metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m466-m467

Di-μ-iodido-bis­­{[(R)-(+)-2,2′-bis­­(di­phenyl­phosphan­yl)-1,1′-bi­naphthyl-κ2P,P′]copper(I)} 0.67-hydrate

aInstitute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76128 Karlsruhe, Germany, and bDepartment of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), 00014 Helsinki, Finland
*Correspondence e-mail: braese@kit.edu

(Received 12 March 2012; accepted 13 March 2012; online 24 March 2012)

The structure of the title compound, [Cu2I2(C44H32P2)2]·0.67H2O, has been determined because of its inter­esting catalytic and optical features. The mol­ecule, which has non-crystallographic C2-symmetry, consists of a core structure of two CuI ions, bridged by two iodide ions. Each CuI ion is also coordinated by one equivalent of the chiral bidentate (R)-BINAP ligand [BINAP = 2,2′-bis­(diphenyl­phosphan­yl)-1,1′-binaphth­yl]. Thus, both cations show a distorted tetra­hedral geometry being surrounded by two I atoms and two P atoms from the (R)-BINAP ligands. The complex consists of isolated butterfly-shaped mol­ecules featuring an angle of 146.11 (2)° between adjacent CuI2 planes. The structure displays intra­molecular C—H⋯I hydrogen bonding and contains disordered water. The absolute configuration of this chiral complex was determined by anomalous dispersion effects.

Related literature

For the photophysical properties of the title compound, see: Kunkely et al. (2008[Kunkely, H., Pawlowski, V. & Vogler, A. (2008). Inorg. Chem. Commun. 11, 1003-1005.]) and of analogous complexes see: Balamurugan et al. (2001[Balamurugan, R., Palaniandavar, M. & Gopalan, R. S. (2001). Inorg. Chem. 40, 2246-2255.]); Hashimoto et al. (2011[Hashimoto, M., Igawa, S., Yashima, M., Kawata, I., Hoshino, M. & Osawa, M. (2011). J. Am. Chem. Soc. 133, 10348-51.]); Hattori et al. (2010[Hattori, G., Sakata, K., Matsuzawa, H., Tanabe, Y., Miyake, Y. & Nishibayashi, Y. (2010). J. Am. Chem. Soc. 132, 10592-608.]); Lipshutz et al. (2004[Lipshutz, B. H., Frieman, B. & Birkedal, H. (2004). Org. Lett. 6, 2305-2308.]); Miyashita et al. (1980[Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932-7934.]); Yersin et al. (2011[Yersin, H., Rausch, A. F., Czerwieniec, R., Hofbeck, T. & Fischer, T. (2011). Coord. Chem. Rev. 255, 2622-2652.]); Zink et al. (2011[Zink, D. M., Grab, T., Baumann, T., Nieger, M., Barnes, E. C., Klopper, W. & Bräse, S. (2011). Organometallics, 30, 3275-3283.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2I2(C44H32P2)2]·0.67H2O

  • Mr = 1638.16

  • Hexagonal, P 63

  • a = 25.573 (3) Å

  • c = 18.593 (2) Å

  • V = 10530 (2) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 123 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.696, Tmax = 0.801

  • 187180 measured reflections

  • 16098 independent reflections

  • 15085 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.09

  • 16098 reflections

  • 873 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.62 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 7802 Friedel pairs

  • Flack parameter: −0.014 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C40—H40⋯I1 0.95 3.02 3.894 (4) 153

Table 2
Comparison of selected bond distances and angles (Å, °) for two (R)-BINAP–Cu–halide complexes.

Halide X Cu—X Cu—P X—Cu—X X—Cu—P P—Cu—P Cu—X—Cu
Iodide 2.641 2.28 102.5 113.6 99.5 73.3
Chloride 2.378 2.260 98.0 114.9 100.2 81.3
Values for the iodide complex are from this work, while data for the chloride complex were taken from Hattori et al. (2010[Hattori, G., Sakata, K., Matsuzawa, H., Tanabe, Y., Miyake, Y. & Nishibayashi, Y. (2010). J. Am. Chem. Soc. 132, 10592-608.]).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EVALCCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chiral arylphosphine 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl, BINAP, has been introduced by Noyori and coworkers as a ligand suitable for rhodium(I)-catalyzed reductions of alpha-(acylamino)acrylic acids (Miyashita et al., 1980). Various complexes analogous to the title compound are known: Copper(I)-complexes of arylphosphines such as BINAP have been studied e.g. as catalysts for an enantioselective amination-reactions with propargylic esters (Hattori et al., 2010). Also, it has been demonstrated that (R)-BINAP can be removed from solutions by precipitation with CuCl as a 1:1 adduct, e.g. in order to retrieve chiral ligands after Pd-catalyzed cross coupling protocols (Lipshutz et al., 2004). Hattori et al. determined the structure of the dimeric complex [(R)-BINAP(CuCl)]2 (Hattori et al.,2010), consisting of a butterfly-shaped Cu2I2-unit with one chelating BINAP-ligand coordinating each CuI. However, the complexes of arylphosphanes and CuI have recently been studied due to their interesting photophysical properties (Zink et al., 2011; Yersin et al., 2011).

Vogler and coworkers analyzed the spectroscopic properties of a 1:1 adduct of BINAP and CuI, which proved to emit light at 582 nm even in solution (Kunkely et al., 2008). The authors of that study suggested a structure comparable to [(R)-BINAP(CuCl)]2 for this complex, yet failing to provide any direct experimental proof for this thesis. Of course, the tetrahedral coordination geometry is dominant for copper(I) compounds, but some cases with a trigonal coordination have been found, mostly as a result of a complexation with bulky ligands (Hashimoto et al., 2011; Balamurugan et al., 2001).

Herein, we show that [(R)-BINAP (CuI)] is indeed a dimer (non-crystallographic C2-symmetry), very much comparable to [(R)-BINAP(CuCl)]2 (Figure 1). The complex features a core structure of two CuI ions, bridged by two iodide ions. Each CuI-ion is also coordinated by one equivalent of (R)-BINAP. Both cations show a distorted tetrahedral geometry being surrounded by two I atoms and two P atoms from the (R)-BINAP-ligands. The complex consists of isolated, butterfly-shaped molecules: The two planes defined by Cu(1), I(1) and I(2) respectively Cu(2), I(1) and I(2) form an angle of 146.11 (2)°. The structure contains disordered water. The absolute configuration of this chiral complex has been determined by anomalous dispersion effects. Four diordered water molecules are included in the unit cell, as shown in Figure 2: There are 2 voids in the crystal structure. This could be assigned as 2 water molecules per void or 4 water molecules per unit cell.

The structure displays a intramolecular C—H···I hydrogen bonding and contains disordered water, data regarding this is given in Table 1.

Table 2 compares selected distances and angles of the title compound of this study with the chloride-analog analyzed by Hattori and coworkers. The geometry is affected by the enlarged anions, resulting in a massively reduced Cu—X—Cu-angle for X = iodide. As a result of the rigid backbone of (R)-BINAP, neither the bonding distances of Cu—P, nor the angles P—Cu—P are disrupted.

Related literature top

For the photophysical properties of the title compound, see: Kunkely et al. (2008) and of analogous complexes see: Balamurugan et al. (2001); Hashimoto et al. (2011); Hattori et al. (2010); Lipshutz et al. (2004); Miyashita et al. (1980); Yersin et al. (2011); Zink et al. (2011).

Experimental top

The title compound has been synthesized unintentionally according to a modified protocol of Kunkely et al. (2008) by reaction of a modified N-donor-ligand with (R)-BINAP and copper iodide, changing the solvent from acetonitrile to dichloromethane at room temperature. The resulting suspension was filtered over a 45 µm disc-filter yielding a yellow solution. Crystals suitable for analysis were gained by slow diffusion of pentane in dichloromethane.

Refinement top

All H-atoms were geometrical positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] and with a C—H distance of 0.95 Å. The H atoms of the disordered water molecules could not be located and were omitted from refinement.

Structure description top

The chiral arylphosphine 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl, BINAP, has been introduced by Noyori and coworkers as a ligand suitable for rhodium(I)-catalyzed reductions of alpha-(acylamino)acrylic acids (Miyashita et al., 1980). Various complexes analogous to the title compound are known: Copper(I)-complexes of arylphosphines such as BINAP have been studied e.g. as catalysts for an enantioselective amination-reactions with propargylic esters (Hattori et al., 2010). Also, it has been demonstrated that (R)-BINAP can be removed from solutions by precipitation with CuCl as a 1:1 adduct, e.g. in order to retrieve chiral ligands after Pd-catalyzed cross coupling protocols (Lipshutz et al., 2004). Hattori et al. determined the structure of the dimeric complex [(R)-BINAP(CuCl)]2 (Hattori et al.,2010), consisting of a butterfly-shaped Cu2I2-unit with one chelating BINAP-ligand coordinating each CuI. However, the complexes of arylphosphanes and CuI have recently been studied due to their interesting photophysical properties (Zink et al., 2011; Yersin et al., 2011).

Vogler and coworkers analyzed the spectroscopic properties of a 1:1 adduct of BINAP and CuI, which proved to emit light at 582 nm even in solution (Kunkely et al., 2008). The authors of that study suggested a structure comparable to [(R)-BINAP(CuCl)]2 for this complex, yet failing to provide any direct experimental proof for this thesis. Of course, the tetrahedral coordination geometry is dominant for copper(I) compounds, but some cases with a trigonal coordination have been found, mostly as a result of a complexation with bulky ligands (Hashimoto et al., 2011; Balamurugan et al., 2001).

Herein, we show that [(R)-BINAP (CuI)] is indeed a dimer (non-crystallographic C2-symmetry), very much comparable to [(R)-BINAP(CuCl)]2 (Figure 1). The complex features a core structure of two CuI ions, bridged by two iodide ions. Each CuI-ion is also coordinated by one equivalent of (R)-BINAP. Both cations show a distorted tetrahedral geometry being surrounded by two I atoms and two P atoms from the (R)-BINAP-ligands. The complex consists of isolated, butterfly-shaped molecules: The two planes defined by Cu(1), I(1) and I(2) respectively Cu(2), I(1) and I(2) form an angle of 146.11 (2)°. The structure contains disordered water. The absolute configuration of this chiral complex has been determined by anomalous dispersion effects. Four diordered water molecules are included in the unit cell, as shown in Figure 2: There are 2 voids in the crystal structure. This could be assigned as 2 water molecules per void or 4 water molecules per unit cell.

The structure displays a intramolecular C—H···I hydrogen bonding and contains disordered water, data regarding this is given in Table 1.

Table 2 compares selected distances and angles of the title compound of this study with the chloride-analog analyzed by Hattori and coworkers. The geometry is affected by the enlarged anions, resulting in a massively reduced Cu—X—Cu-angle for X = iodide. As a result of the rigid backbone of (R)-BINAP, neither the bonding distances of Cu—P, nor the angles P—Cu—P are disrupted.

For the photophysical properties of the title compound, see: Kunkely et al. (2008) and of analogous complexes see: Balamurugan et al. (2001); Hashimoto et al. (2011); Hattori et al. (2010); Lipshutz et al. (2004); Miyashita et al. (1980); Yersin et al. (2011); Zink et al. (2011).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-drawing of the title compound showing the coordination geometry of the butterfly-shaped Cu2I2-dimer and displacement ellipsoids of all non-H-atoms. (50% probability).
[Figure 2] Fig. 2. Packing diagram along the crystallographic c axis (hydrogen atoms omitted for clarity).
Di-µ-iodido-bis{[(R)-(+)-2,2'-bis(diphenylphosphanyl)- 1,1'-binaphthyl-κ2P,P']copper(I)} 0.67-hydrate top
Crystal data top
[Cu2I2(C44H32P2)2]·0.67H2ODx = 1.550 Mg m3
Mr = 1638.16Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 482 reflections
a = 25.573 (3) Åθ = 2.5–25.0°
c = 18.593 (2) ŵ = 1.63 mm1
V = 10530 (2) Å3T = 123 K
Z = 6Blocks, yellow
F(000) = 49360.40 × 0.20 × 0.15 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
16098 independent reflections
Radiation source: fine-focus sealed tube15085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
rotation in φ and ω, 1 ° scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3333
Tmin = 0.696, Tmax = 0.801k = 3333
187180 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0381P)2 + 15.830P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.003
16098 reflectionsΔρmax = 1.62 e Å3
873 parametersΔρmin = 0.57 e Å3
1 restraintAbsolute structure: Flack (1983), 7802 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (9)
Crystal data top
[Cu2I2(C44H32P2)2]·0.67H2OZ = 6
Mr = 1638.16Mo Kα radiation
Hexagonal, P63µ = 1.63 mm1
a = 25.573 (3) ÅT = 123 K
c = 18.593 (2) Å0.40 × 0.20 × 0.15 mm
V = 10530 (2) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
16098 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
15085 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.801Rint = 0.041
187180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0381P)2 + 15.830P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 1.62 e Å3
16098 reflectionsΔρmin = 0.57 e Å3
873 parametersAbsolute structure: Flack (1983), 7802 Friedel pairs
1 restraintAbsolute structure parameter: 0.014 (9)
Special details top

Experimental. dx = 45 mm, 160 sec./°., 1 °., 9 sets, 859 frames

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 2 water molecules disordered about 2 position (s.o.f.= 1/3) and the 3-fold axis (Wyckoff letter a).

Using SQUEEZE there are 2 voids in the crystal structure in 0,0,z and 0,0,z + 1/2 with 40 electrons. This could be assigned as 2 water molecules per void or 4 water molecules per unit cell. In the difference Fourier 2 peaks are found, which are refined as 1/3 water molecule, respectively (6 x 0.33333 water molecules = 2 water molecules). See also the SQUEEZE output included in the cif-file, even if the SQUEEZE-data are not used for the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.649693 (11)0.635358 (10)0.530482 (12)0.02538 (6)
I20.639453 (10)0.634461 (10)0.752730 (11)0.02365 (5)
Cu10.587858 (17)0.564088 (17)0.63856 (3)0.02186 (8)
Cu20.664298 (19)0.707200 (18)0.64190 (3)0.02543 (9)
P10.60181 (4)0.48336 (4)0.65234 (5)0.02005 (17)
P20.48484 (4)0.51442 (4)0.62751 (5)0.02196 (18)
P30.61597 (4)0.76126 (4)0.65309 (5)0.02046 (18)
P40.76011 (4)0.78585 (4)0.62223 (5)0.02411 (19)
C10.53582 (15)0.43087 (16)0.70518 (18)0.0185 (6)
C20.54183 (17)0.43578 (17)0.78088 (19)0.0233 (7)
H20.58010.46270.80130.028*
C30.49428 (18)0.40297 (17)0.82468 (19)0.0240 (7)
H30.49880.40900.87520.029*
C40.43803 (18)0.35992 (18)0.7960 (2)0.0241 (8)
C50.38897 (19)0.32306 (19)0.8411 (2)0.0297 (8)
H50.39350.32760.89180.036*
C60.3358 (2)0.2816 (2)0.8129 (2)0.0352 (9)
H60.30320.25670.84400.042*
C70.32773 (17)0.27438 (18)0.7383 (2)0.0299 (8)
H70.29020.24420.71910.036*
C80.37409 (17)0.31097 (17)0.6931 (2)0.0253 (7)
H80.36790.30680.64260.030*
C90.43090 (17)0.35477 (17)0.72019 (19)0.0225 (7)
C100.48000 (16)0.39400 (16)0.67476 (18)0.0188 (7)
C110.46868 (15)0.39819 (16)0.59613 (18)0.0188 (7)
C120.45826 (15)0.35021 (16)0.54791 (18)0.0202 (7)
C130.45643 (16)0.29703 (17)0.5715 (2)0.0255 (7)
H130.46200.29240.62110.031*
C140.44686 (17)0.25196 (17)0.5250 (2)0.0301 (8)
H140.44530.21620.54210.036*
C150.43927 (19)0.2588 (2)0.4508 (2)0.0348 (9)
H150.43300.22760.41810.042*
C160.44089 (18)0.30915 (19)0.4261 (2)0.0313 (8)
H160.43600.31320.37610.038*
C170.44978 (16)0.35621 (18)0.4740 (2)0.0249 (8)
C180.44980 (17)0.40842 (18)0.44962 (18)0.0262 (8)
H180.44460.41280.39980.031*
C190.45718 (17)0.45264 (17)0.49620 (19)0.0254 (7)
H190.45600.48690.47860.031*
C200.46665 (15)0.44849 (16)0.57057 (19)0.0206 (7)
C210.60440 (15)0.43927 (17)0.57674 (19)0.0226 (7)
C220.6177 (2)0.4643 (2)0.5096 (2)0.0352 (9)
H220.62540.50430.50250.042*
C230.6200 (2)0.4309 (3)0.4512 (2)0.0448 (12)
H230.62960.44840.40460.054*
C240.6084 (2)0.3732 (2)0.4613 (2)0.0408 (11)
H240.60930.35030.42150.049*
C250.59558 (17)0.34817 (19)0.5282 (3)0.0355 (9)
H250.58810.30820.53500.043*
C260.59347 (16)0.38085 (18)0.5860 (2)0.0285 (8)
H260.58440.36320.63260.034*
C270.66515 (17)0.48976 (18)0.7048 (2)0.0255 (7)
C280.71805 (17)0.5444 (2)0.7045 (2)0.0304 (8)
H280.71990.57810.68080.037*
C290.76995 (18)0.5502 (2)0.7397 (2)0.0386 (10)
H290.80690.58760.73910.046*
C300.7660 (2)0.5013 (2)0.7746 (2)0.0419 (11)
H300.80070.50520.79830.050*
C310.7136 (2)0.4469 (2)0.7763 (3)0.0417 (10)
H310.71180.41350.80100.050*
C320.66275 (18)0.4411 (2)0.7411 (2)0.0338 (9)
H320.62610.40340.74200.041*
C330.43621 (16)0.48265 (16)0.7058 (2)0.0234 (7)
C340.45836 (17)0.50764 (17)0.7731 (2)0.0262 (8)
H340.49890.53960.77780.031*
C350.42181 (19)0.48635 (19)0.8332 (2)0.0310 (8)
H350.43710.50380.87900.037*
C360.36272 (19)0.4395 (2)0.8265 (2)0.0338 (9)
H360.33750.42470.86780.041*
C370.34066 (17)0.41437 (18)0.7596 (2)0.0316 (8)
H370.30020.38230.75500.038*
C380.37709 (17)0.43557 (17)0.6996 (2)0.0267 (8)
H380.36170.41790.65390.032*
C390.45006 (17)0.55435 (17)0.5848 (2)0.0258 (7)
C400.48143 (19)0.59543 (18)0.5306 (2)0.0327 (8)
H400.51840.59970.51360.039*
C410.4592 (2)0.6308 (2)0.5007 (3)0.0395 (10)
H410.48120.65880.46350.047*
C420.4067 (2)0.6252 (2)0.5245 (3)0.0418 (10)
H420.39140.64860.50350.050*
C430.3753 (2)0.5855 (2)0.5792 (3)0.0419 (10)
H430.33900.58250.59670.050*
C440.3965 (2)0.5498 (2)0.6091 (2)0.0343 (9)
H440.37420.52200.64630.041*
C450.67026 (16)0.83028 (16)0.70100 (18)0.0206 (7)
C460.66571 (18)0.83087 (18)0.7775 (2)0.0270 (8)
H460.63250.79800.80080.032*
C470.70765 (19)0.87730 (19)0.8177 (2)0.0293 (8)
H470.70400.87620.86860.035*
C480.75699 (17)0.92745 (17)0.7837 (2)0.0253 (7)
C490.80224 (19)0.9761 (2)0.8245 (2)0.0334 (9)
H490.79990.97550.87550.040*
C500.84912 (19)1.02371 (19)0.7901 (3)0.0361 (10)
H500.87891.05630.81770.043*
C510.85406 (18)1.02537 (19)0.7159 (3)0.0346 (9)
H510.88661.05920.69300.042*
C520.81193 (17)0.97827 (17)0.6756 (2)0.0271 (8)
H520.81580.97940.62470.033*
C530.76274 (17)0.92790 (17)0.7087 (2)0.0235 (7)
C540.71932 (15)0.87694 (15)0.66794 (18)0.0182 (6)
C550.72983 (16)0.87513 (16)0.58945 (19)0.0220 (7)
C560.71696 (16)0.91078 (16)0.54075 (19)0.0238 (7)
C570.69856 (16)0.95133 (17)0.5653 (2)0.0249 (7)
H570.69560.95640.61550.030*
C580.68494 (18)0.98328 (17)0.5177 (2)0.0296 (8)
H580.67291.01060.53510.036*
C590.68847 (19)0.97635 (18)0.4432 (2)0.0316 (8)
H590.67900.99900.41060.038*
C600.70551 (18)0.93721 (19)0.4180 (2)0.0310 (8)
H600.70740.93230.36760.037*
C610.72060 (18)0.90340 (18)0.4664 (2)0.0274 (8)
C620.7374 (2)0.8621 (2)0.4412 (2)0.0330 (9)
H620.73920.85660.39090.040*
C630.75106 (19)0.8299 (2)0.4882 (2)0.0318 (9)
H630.76210.80210.47000.038*
C640.74921 (17)0.83683 (18)0.5631 (2)0.0256 (8)
C650.54671 (16)0.73259 (17)0.70608 (19)0.0234 (7)
C660.51108 (17)0.67069 (18)0.7147 (2)0.0281 (8)
H660.52500.64470.69780.034*
C670.45519 (17)0.64653 (18)0.7477 (2)0.0335 (8)
H670.43080.60400.75290.040*
C680.43473 (18)0.68321 (19)0.7728 (2)0.0330 (9)
H680.39580.66620.79410.040*
C690.4709 (2)0.74537 (19)0.7673 (2)0.0336 (9)
H690.45750.77110.78640.040*
C700.52652 (19)0.76983 (18)0.7339 (2)0.0317 (9)
H700.55120.81240.73000.038*
C710.59484 (17)0.78534 (16)0.5708 (2)0.0243 (7)
C720.57366 (19)0.82556 (19)0.5709 (2)0.0306 (8)
H720.56990.84200.61510.037*
C730.5579 (2)0.8420 (2)0.5071 (2)0.0349 (9)
H730.54430.87050.50750.042*
C740.5617 (2)0.81693 (19)0.4427 (2)0.0342 (9)
H740.55000.82730.39890.041*
C750.5827 (2)0.77695 (19)0.4428 (2)0.0355 (9)
H750.58590.76000.39870.043*
C760.59936 (19)0.76105 (18)0.5067 (2)0.0300 (8)
H760.61390.73340.50600.036*
C770.81622 (19)0.7730 (2)0.5766 (2)0.0331 (9)
C780.8623 (2)0.8159 (2)0.5340 (3)0.0451 (11)
H780.86330.85260.52250.054*
C790.9070 (3)0.8050 (3)0.5080 (3)0.0619 (16)
H790.93850.83450.47890.074*
C800.9062 (3)0.7533 (4)0.5236 (4)0.072 (2)
H800.93740.74670.50610.086*
C810.8609 (3)0.7105 (3)0.5644 (4)0.0647 (18)
H810.86010.67370.57430.078*
C820.8154 (2)0.7200 (2)0.5920 (3)0.0468 (12)
H820.78420.69010.62100.056*
C830.80673 (18)0.83112 (18)0.6976 (2)0.0277 (8)
C840.7904 (2)0.80764 (18)0.7662 (2)0.0352 (9)
H840.75460.77000.77360.042*
C850.8268 (3)0.8394 (2)0.8243 (3)0.0452 (12)
H850.81550.82330.87140.054*
C860.8786 (2)0.8938 (2)0.8144 (3)0.0463 (12)
H860.90290.91550.85440.056*
C870.89505 (18)0.9166 (2)0.7461 (3)0.0421 (10)
H870.93120.95390.73900.050*
C880.85970 (18)0.8859 (2)0.6876 (2)0.0331 (9)
H880.87160.90210.64060.040*
O1W0.9617 (5)1.0055 (5)0.5573 (6)0.051 (3)*0.33
O2W0.9552 (6)0.9714 (7)0.4700 (8)0.073 (4)*0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03306 (12)0.02501 (11)0.01841 (11)0.01478 (10)0.00013 (10)0.00215 (10)
I20.02630 (11)0.02620 (11)0.01602 (10)0.01130 (9)0.00312 (9)0.00279 (9)
Cu10.02024 (18)0.02337 (19)0.02140 (18)0.01048 (15)0.00347 (18)0.00214 (19)
Cu20.0336 (2)0.02417 (19)0.02182 (18)0.01691 (18)0.0005 (2)0.0017 (2)
P10.0178 (4)0.0251 (4)0.0184 (4)0.0116 (3)0.0038 (3)0.0039 (3)
P20.0194 (4)0.0235 (4)0.0246 (5)0.0120 (3)0.0048 (3)0.0018 (3)
P30.0219 (4)0.0192 (4)0.0195 (5)0.0097 (3)0.0004 (3)0.0032 (3)
P40.0265 (4)0.0266 (4)0.0236 (5)0.0166 (4)0.0006 (3)0.0030 (3)
C10.0208 (16)0.0232 (16)0.0174 (15)0.0155 (14)0.0018 (12)0.0021 (12)
C20.0258 (17)0.0279 (18)0.0212 (16)0.0171 (15)0.0071 (13)0.0043 (14)
C30.036 (2)0.0310 (19)0.0171 (16)0.0261 (17)0.0051 (14)0.0045 (14)
C40.033 (2)0.0298 (19)0.0214 (17)0.0243 (17)0.0031 (14)0.0024 (14)
C50.040 (2)0.037 (2)0.0197 (17)0.0254 (19)0.0068 (16)0.0057 (15)
C60.037 (2)0.038 (2)0.034 (2)0.0216 (19)0.0128 (17)0.0121 (18)
C70.0227 (17)0.0304 (19)0.034 (2)0.0114 (15)0.0015 (15)0.0056 (15)
C80.0240 (18)0.0294 (19)0.0244 (17)0.0149 (16)0.0005 (14)0.0017 (14)
C90.0251 (18)0.0256 (18)0.0228 (17)0.0172 (15)0.0004 (14)0.0008 (14)
C100.0203 (16)0.0226 (16)0.0184 (16)0.0144 (14)0.0023 (12)0.0036 (13)
C110.0135 (15)0.0240 (17)0.0177 (15)0.0084 (13)0.0010 (12)0.0014 (13)
C120.0160 (15)0.0244 (17)0.0177 (16)0.0081 (13)0.0011 (12)0.0004 (12)
C130.0243 (18)0.0325 (19)0.0218 (17)0.0157 (16)0.0030 (14)0.0037 (14)
C140.0313 (19)0.0264 (17)0.033 (2)0.0148 (15)0.0024 (17)0.0049 (16)
C150.035 (2)0.037 (2)0.030 (2)0.0156 (18)0.0058 (17)0.0171 (17)
C160.030 (2)0.035 (2)0.0202 (17)0.0097 (17)0.0019 (14)0.0091 (15)
C170.0172 (16)0.0320 (19)0.0195 (17)0.0079 (15)0.0028 (13)0.0037 (14)
C180.0264 (18)0.0331 (19)0.0133 (15)0.0107 (16)0.0017 (13)0.0008 (14)
C190.0228 (17)0.0282 (19)0.0217 (17)0.0100 (15)0.0041 (13)0.0020 (14)
C200.0154 (15)0.0229 (16)0.0208 (16)0.0076 (13)0.0058 (12)0.0039 (13)
C210.0168 (16)0.0337 (19)0.0237 (17)0.0173 (15)0.0071 (13)0.0110 (14)
C220.047 (2)0.049 (2)0.0264 (19)0.037 (2)0.0019 (17)0.0069 (17)
C230.070 (3)0.076 (3)0.0167 (18)0.057 (3)0.0030 (19)0.005 (2)
C240.048 (3)0.063 (3)0.032 (2)0.043 (3)0.0164 (19)0.023 (2)
C250.0279 (19)0.039 (2)0.046 (2)0.0216 (17)0.0080 (19)0.015 (2)
C260.0192 (17)0.0300 (19)0.038 (2)0.0138 (15)0.0017 (15)0.0050 (16)
C270.0222 (17)0.037 (2)0.0220 (17)0.0181 (16)0.0029 (14)0.0067 (15)
C280.0218 (18)0.039 (2)0.030 (2)0.0141 (17)0.0001 (15)0.0077 (16)
C290.0184 (17)0.052 (3)0.037 (2)0.0121 (18)0.0003 (16)0.015 (2)
C300.031 (2)0.069 (3)0.037 (2)0.033 (2)0.0105 (18)0.016 (2)
C310.036 (2)0.060 (3)0.042 (2)0.034 (2)0.0089 (19)0.007 (2)
C320.0280 (19)0.039 (2)0.041 (2)0.0221 (17)0.0088 (17)0.0050 (18)
C330.0234 (17)0.0246 (17)0.0284 (19)0.0167 (15)0.0007 (14)0.0013 (14)
C340.0262 (18)0.0252 (17)0.0304 (19)0.0153 (15)0.0041 (14)0.0065 (14)
C350.034 (2)0.039 (2)0.029 (2)0.0254 (18)0.0021 (16)0.0059 (16)
C360.034 (2)0.044 (2)0.036 (2)0.029 (2)0.0117 (17)0.0076 (18)
C370.0248 (17)0.0329 (19)0.044 (2)0.0195 (16)0.0018 (17)0.0041 (18)
C380.0245 (18)0.0287 (19)0.0312 (19)0.0165 (16)0.0033 (15)0.0025 (15)
C390.0247 (18)0.0249 (18)0.0272 (18)0.0119 (15)0.0090 (14)0.0009 (14)
C400.039 (2)0.039 (2)0.0257 (18)0.0238 (18)0.0016 (18)0.0038 (18)
C410.048 (3)0.042 (2)0.035 (2)0.028 (2)0.0051 (19)0.0098 (19)
C420.049 (3)0.039 (2)0.050 (3)0.031 (2)0.007 (2)0.002 (2)
C430.042 (3)0.045 (3)0.051 (3)0.032 (2)0.003 (2)0.002 (2)
C440.035 (2)0.034 (2)0.042 (2)0.0234 (18)0.0024 (18)0.0005 (17)
C450.0253 (17)0.0226 (17)0.0175 (16)0.0147 (14)0.0016 (13)0.0030 (13)
C460.0308 (19)0.0293 (19)0.0208 (17)0.0150 (16)0.0015 (14)0.0004 (14)
C470.041 (2)0.036 (2)0.0162 (16)0.0235 (19)0.0024 (15)0.0038 (15)
C480.0273 (18)0.0234 (17)0.0301 (18)0.0163 (15)0.0057 (15)0.0054 (14)
C490.036 (2)0.036 (2)0.035 (2)0.0232 (19)0.0115 (17)0.0134 (17)
C500.026 (2)0.030 (2)0.050 (3)0.0126 (17)0.0142 (18)0.0200 (19)
C510.0211 (19)0.027 (2)0.051 (3)0.0089 (16)0.0045 (17)0.0088 (18)
C520.0247 (18)0.0278 (19)0.0303 (19)0.0142 (16)0.0016 (15)0.0018 (15)
C530.0236 (17)0.0229 (17)0.0264 (18)0.0134 (15)0.0019 (14)0.0030 (14)
C540.0197 (16)0.0188 (15)0.0183 (15)0.0113 (13)0.0013 (12)0.0031 (12)
C550.0199 (16)0.0217 (17)0.0217 (18)0.0084 (14)0.0007 (13)0.0002 (13)
C560.0240 (16)0.0225 (16)0.0216 (17)0.0091 (14)0.0014 (13)0.0019 (13)
C570.0253 (18)0.0250 (18)0.0232 (17)0.0117 (15)0.0021 (14)0.0015 (14)
C580.035 (2)0.0280 (18)0.028 (2)0.0175 (16)0.0032 (15)0.0018 (15)
C590.038 (2)0.0287 (19)0.0259 (19)0.0147 (17)0.0045 (16)0.0071 (15)
C600.030 (2)0.036 (2)0.0220 (18)0.0132 (17)0.0022 (14)0.0063 (15)
C610.0280 (19)0.0297 (19)0.0228 (18)0.0132 (16)0.0040 (14)0.0038 (15)
C620.040 (2)0.046 (2)0.0166 (17)0.024 (2)0.0059 (16)0.0013 (16)
C630.036 (2)0.044 (2)0.0261 (19)0.0282 (19)0.0056 (16)0.0006 (16)
C640.0255 (18)0.0312 (19)0.0231 (17)0.0163 (16)0.0020 (14)0.0035 (15)
C650.0235 (17)0.0257 (18)0.0196 (16)0.0113 (15)0.0015 (13)0.0020 (13)
C660.0253 (18)0.0268 (19)0.033 (2)0.0139 (16)0.0033 (15)0.0011 (15)
C670.0229 (17)0.0297 (19)0.039 (2)0.0067 (15)0.0014 (17)0.0018 (18)
C680.0279 (19)0.039 (2)0.031 (2)0.0161 (17)0.0058 (15)0.0025 (16)
C690.040 (2)0.038 (2)0.031 (2)0.0263 (19)0.0052 (17)0.0010 (16)
C700.035 (2)0.0247 (18)0.033 (2)0.0135 (17)0.0052 (16)0.0001 (15)
C710.0252 (18)0.0238 (17)0.0243 (17)0.0126 (15)0.0040 (14)0.0014 (14)
C720.035 (2)0.033 (2)0.0263 (19)0.0196 (18)0.0011 (16)0.0017 (16)
C730.040 (2)0.039 (2)0.035 (2)0.026 (2)0.0037 (17)0.0021 (17)
C740.041 (2)0.036 (2)0.0276 (19)0.0206 (19)0.0063 (17)0.0009 (17)
C750.055 (3)0.034 (2)0.0223 (19)0.026 (2)0.0052 (18)0.0074 (16)
C760.038 (2)0.0293 (19)0.0273 (18)0.0201 (17)0.0027 (16)0.0038 (15)
C770.035 (2)0.040 (2)0.032 (2)0.0255 (19)0.0069 (17)0.0118 (17)
C780.042 (2)0.066 (3)0.040 (2)0.037 (2)0.006 (2)0.000 (2)
C790.053 (3)0.100 (5)0.046 (3)0.049 (4)0.011 (2)0.006 (3)
C800.071 (4)0.125 (6)0.062 (4)0.081 (4)0.014 (3)0.036 (4)
C810.071 (4)0.068 (4)0.087 (4)0.058 (4)0.030 (4)0.037 (3)
C820.043 (3)0.042 (3)0.067 (3)0.030 (2)0.019 (2)0.018 (2)
C830.0289 (19)0.0287 (19)0.0306 (19)0.0183 (16)0.0051 (15)0.0076 (15)
C840.047 (2)0.0275 (19)0.035 (2)0.0215 (18)0.0108 (18)0.0072 (16)
C850.068 (3)0.046 (3)0.033 (2)0.037 (3)0.016 (2)0.012 (2)
C860.045 (3)0.047 (3)0.057 (3)0.030 (2)0.022 (2)0.023 (2)
C870.0225 (18)0.038 (2)0.064 (3)0.0134 (17)0.012 (2)0.015 (2)
C880.0246 (19)0.038 (2)0.037 (2)0.0166 (17)0.0005 (16)0.0059 (17)
Geometric parameters (Å, º) top
I1—Cu12.6416 (6)C40—H400.9500
I1—Cu22.6684 (6)C41—C421.353 (7)
I2—Cu22.6321 (6)C41—H410.9500
I2—Cu12.6667 (6)C42—C431.376 (7)
Cu1—P12.2786 (10)C42—H420.9500
Cu1—P22.2913 (10)C43—C441.387 (6)
Cu2—P32.2781 (10)C43—H430.9500
Cu2—P42.2923 (11)C44—H440.9500
P1—C211.824 (4)C45—C541.371 (5)
P1—C271.826 (4)C45—C461.428 (5)
P1—C11.830 (4)C46—C471.359 (6)
P2—C331.820 (4)C46—H460.9500
P2—C391.836 (4)C47—C481.421 (6)
P2—C201.843 (4)C47—H470.9500
P3—C711.829 (4)C48—C531.402 (5)
P3—C651.829 (4)C48—C491.421 (5)
P3—C451.840 (4)C49—C501.367 (7)
P4—C831.829 (4)C49—H490.9500
P4—C641.830 (4)C50—C511.385 (6)
P4—C771.832 (4)C50—H500.9500
C1—C101.379 (5)C51—C521.370 (6)
C1—C21.415 (5)C51—H510.9500
C2—C31.351 (5)C52—C531.415 (5)
C2—H20.9500C52—H520.9500
C3—C41.408 (6)C53—C541.435 (5)
C3—H30.9500C54—C551.489 (5)
C4—C51.409 (5)C55—C641.390 (5)
C4—C91.418 (5)C55—C561.435 (5)
C5—C61.345 (6)C56—C611.405 (5)
C5—H50.9500C56—C571.412 (5)
C6—C71.401 (6)C57—C581.363 (5)
C6—H60.9500C57—H570.9500
C7—C81.370 (5)C58—C591.405 (6)
C7—H70.9500C58—H580.9500
C8—C91.411 (5)C59—C601.359 (6)
C8—H80.9500C59—H590.9500
C9—C101.427 (5)C60—C611.429 (6)
C10—C111.504 (5)C60—H600.9500
C11—C201.396 (5)C61—C621.404 (6)
C11—C121.433 (5)C62—C631.360 (6)
C12—C131.407 (5)C62—H620.9500
C12—C171.411 (5)C63—C641.408 (5)
C13—C141.362 (5)C63—H630.9500
C13—H130.9500C65—C661.385 (5)
C14—C151.415 (6)C65—C701.390 (5)
C14—H140.9500C66—C671.385 (6)
C15—C161.349 (6)C66—H660.9500
C15—H150.9500C67—C681.365 (6)
C16—C171.422 (5)C67—H670.9500
C16—H160.9500C68—C691.387 (6)
C17—C181.410 (6)C68—H680.9500
C18—C191.360 (5)C69—C701.382 (6)
C18—H180.9500C69—H690.9500
C19—C201.417 (5)C70—H700.9500
C19—H190.9500C71—C761.376 (5)
C21—C221.366 (6)C71—C721.381 (5)
C21—C261.387 (5)C72—C731.386 (6)
C22—C231.401 (6)C72—H720.9500
C22—H220.9500C73—C741.385 (6)
C23—C241.365 (7)C73—H730.9500
C23—H230.9500C74—C751.371 (6)
C24—C251.360 (7)C74—H740.9500
C24—H240.9500C75—C761.389 (6)
C25—C261.379 (6)C75—H750.9500
C25—H250.9500C76—H760.9500
C26—H260.9500C77—C821.375 (6)
C27—C281.375 (6)C77—C781.388 (7)
C27—C321.391 (6)C78—C791.391 (7)
C28—C291.419 (6)C78—H780.9500
C28—H280.9500C79—C801.343 (10)
C29—C301.368 (7)C79—H790.9500
C29—H290.9500C80—C811.360 (10)
C30—C311.368 (7)C80—H800.9500
C30—H300.9500C81—C821.400 (7)
C31—C321.395 (5)C81—H810.9500
C31—H310.9500C82—H820.9500
C32—H320.9500C83—C841.382 (6)
C33—C381.388 (5)C83—C881.390 (6)
C33—C341.391 (5)C84—C851.391 (6)
C34—C351.382 (6)C84—H840.9500
C34—H340.9500C85—C861.373 (8)
C35—C361.387 (6)C85—H850.9500
C35—H350.9500C86—C871.371 (8)
C36—C371.384 (6)C86—H860.9500
C36—H360.9500C87—C881.382 (6)
C37—C381.380 (6)C87—H870.9500
C37—H370.9500C88—H880.9500
C38—H380.9500O1W—O2W1.810 (18)
C39—C401.386 (6)O2W—O2Wi1.74 (2)
C39—C441.391 (6)O2W—O2Wii1.74 (2)
C40—C411.402 (6)
Cu1—I1—Cu273.374 (17)C40—C39—P2118.6 (3)
Cu2—I2—Cu173.554 (17)C44—C39—P2123.0 (3)
P1—Cu1—P299.52 (3)C39—C40—C41120.7 (4)
P1—Cu1—I1113.56 (3)C39—C40—H40119.6
P2—Cu1—I1116.10 (3)C41—C40—H40119.6
P1—Cu1—I2105.85 (3)C42—C41—C40120.1 (4)
P2—Cu1—I2119.29 (3)C42—C41—H41120.0
I1—Cu1—I2102.499 (17)C40—C41—H41120.0
P3—Cu2—P498.53 (3)C41—C42—C43120.2 (4)
P3—Cu2—I2110.17 (3)C41—C42—H42119.9
P4—Cu2—I2121.29 (3)C43—C42—H42119.9
P3—Cu2—I1123.85 (3)C42—C43—C44120.4 (4)
P4—Cu2—I1101.56 (3)C42—C43—H43119.8
I2—Cu2—I1102.708 (17)C44—C43—H43119.8
C21—P1—C2799.34 (16)C43—C44—C39120.5 (4)
C21—P1—C1105.39 (17)C43—C44—H44119.8
C27—P1—C1103.32 (17)C39—C44—H44119.8
C21—P1—Cu1122.96 (13)C54—C45—C46118.8 (3)
C27—P1—Cu1120.82 (13)C54—C45—P3122.8 (3)
C1—P1—Cu1102.72 (11)C46—C45—P3117.8 (3)
C33—P2—C39100.42 (17)C47—C46—C45121.7 (4)
C33—P2—C20104.31 (17)C47—C46—H46119.2
C39—P2—C20106.85 (16)C45—C46—H46119.2
C33—P2—Cu1121.03 (12)C46—C47—C48120.1 (4)
C39—P2—Cu1118.22 (13)C46—C47—H47120.0
C20—P2—Cu1104.65 (11)C48—C47—H47120.0
C71—P3—C65101.28 (17)C53—C48—C47119.5 (4)
C71—P3—C45106.87 (16)C53—C48—C49119.1 (4)
C65—P3—C45103.81 (16)C47—C48—C49121.3 (4)
C71—P3—Cu2117.98 (12)C50—C49—C48119.9 (4)
C65—P3—Cu2121.08 (12)C50—C49—H49120.0
C45—P3—Cu2104.37 (11)C48—C49—H49120.0
C83—P4—C64107.02 (18)C49—C50—C51121.2 (4)
C83—P4—C7798.44 (18)C49—C50—H50119.4
C64—P4—C77105.15 (19)C51—C50—H50119.4
C83—P4—Cu2120.37 (14)C52—C51—C50119.9 (4)
C64—P4—Cu2104.13 (13)C52—C51—H51120.0
C77—P4—Cu2120.42 (15)C50—C51—H51120.0
C10—C1—C2119.9 (3)C51—C52—C53120.8 (4)
C10—C1—P1122.8 (3)C51—C52—H52119.6
C2—C1—P1116.7 (3)C53—C52—H52119.6
C3—C2—C1121.4 (4)C48—C53—C52118.9 (4)
C3—C2—H2119.3C48—C53—C54119.2 (3)
C1—C2—H2119.3C52—C53—C54121.9 (3)
C2—C3—C4120.5 (3)C45—C54—C53120.6 (3)
C2—C3—H3119.7C45—C54—C55120.9 (3)
C4—C3—H3119.7C53—C54—C55118.5 (3)
C3—C4—C5121.1 (3)C64—C55—C56120.1 (3)
C3—C4—C9118.9 (4)C64—C55—C54120.1 (3)
C5—C4—C9120.0 (4)C56—C55—C54119.8 (3)
C6—C5—C4120.5 (4)C61—C56—C57119.1 (3)
C6—C5—H5119.8C61—C56—C55118.9 (3)
C4—C5—H5119.8C57—C56—C55121.9 (3)
C5—C6—C7120.9 (4)C58—C57—C56120.6 (4)
C5—C6—H6119.5C58—C57—H57119.7
C7—C6—H6119.5C56—C57—H57119.7
C8—C7—C6119.8 (4)C57—C58—C59120.9 (4)
C8—C7—H7120.1C57—C58—H58119.6
C6—C7—H7120.1C59—C58—H58119.6
C7—C8—C9121.3 (4)C60—C59—C58119.9 (4)
C7—C8—H8119.4C60—C59—H59120.1
C9—C8—H8119.4C58—C59—H59120.1
C8—C9—C4117.5 (4)C59—C60—C61120.7 (4)
C8—C9—C10122.8 (3)C59—C60—H60119.6
C4—C9—C10119.7 (4)C61—C60—H60119.6
C1—C10—C9119.0 (3)C62—C61—C56119.7 (4)
C1—C10—C11121.4 (3)C62—C61—C60121.4 (4)
C9—C10—C11119.5 (3)C56—C61—C60118.9 (4)
C20—C11—C12119.9 (3)C63—C62—C61120.6 (4)
C20—C11—C10119.6 (3)C63—C62—H62119.7
C12—C11—C10120.5 (3)C61—C62—H62119.7
C13—C12—C17118.4 (3)C62—C63—C64121.6 (4)
C13—C12—C11122.3 (3)C62—C63—H63119.2
C17—C12—C11119.3 (3)C64—C63—H63119.2
C14—C13—C12121.7 (4)C55—C64—C63118.9 (4)
C14—C13—H13119.2C55—C64—P4121.7 (3)
C12—C13—H13119.2C63—C64—P4118.6 (3)
C13—C14—C15119.5 (4)C66—C65—C70118.8 (4)
C13—C14—H14120.3C66—C65—P3118.1 (3)
C15—C14—H14120.3C70—C65—P3122.9 (3)
C16—C15—C14120.6 (4)C67—C66—C65120.2 (4)
C16—C15—H15119.7C67—C66—H66119.9
C14—C15—H15119.7C65—C66—H66119.9
C15—C16—C17120.7 (4)C68—C67—C66120.7 (4)
C15—C16—H16119.7C68—C67—H67119.7
C17—C16—H16119.7C66—C67—H67119.7
C18—C17—C12119.3 (3)C67—C68—C69119.8 (4)
C18—C17—C16121.6 (3)C67—C68—H68120.1
C12—C17—C16119.1 (4)C69—C68—H68120.1
C19—C18—C17121.1 (3)C70—C69—C68119.8 (4)
C19—C18—H18119.5C70—C69—H69120.1
C17—C18—H18119.4C68—C69—H69120.1
C18—C19—C20121.1 (4)C69—C70—C65120.5 (4)
C18—C19—H19119.4C69—C70—H70119.7
C20—C19—H19119.4C65—C70—H70119.7
C11—C20—C19119.2 (3)C76—C71—C72119.4 (4)
C11—C20—P2122.6 (3)C76—C71—P3117.9 (3)
C19—C20—P2117.8 (3)C72—C71—P3122.7 (3)
C22—C21—C26119.2 (4)C71—C72—C73120.4 (4)
C22—C21—P1119.5 (3)C71—C72—H72119.8
C26—C21—P1121.4 (3)C73—C72—H72119.8
C21—C22—C23119.9 (4)C74—C73—C72120.1 (4)
C21—C22—H22120.1C74—C73—H73120.0
C23—C22—H22120.1C72—C73—H73120.0
C24—C23—C22120.0 (4)C75—C74—C73119.3 (4)
C24—C23—H23120.0C75—C74—H74120.3
C22—C23—H23120.0C73—C74—H74120.3
C25—C24—C23120.3 (4)C74—C75—C76120.7 (4)
C25—C24—H24119.8C74—C75—H75119.6
C23—C24—H24119.8C76—C75—H75119.6
C24—C25—C26120.0 (4)C71—C76—C75120.1 (4)
C24—C25—H25120.0C71—C76—H76120.0
C26—C25—H25120.0C75—C76—H76120.0
C25—C26—C21120.6 (4)C82—C77—C78119.1 (4)
C25—C26—H26119.7C82—C77—P4116.9 (4)
C21—C26—H26119.7C78—C77—P4123.7 (3)
C28—C27—C32119.4 (4)C77—C78—C79119.8 (5)
C28—C27—P1117.9 (3)C77—C78—H78120.1
C32—C27—P1122.6 (3)C79—C78—H78120.1
C27—C28—C29119.9 (4)C80—C79—C78120.9 (6)
C27—C28—H28120.0C80—C79—H79119.6
C29—C28—H28120.0C78—C79—H79119.6
C30—C29—C28119.1 (4)C79—C80—C81120.0 (5)
C30—C29—H29120.5C79—C80—H80120.0
C28—C29—H29120.5C81—C80—H80120.0
C29—C30—C31121.8 (4)C80—C81—C82120.8 (6)
C29—C30—H30119.1C80—C81—H81119.6
C31—C30—H30119.1C82—C81—H81119.6
C30—C31—C32119.1 (5)C77—C82—C81119.4 (6)
C30—C31—H31120.5C77—C82—H82120.3
C32—C31—H31120.5C81—C82—H82120.3
C27—C32—C31120.7 (4)C84—C83—C88119.4 (4)
C27—C32—H32119.6C84—C83—P4118.2 (3)
C31—C32—H32119.6C88—C83—P4122.2 (3)
C38—C33—C34119.3 (4)C83—C84—C85119.6 (4)
C38—C33—P2121.7 (3)C83—C84—H84120.2
C34—C33—P2118.9 (3)C85—C84—H84120.2
C35—C34—C33120.5 (4)C86—C85—C84120.9 (5)
C35—C34—H34119.8C86—C85—H85119.6
C33—C34—H34119.8C84—C85—H85119.6
C34—C35—C36119.9 (4)C87—C86—C85119.3 (4)
C34—C35—H35120.1C87—C86—H86120.3
C36—C35—H35120.1C85—C86—H86120.3
C37—C36—C35119.7 (4)C86—C87—C88120.9 (4)
C37—C36—H36120.1C86—C87—H87119.6
C35—C36—H36120.1C88—C87—H87119.6
C38—C37—C36120.4 (4)C87—C88—C83119.9 (4)
C38—C37—H37119.8C87—C88—H88120.1
C36—C37—H37119.8C83—C88—H88120.1
C37—C38—C33120.2 (4)O2Wi—O2W—O2Wii60.000 (7)
C37—C38—H38119.9O2Wi—O2W—O1W94.7 (6)
C33—C38—H38119.9O2Wii—O2W—O1W70.3 (7)
C40—C39—C44118.1 (4)
Cu2—I1—Cu1—P1134.86 (3)C20—P2—C33—C34142.9 (3)
Cu2—I1—Cu1—P2110.65 (3)Cu1—P2—C33—C3425.6 (3)
Cu2—I1—Cu1—I221.158 (14)C38—C33—C34—C350.7 (5)
Cu2—I2—Cu1—P1140.69 (3)P2—C33—C34—C35177.2 (3)
Cu2—I2—Cu1—P2108.43 (3)C33—C34—C35—C360.4 (6)
Cu2—I2—Cu1—I121.443 (15)C34—C35—C36—C370.1 (6)
Cu1—I2—Cu2—P3112.49 (3)C35—C36—C37—C380.1 (6)
Cu1—I2—Cu2—P4133.42 (3)C36—C37—C38—C330.4 (6)
Cu1—I2—Cu2—I121.236 (15)C34—C33—C38—C370.7 (5)
Cu1—I1—Cu2—P3103.77 (4)P2—C33—C38—C37177.1 (3)
Cu1—I1—Cu2—P4147.60 (3)C33—P2—C39—C40166.7 (3)
Cu1—I1—Cu2—I221.468 (15)C20—P2—C39—C4084.7 (3)
P2—Cu1—P1—C2182.03 (14)Cu1—P2—C39—C4032.8 (4)
I1—Cu1—P1—C2142.01 (14)C33—P2—C39—C446.8 (4)
I2—Cu1—P1—C21153.68 (14)C20—P2—C39—C44101.8 (4)
P2—Cu1—P1—C27150.24 (14)Cu1—P2—C39—C44140.7 (3)
I1—Cu1—P1—C2785.72 (15)C44—C39—C40—C410.7 (6)
I2—Cu1—P1—C2725.95 (15)P2—C39—C40—C41174.5 (3)
P2—Cu1—P1—C136.05 (12)C39—C40—C41—C420.0 (7)
I1—Cu1—P1—C1160.09 (11)C40—C41—C42—C431.2 (7)
I2—Cu1—P1—C188.24 (11)C41—C42—C43—C441.7 (8)
P1—Cu1—P2—C3376.45 (14)C42—C43—C44—C391.0 (7)
I1—Cu1—P2—C33161.30 (13)C40—C39—C44—C430.2 (6)
I2—Cu1—P2—C3337.86 (14)P2—C39—C44—C43173.7 (3)
P1—Cu1—P2—C39159.34 (15)C71—P3—C45—C5448.9 (3)
I1—Cu1—P2—C3937.09 (15)C65—P3—C45—C54155.4 (3)
I2—Cu1—P2—C3986.35 (15)Cu2—P3—C45—C5476.9 (3)
P1—Cu1—P2—C2040.64 (12)C71—P3—C45—C46140.7 (3)
I1—Cu1—P2—C2081.60 (12)C65—P3—C45—C4634.1 (3)
I2—Cu1—P2—C20154.95 (12)Cu2—P3—C45—C4693.6 (3)
P4—Cu2—P3—C7181.28 (14)C54—C45—C46—C472.2 (6)
I2—Cu2—P3—C71150.79 (14)P3—C45—C46—C47173.0 (3)
I1—Cu2—P3—C7128.88 (15)C45—C46—C47—C481.2 (6)
P4—Cu2—P3—C65153.34 (14)C46—C47—C48—C531.5 (6)
I2—Cu2—P3—C6525.42 (14)C46—C47—C48—C49178.6 (4)
I1—Cu2—P3—C6596.50 (14)C53—C48—C49—C502.9 (6)
P4—Cu2—P3—C4537.10 (12)C47—C48—C49—C50179.9 (4)
I2—Cu2—P3—C4590.83 (12)C48—C49—C50—C510.9 (6)
I1—Cu2—P3—C45147.26 (12)C49—C50—C51—C521.0 (7)
P3—Cu2—P4—C8379.91 (15)C50—C51—C52—C530.7 (6)
I2—Cu2—P4—C8340.04 (15)C47—C48—C53—C52179.7 (3)
I1—Cu2—P4—C83152.82 (14)C49—C48—C53—C523.1 (6)
P3—Cu2—P4—C6439.91 (12)C47—C48—C53—C541.4 (6)
I2—Cu2—P4—C64159.86 (12)C49—C48—C53—C54175.8 (3)
I1—Cu2—P4—C6487.36 (12)C51—C52—C53—C481.3 (6)
P3—Cu2—P4—C77157.32 (16)C51—C52—C53—C54177.5 (4)
I2—Cu2—P4—C7782.73 (16)C46—C45—C54—C535.1 (5)
I1—Cu2—P4—C7730.04 (16)P3—C45—C54—C53175.5 (3)
C21—P1—C1—C1048.5 (3)C46—C45—C54—C55173.0 (3)
C27—P1—C1—C10152.3 (3)P3—C45—C54—C552.7 (5)
Cu1—P1—C1—C1081.4 (3)C48—C53—C54—C454.8 (5)
C21—P1—C1—C2140.7 (3)C52—C53—C54—C45176.3 (3)
C27—P1—C1—C236.9 (3)C48—C53—C54—C55173.4 (3)
Cu1—P1—C1—C289.5 (3)C52—C53—C54—C555.5 (5)
C10—C1—C2—C32.9 (5)C45—C54—C55—C6472.9 (5)
P1—C1—C2—C3174.0 (3)C53—C54—C55—C64105.3 (4)
C1—C2—C3—C44.1 (5)C45—C54—C55—C56104.0 (4)
C2—C3—C4—C5176.5 (3)C53—C54—C55—C5677.8 (4)
C2—C3—C4—C94.6 (5)C64—C55—C56—C614.0 (5)
C3—C4—C5—C6179.0 (4)C54—C55—C56—C61172.9 (3)
C9—C4—C5—C62.1 (6)C64—C55—C56—C57178.5 (3)
C4—C5—C6—C70.6 (6)C54—C55—C56—C574.7 (5)
C5—C6—C7—C81.5 (6)C61—C56—C57—C580.5 (6)
C6—C7—C8—C92.1 (6)C55—C56—C57—C58178.1 (4)
C7—C8—C9—C40.6 (6)C56—C57—C58—C590.5 (6)
C7—C8—C9—C10179.4 (4)C57—C58—C59—C600.2 (6)
C3—C4—C9—C8179.7 (3)C58—C59—C60—C610.7 (6)
C5—C4—C9—C81.5 (6)C57—C56—C61—C62178.4 (4)
C3—C4—C9—C101.5 (5)C55—C56—C61—C620.8 (6)
C5—C4—C9—C10177.3 (3)C57—C56—C61—C600.0 (5)
C2—C1—C10—C99.0 (5)C55—C56—C61—C60177.6 (3)
P1—C1—C10—C9179.5 (3)C59—C60—C61—C62179.0 (4)
C2—C1—C10—C11165.7 (3)C59—C60—C61—C560.6 (6)
P1—C1—C10—C114.8 (5)C56—C61—C62—C631.0 (6)
C8—C9—C10—C1173.0 (3)C60—C61—C62—C63179.4 (4)
C4—C9—C10—C18.3 (5)C61—C62—C63—C640.3 (7)
C8—C9—C10—C1112.3 (5)C56—C55—C64—C635.3 (6)
C4—C9—C10—C11166.5 (3)C54—C55—C64—C63171.6 (4)
C1—C10—C11—C2070.8 (4)C56—C55—C64—P4174.8 (3)
C9—C10—C11—C20103.9 (4)C54—C55—C64—P42.1 (5)
C1—C10—C11—C12111.0 (4)C62—C63—C64—C553.5 (7)
C9—C10—C11—C1274.3 (4)C62—C63—C64—P4173.3 (3)
C20—C11—C12—C13176.4 (3)C83—P4—C64—C5550.2 (4)
C10—C11—C12—C131.8 (5)C77—P4—C64—C55154.2 (3)
C20—C11—C12—C173.9 (5)Cu2—P4—C64—C5578.3 (3)
C10—C11—C12—C17177.9 (3)C83—P4—C64—C63140.2 (3)
C17—C12—C13—C140.1 (5)C77—P4—C64—C6336.2 (4)
C11—C12—C13—C14179.6 (3)Cu2—P4—C64—C6391.3 (3)
C12—C13—C14—C150.8 (6)C71—P3—C65—C66107.0 (3)
C13—C14—C15—C160.6 (6)C45—P3—C65—C66142.3 (3)
C14—C15—C16—C170.5 (6)Cu2—P3—C65—C6625.8 (3)
C13—C12—C17—C18178.3 (3)C71—P3—C65—C7068.7 (4)
C11—C12—C17—C182.0 (5)C45—P3—C65—C7042.0 (4)
C13—C12—C17—C161.2 (5)Cu2—P3—C65—C70158.5 (3)
C11—C12—C17—C16178.5 (3)C70—C65—C66—C672.8 (6)
C15—C16—C17—C18178.0 (4)P3—C65—C66—C67173.1 (3)
C15—C16—C17—C121.4 (6)C65—C66—C67—C680.7 (6)
C12—C17—C18—C190.7 (6)C66—C67—C68—C691.9 (7)
C16—C17—C18—C19178.7 (4)C67—C68—C69—C702.4 (6)
C17—C18—C19—C201.6 (6)C68—C69—C70—C650.3 (6)
C12—C11—C20—C193.1 (5)C66—C65—C70—C692.3 (6)
C10—C11—C20—C19178.7 (3)P3—C65—C70—C69173.4 (3)
C12—C11—C20—P2175.5 (3)C65—P3—C71—C76123.4 (3)
C10—C11—C20—P26.3 (5)C45—P3—C71—C76128.2 (3)
C18—C19—C20—C110.3 (5)Cu2—P3—C71—C7611.2 (4)
C18—C19—C20—P2173.1 (3)C65—P3—C71—C7255.3 (4)
C33—P2—C20—C1153.6 (3)C45—P3—C71—C7253.1 (4)
C39—P2—C20—C11159.4 (3)Cu2—P3—C71—C72170.1 (3)
Cu1—P2—C20—C1174.5 (3)C76—C71—C72—C730.9 (6)
C33—P2—C20—C19133.9 (3)P3—C71—C72—C73179.5 (3)
C39—P2—C20—C1928.1 (3)C71—C72—C73—C741.7 (7)
Cu1—P2—C20—C1998.1 (3)C72—C73—C74—C751.6 (7)
C27—P1—C21—C22115.1 (3)C73—C74—C75—C760.7 (7)
C1—P1—C21—C22138.2 (3)C72—C71—C76—C750.0 (6)
Cu1—P1—C21—C2221.4 (4)P3—C71—C76—C75178.7 (3)
C27—P1—C21—C2664.5 (3)C74—C75—C76—C710.1 (7)
C1—P1—C21—C2642.2 (3)C83—P4—C77—C8295.4 (4)
Cu1—P1—C21—C26158.9 (2)C64—P4—C77—C82154.3 (3)
C26—C21—C22—C230.1 (6)Cu2—P4—C77—C8237.4 (4)
P1—C21—C22—C23179.8 (3)C83—P4—C77—C7878.1 (4)
C21—C22—C23—C240.6 (7)C64—P4—C77—C7832.2 (4)
C22—C23—C24—C251.1 (7)Cu2—P4—C77—C78149.1 (3)
C23—C24—C25—C260.8 (6)C82—C77—C78—C790.7 (7)
C24—C25—C26—C210.1 (6)P4—C77—C78—C79172.7 (4)
C22—C21—C26—C250.4 (5)C77—C78—C79—C800.1 (9)
P1—C21—C26—C25180.0 (3)C78—C79—C80—C810.9 (9)
C21—P1—C27—C28105.1 (3)C79—C80—C81—C821.4 (9)
C1—P1—C27—C28146.5 (3)C78—C77—C82—C810.2 (7)
Cu1—P1—C27—C2832.6 (3)P4—C77—C82—C81173.6 (4)
C21—P1—C27—C3271.2 (4)C80—C81—C82—C770.9 (8)
C1—P1—C27—C3237.1 (4)C64—P4—C83—C84135.9 (3)
Cu1—P1—C27—C32151.0 (3)C77—P4—C83—C84115.4 (3)
C32—C27—C28—C291.5 (6)Cu2—P4—C83—C8417.5 (4)
P1—C27—C28—C29175.0 (3)C64—P4—C83—C8848.6 (4)
C27—C28—C29—C301.2 (6)C77—P4—C83—C8860.2 (4)
C28—C29—C30—C310.3 (6)Cu2—P4—C83—C88167.0 (3)
C29—C30—C31—C320.3 (7)C88—C83—C84—C850.8 (6)
C28—C27—C32—C311.0 (6)P4—C83—C84—C85176.4 (3)
P1—C27—C32—C31175.4 (3)C83—C84—C85—C860.0 (7)
C30—C31—C32—C270.1 (7)C84—C85—C86—C870.9 (7)
C39—P2—C33—C3871.3 (3)C85—C86—C87—C880.9 (7)
C20—P2—C33—C3839.3 (3)C86—C87—C88—C830.1 (6)
Cu1—P2—C33—C38156.5 (3)C84—C83—C88—C870.8 (6)
C39—P2—C33—C34106.5 (3)P4—C83—C88—C87176.3 (3)
Symmetry codes: (i) y+2, xy+1, z; (ii) x+y+1, x+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C40—H40···I10.953.023.894 (4)153

Experimental details

Crystal data
Chemical formula[Cu2I2(C44H32P2)2]·0.67H2O
Mr1638.16
Crystal system, space groupHexagonal, P63
Temperature (K)123
a, c (Å)25.573 (3), 18.593 (2)
V3)10530 (2)
Z6
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.696, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
187180, 16098, 15085
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.09
No. of reflections16098
No. of parameters873
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0381P)2 + 15.830P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.62, 0.57
Absolute structureFlack (1983), 7802 Friedel pairs
Absolute structure parameter0.014 (9)

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C40—H40···I10.953.023.894 (4)153.0
Comparison of selected bond distances and angles (Å, °) for two (R)-BINAP–Cu–halide complexes. top
Halide XCu—XCu—PX—Cu—XX—Cu—PP—Cu—PCu—X—Cu
Iodide2.6412.28102.5113.699.573.3
Chloride2.3782.26098.0114.9100.281.3
Values for the iodide complex are from this work, while data for the chloride complex were taken from Hattori et al. (2010).
 

Acknowledgements

We acknowledge the Karlsruhe Institute of Technology (KIT) for continued support in the context of the Excellence Initiative for leading German universities. Financial support from the Verband der Chemischen Industrie (VCI) and the Deutsche Forschungsgemeinschaft (DFG) funding the transregional collaborative research center SFB/TRR 88 3MET are acknowledged.

References

First citationBalamurugan, R., Palaniandavar, M. & Gopalan, R. S. (2001). Inorg. Chem. 40, 2246–2255.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHashimoto, M., Igawa, S., Yashima, M., Kawata, I., Hoshino, M. & Osawa, M. (2011). J. Am. Chem. Soc. 133, 10348–51.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHattori, G., Sakata, K., Matsuzawa, H., Tanabe, Y., Miyake, Y. & Nishibayashi, Y. (2010). J. Am. Chem. Soc. 132, 10592–608.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKunkely, H., Pawlowski, V. & Vogler, A. (2008). Inorg. Chem. Commun. 11, 1003–1005.  Web of Science CrossRef CAS Google Scholar
First citationLipshutz, B. H., Frieman, B. & Birkedal, H. (2004). Org. Lett. 6, 2305–2308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932–7934.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYersin, H., Rausch, A. F., Czerwieniec, R., Hofbeck, T. & Fischer, T. (2011). Coord. Chem. Rev. 255, 2622–2652.  Web of Science CrossRef CAS Google Scholar
First citationZink, D. M., Grab, T., Baumann, T., Nieger, M., Barnes, E. C., Klopper, W. & Bräse, S. (2011). Organometallics, 30, 3275–3283.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m466-m467
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds