | 0.0640 (5) | |
H12 | 0.2516 | 0.6805 | −0.1377 | 0.077* | |
C13 | 0.30119 (17) | 0.62530 (13) | 0.00294 (16) | 0.0660 (5) | |
H13 | 0.2456 | 0.5713 | −0.0028 | 0.079* | |
C14 | 0.37786 (16) | 0.63914 (12) | 0.09166 (14) | 0.0608 (4) | |
H14 | 0.3744 | 0.5945 | 0.1465 | 0.073* | |
C15 | 0.71631 (14) | 0.48715 (10) | 0.34537 (12) | 0.0474 (4) | |
C15A | 0.59375 (14) | 0.43752 (10) | 0.33858 (12) | 0.0491 (4) | |
C16 | 0.51672 (14) | 0.43056 (10) | 0.24628 (13) | 0.0520 (4) | |
H16 | 0.5461 | 0.4613 | 0.1858 | 0.062* | |
C17 | 0.40017 (15) | 0.38053 (11) | 0.24148 (15) | 0.0596 (4) | |
C18 | 0.35773 (17) | 0.33600 (13) | 0.33235 (18) | 0.0695 (5) | |
H18 | 0.2770 | 0.3020 | 0.3302 | 0.083* | |
C19 | 0.42868 (17) | 0.34010 (12) | 0.42324 (17) | 0.0670 (5) | |
H19 | 0.3978 | 0.3092 | 0.4832 | 0.080* | |
C19A | 0.54775 (15) | 0.39039 (11) | 0.42727 (13) | 0.0549 (4) | |
N20 | 0.62225 (14) | 0.39157 (10) | 0.51958 (11) | 0.0584 (4) | |
C21 | 0.73692 (17) | 0.43875 (11) | 0.52665 (13) | 0.0567 (4) | |
C22 | 0.78247 (16) | 0.48609 (11) | 0.43914 (12) | 0.0529 (4) | |
H22 | 0.8636 | 0.5192 | 0.4452 | 0.063* | |
C23 | 0.31976 (18) | 0.37395 (14) | 0.14289 (18) | 0.0732 (5) | |
H23A | 0.2438 | 0.4165 | 0.1465 | 0.110* | |
H23B | 0.2890 | 0.3087 | 0.1330 | 0.110* | |
H23C | 0.3739 | 0.3924 | 0.0846 | 0.110* | |
O24 | 0.57999 (13) | 0.34483 (10) | 0.59927 (10) | 0.0755 (4) | |
C25 | 0.8079 (2) | 0.43775 (15) | 0.62843 (14) | 0.0725 (5) | |
H25A | 0.8872 | 0.4770 | 0.6248 | 0.109* | |
H25B | 0.8328 | 0.3726 | 0.6462 | 0.109* | |
H25C | 0.7505 | 0.4631 | 0.6815 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0483 (8) | 0.0467 (8) | 0.0453 (8) | −0.0049 (6) | 0.0027 (6) | −0.0022 (6) |
C2 | 0.0552 (8) | 0.0504 (8) | 0.0504 (9) | −0.0038 (6) | 0.0054 (6) | 0.0039 (6) |
C3 | 0.0553 (9) | 0.0606 (9) | 0.0529 (9) | −0.0096 (7) | 0.0093 (7) | 0.0038 (7) |
C4 | 0.0469 (8) | 0.0643 (10) | 0.0603 (10) | −0.0025 (7) | 0.0106 (7) | 0.0007 (7) |
C5 | 0.0482 (8) | 0.0514 (8) | 0.0565 (9) | −0.0014 (6) | 0.0029 (7) | 0.0016 (6) |
C6 | 0.0469 (7) | 0.0450 (7) | 0.0464 (8) | −0.0060 (6) | 0.0025 (6) | −0.0020 (6) |
N7 | 0.0584 (8) | 0.0509 (7) | 0.0513 (8) | 0.0061 (5) | 0.0123 (6) | 0.0076 (5) |
C8 | 0.0588 (9) | 0.0458 (8) | 0.0557 (9) | 0.0033 (6) | 0.0101 (7) | 0.0010 (6) |
C9 | 0.0492 (8) | 0.0465 (8) | 0.0569 (9) | 0.0076 (6) | 0.0108 (6) | 0.0007 (6) |
C10 | 0.0603 (9) | 0.0472 (8) | 0.0641 (10) | 0.0020 (7) | 0.0032 (7) | 0.0051 (7) |
C11 | 0.0701 (10) | 0.0568 (9) | 0.0638 (11) | 0.0095 (8) | −0.0024 (8) | 0.0065 (8) |
C12 | 0.0578 (9) | 0.0650 (10) | 0.0688 (11) | 0.0128 (8) | −0.0036 (8) | −0.0081 (8) |
C13 | 0.0590 (10) | 0.0599 (10) | 0.0792 (12) | −0.0035 (7) | 0.0018 (8) | −0.0045 (8) |
C14 | 0.0603 (9) | 0.0541 (9) | 0.0683 (11) | −0.0014 (7) | 0.0103 (8) | 0.0060 (8) |
C15 | 0.0491 (8) | 0.0420 (7) | 0.0513 (9) | 0.0026 (6) | 0.0068 (6) | 0.0002 (6) |
C15A | 0.0494 (8) | 0.0400 (7) | 0.0584 (9) | 0.0041 (6) | 0.0122 (6) | 0.0014 (6) |
C16 | 0.0507 (8) | 0.0435 (8) | 0.0621 (10) | 0.0006 (6) | 0.0084 (7) | −0.0015 (6) |
C17 | 0.0486 (8) | 0.0467 (8) | 0.0838 (12) | 0.0007 (6) | 0.0078 (8) | −0.0028 (7) |
C18 | 0.0492 (9) | 0.0546 (9) | 0.1052 (16) | −0.0036 (7) | 0.0162 (9) | 0.0077 (9) |
C19 | 0.0559 (9) | 0.0568 (10) | 0.0895 (13) | 0.0044 (7) | 0.0254 (9) | 0.0170 (8) |
C19A | 0.0535 (8) | 0.0469 (8) | 0.0651 (11) | 0.0093 (6) | 0.0174 (7) | 0.0074 (7) |
N20 | 0.0649 (8) | 0.0536 (8) | 0.0578 (9) | 0.0140 (6) | 0.0227 (6) | 0.0111 (6) |
C21 | 0.0651 (9) | 0.0525 (8) | 0.0530 (10) | 0.0118 (7) | 0.0120 (7) | 0.0027 (7) |
C22 | 0.0574 (8) | 0.0491 (8) | 0.0523 (9) | 0.0026 (6) | 0.0052 (7) | 0.0007 (6) |
C23 | 0.0560 (10) | 0.0622 (10) | 0.1011 (15) | −0.0063 (8) | −0.0062 (9) | −0.0083 (9) |
O24 | 0.0814 (8) | 0.0774 (9) | 0.0694 (9) | 0.0177 (6) | 0.0337 (7) | 0.0280 (6) |
C25 | 0.0907 (13) | 0.0757 (12) | 0.0512 (10) | 0.0172 (10) | 0.0075 (9) | 0.0057 (8) |
C1—N7 | 1.370 (2) | C13—H13 | 0.9500 |
C1—C2 | 1.407 (2) | C14—H14 | 0.9500 |
C1—C6 | 1.415 (2) | C15—C22 | 1.371 (2) |
C2—C3 | 1.379 (2) | C15—C15A | 1.430 (2) |
C2—H2 | 0.9500 | C15A—C16 | 1.414 (2) |
C3—C4 | 1.381 (2) | C15A—C19A | 1.417 (2) |
C3—H3 | 0.9500 | C16—C17 | 1.379 (2) |
C4—C5 | 1.385 (2) | C16—H16 | 0.9500 |
C4—H4 | 0.9500 | C17—C18 | 1.411 (3) |
C5—C6 | 1.390 (2) | C17—C23 | 1.499 (3) |
C5—H5 | 0.9500 | C18—C19 | 1.364 (3) |
C6—C15 | 1.497 (2) | C18—H18 | 0.9500 |
N7—C8 | 1.448 (2) | C19—C19A | 1.403 (2) |
N7—H7 | 0.9629 | C19—H19 | 0.9500 |
C8—C9 | 1.514 (2) | C19A—N20 | 1.397 (2) |
C8—H8A | 0.9900 | N20—O24 | 1.3064 (17) |
C8—H8B | 0.9900 | N20—C21 | 1.343 (2) |
C9—C10 | 1.384 (2) | C21—C22 | 1.404 (2) |
C9—C14 | 1.393 (2) | C21—C25 | 1.484 (3) |
C10—C11 | 1.388 (2) | C22—H22 | 0.9500 |
C10—H10 | 0.9500 | C23—H23A | 0.9800 |
C11—C12 | 1.378 (3) | C23—H23B | 0.9800 |
C11—H11 | 0.9500 | C23—H23C | 0.9800 |
C12—C13 | 1.380 (3) | C25—H25A | 0.9800 |
C12—H12 | 0.9500 | C25—H25B | 0.9800 |
C13—C14 | 1.384 (3) | C25—H25C | 0.9800 |
N7—C1—C2 | 121.68 (14) | C9—C14—H14 | 119.6 |
N7—C1—C6 | 120.44 (13) | C22—C15—C15A | 117.05 (14) |
C2—C1—C6 | 117.85 (13) | C22—C15—C6 | 120.19 (13) |
C3—C2—C1 | 121.45 (15) | C15A—C15—C6 | 122.70 (14) |
C3—C2—H2 | 119.3 | C16—C15A—C19A | 117.66 (14) |
C1—C2—H2 | 119.3 | C16—C15A—C15 | 123.22 (14) |
C2—C3—C4 | 120.66 (15) | C19A—C15A—C15 | 119.10 (15) |
C2—C3—H3 | 119.7 | C17—C16—C15A | 121.95 (15) |
C4—C3—H3 | 119.7 | C17—C16—H16 | 119.0 |
C3—C4—C5 | 118.73 (15) | C15A—C16—H16 | 119.0 |
C3—C4—H4 | 120.6 | C16—C17—C18 | 118.18 (17) |
C5—C4—H4 | 120.6 | C16—C17—C23 | 121.20 (16) |
C4—C5—C6 | 122.15 (15) | C18—C17—C23 | 120.62 (15) |
C4—C5—H5 | 118.9 | C19—C18—C17 | 122.21 (16) |
C6—C5—H5 | 118.9 | C19—C18—H18 | 118.9 |
C5—C6—C1 | 119.14 (13) | C17—C18—H18 | 118.9 |
C5—C6—C15 | 118.80 (13) | C18—C19—C19A | 119.28 (17) |
C1—C6—C15 | 122.01 (13) | C18—C19—H19 | 120.4 |
C1—N7—C8 | 123.31 (13) | C19A—C19—H19 | 120.4 |
C1—N7—H7 | 116.8 | N20—C19A—C19 | 119.02 (15) |
C8—N7—H7 | 119.8 | N20—C19A—C15A | 120.24 (14) |
N7—C8—C9 | 114.90 (13) | C19—C19A—C15A | 120.72 (17) |
N7—C8—H8A | 108.5 | O24—N20—C21 | 119.97 (15) |
C9—C8—H8A | 108.5 | O24—N20—C19A | 119.11 (14) |
N7—C8—H8B | 108.5 | C21—N20—C19A | 120.91 (13) |
C9—C8—H8B | 108.5 | N20—C21—C22 | 119.03 (15) |
H8A—C8—H8B | 107.5 | N20—C21—C25 | 117.11 (15) |
C10—C9—C14 | 118.15 (15) | C22—C21—C25 | 123.85 (16) |
C10—C9—C8 | 120.76 (14) | C15—C22—C21 | 123.65 (15) |
C14—C9—C8 | 121.04 (14) | C15—C22—H22 | 118.2 |
C9—C10—C11 | 121.16 (16) | C21—C22—H22 | 118.2 |
C9—C10—H10 | 119.4 | C17—C23—H23A | 109.5 |
C11—C10—H10 | 119.4 | C17—C23—H23B | 109.5 |
C12—C11—C10 | 119.94 (16) | H23A—C23—H23B | 109.5 |
C12—C11—H11 | 120.0 | C17—C23—H23C | 109.5 |
C10—C11—H11 | 120.0 | H23A—C23—H23C | 109.5 |
C11—C12—C13 | 119.73 (16) | H23B—C23—H23C | 109.5 |
C11—C12—H12 | 120.1 | C21—C25—H25A | 109.5 |
C13—C12—H12 | 120.1 | C21—C25—H25B | 109.5 |
C12—C13—C14 | 120.23 (16) | H25A—C25—H25B | 109.5 |
C12—C13—H13 | 119.9 | C21—C25—H25C | 109.5 |
C14—C13—H13 | 119.9 | H25A—C25—H25C | 109.5 |
C13—C14—C9 | 120.79 (16) | H25B—C25—H25C | 109.5 |
C13—C14—H14 | 119.6 | ||
N7—C1—C2—C3 | 176.45 (14) | C6—C15—C15A—C16 | −1.0 (2) |
C6—C1—C2—C3 | −1.6 (2) | C22—C15—C15A—C19A | −0.2 (2) |
C1—C2—C3—C4 | 0.5 (2) | C6—C15—C15A—C19A | 177.09 (13) |
C2—C3—C4—C5 | 0.3 (2) | C19A—C15A—C16—C17 | 0.5 (2) |
C3—C4—C5—C6 | 0.1 (2) | C15—C15A—C16—C17 | 178.62 (14) |
C4—C5—C6—C1 | −1.3 (2) | C15A—C16—C17—C18 | 0.4 (2) |
C4—C5—C6—C15 | −178.91 (14) | C15A—C16—C17—C23 | 179.98 (14) |
N7—C1—C6—C5 | −176.09 (14) | C16—C17—C18—C19 | −0.8 (3) |
C2—C1—C6—C5 | 2.0 (2) | C23—C17—C18—C19 | 179.66 (16) |
N7—C1—C6—C15 | 1.4 (2) | C17—C18—C19—C19A | 0.2 (3) |
C2—C1—C6—C15 | 179.53 (13) | C18—C19—C19A—N20 | −177.79 (14) |
C2—C1—N7—C8 | 1.3 (2) | C18—C19—C19A—C15A | 0.7 (2) |
C6—C1—N7—C8 | 179.29 (13) | C16—C15A—C19A—N20 | 177.44 (12) |
C1—N7—C8—C9 | 77.05 (18) | C15—C15A—C19A—N20 | −0.8 (2) |
N7—C8—C9—C10 | −138.41 (15) | C16—C15A—C19A—C19 | −1.1 (2) |
N7—C8—C9—C14 | 44.11 (19) | C15—C15A—C19A—C19 | −179.29 (14) |
C14—C9—C10—C11 | 0.6 (2) | C19—C19A—N20—O24 | 0.9 (2) |
C8—C9—C10—C11 | −176.96 (14) | C15A—C19A—N20—O24 | −177.63 (13) |
C9—C10—C11—C12 | 0.2 (2) | C19—C19A—N20—C21 | 179.90 (15) |
C10—C11—C12—C13 | −1.0 (3) | C15A—C19A—N20—C21 | 1.4 (2) |
C11—C12—C13—C14 | 0.9 (3) | O24—N20—C21—C22 | 178.06 (13) |
C12—C13—C14—C9 | −0.0 (3) | C19A—N20—C21—C22 | −0.9 (2) |
C10—C9—C14—C13 | −0.7 (2) | O24—N20—C21—C25 | −2.3 (2) |
C8—C9—C14—C13 | 176.86 (15) | C19A—N20—C21—C25 | 178.73 (13) |
C5—C6—C15—C22 | 61.76 (19) | C15A—C15—C22—C21 | 0.6 (2) |
C1—C6—C15—C22 | −115.76 (16) | C6—C15—C22—C21 | −176.72 (14) |
C5—C6—C15—C15A | −115.43 (16) | N20—C21—C22—C15 | −0.1 (2) |
C1—C6—C15—C15A | 67.05 (19) | C25—C21—C22—C15 | −179.72 (15) |
C22—C15—C15A—C16 | −178.31 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···O24i | 0.96 | 2.03 | 2.7852 (17) | 134 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C24H22N2O |
Mr | 354.44 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 193 |
a, b, c (Å) | 10.1656 (3), 14.1135 (5), 12.9372 (4) |
β (°) | 91.547 (3) |
V (Å3) | 1855.46 (11) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.61 |
Crystal size (mm) | 0.26 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Stoe IPDS 2T |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18005, 3120, 2803 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.154, 1.10 |
No. of reflections | 3120 |
No. of parameters | 246 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.18 |
Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···O24i | 0.96 | 2.03 | 2.7852 (17) | 134 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are grateful to Heinz Kolshorn for the NMR spectra and invaluable discussions.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844. Web of Science CSD CrossRef Google Scholar
Fahlquist, H., Healy, P. C., Young, D. J. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o3805–o3807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hartwig, J. F. (1999). Pure Appl. Chem. 71, 1416–1423. Web of Science CrossRef Google Scholar
Ivashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P. & Chernyshev, V. V. (2002). Acta Cryst. E58, o920–o922. Web of Science CSD CrossRef IUCr Journals Google Scholar
Letessier, J. & Detert, H. (2012). Synthesis, 44, 290–296. CAS Google Scholar
Letessier, J., Schollmeyer, D. & Detert, H. (2011a). Acta Cryst. E67, o2494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Letessier, J., Schollmeyer, D. & Detert, H. (2011b). Acta Cryst. E67, o2341. Web of Science CSD CrossRef IUCr Journals Google Scholar
Miao, S.-B., Deng, D.-S., Liu, X.-M. & Ji, B.-M. (2009). Acta Cryst. E65, o2314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moreno-Fuquen, R., Shankland, K. & Fabbiani, F. P. A. (2007). Acta Cryst. E63, o2891. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muci, A. R. & Buchwald, S. L. (2002). Top. Curr. Chem. 219, 131–209. CrossRef CAS Google Scholar
Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2854. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a larger project on the synthesis of heteroanalogous carbazoles (Dassonneville et al. (2011), Dassonneville et al. (2010); Nissen & Detert (2011) iodolium salts became interesting as intermediates. Their twofold Buchwald-Hartwig amination with primary amines results in the formation of the pyrrole ring leading to carbazoles (Letessier et al. (2011a)) or carbolines (Letessier et al. (2011b), Letessier & Detert (2012)). The attempted formation of a benzo-quinolino-annulated iodolium salt via oxidation of the 4-(2-iodophenyl)quinoline and electrophilic ring closure failed. A mixture of two compounds, probably the iodosophenyl-quinoline and the iodophenyl-quinoline-N-oxide was obtained instead. Upon standing in chloroform solution, the former slowly isomerizes to the latter compound. Buchwald-Hartwig amination of the inseparable mixture with benzyl amine and Pd2(dba)3/Xantphos as catalytic system results in the formation of the title compound (ca 35%).
The title compound crystallizes as a centrosymmetric dimer stabilized by hydrogen bonding from the amino group to the N-oxide. The dimers are arranged in independent columns along the c axis. The bonds N7—H7 (0.9629 Å) and H7—O24 (2.03 Å) open an angle of 134°.
The quinoline framework is essentially planar with a maximal deviation of 0.021 (2) Å at C17 from the mean square plane. The dihedral angle between the mean planes of the quinoline and the adjacent phenyl ring is 64.61 (6)° and the mean planes of the phenyl rings open an angle of 78.08 (8)°. The amino group is coplanar with the mean plane of the phenyl ring: C8—N7-phenyl: 0.128 (2)°.