organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1157-o1158

A second monoclinic polymorph for 3-amino-1-(4-meth­­oxy­phen­yl)-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 March 2012; accepted 19 March 2012; online 24 March 2012)

The title compound, C23H17N3O, has been previously described in a monoclinic P21/c polymorph with Z = 4 [Asiri, Al-Youbi, Faidallah, Ng & Tiekink (2011). Acta Cryst. E67, o2449]. In the new monoclinic P21/n form, with Z = 8, there are two independent mol­ecules, A and B, in the asymmetric unit. In both mol­ecules, the cyclo­hexa-1,3-diene ring has a screw-boat conformation, whereas it is a distorted half-chair in the original polymorph. There is a fold in each mol­ecule, as indicated by the dihedral angle between the benzene rings of the 1,2-dihydro­naphthalene and aniline residues of 33.19 (10)° (mol­ecule A) and 30.6 (10)° (mol­ecule B). The meth­oxy­benzene ring is twisted out of the plane of the aniline residue to which it is connected [dihedral angles = 49.22 (10) and 73.27 (10)°, in A and B respectively]. In the crystal, the two independent mol­ecules self-associate via N—H⋯N hydrogen bonds, generating a 12-membered {⋯HNC3N}2 synthon. These are connected into a supra­molecular tape in the (-101) plane by N—H⋯O(meth­oxy) inter­actions. In the P21/c polymorph, supra­molecular layers are formed by N—H⋯N and N—H⋯O inter­actions.

Related literature

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010[Wang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337-12342.]); Rostom et al. (2011[Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260-1272.]). For related structures, see: Asiri et al. (2011a[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011a). Acta Cryst. E67, o2873.],b[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.]); Al-Youbi et al. (2012[Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027-o1028.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17N3O

  • Mr = 351.40

  • Monoclinic, P 21 /n

  • a = 11.5197 (6) Å

  • b = 25.1585 (12) Å

  • c = 11.9564 (6) Å

  • β = 90.719 (5)°

  • V = 3464.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.35 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.971, Tmax = 0.992

  • 20450 measured reflections

  • 7990 independent reflections

  • 5348 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.156

  • S = 1.04

  • 7990 reflections

  • 503 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N6 0.89 (1) 2.25 (2) 3.081 (3) 157 (3)
N5—H3⋯N1 0.88 (1) 2.36 (1) 3.213 (3) 162 (2)
N2—H1⋯O1i 0.88 (2) 2.56 (2) 3.271 (3) 139 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with structural studies on phenanthrene compounds (Asiri et al., 2011a; Asiri et al., 2011b; Al-Youbi et al., 2012), of interest owing to biological activity (Wang et al. 2010; Rostom et al., 2011), a new monoclinic polymorph of the title compound 3-amino-1-(4-methoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (I) was found. Previously (I) was isolated in the monoclinic space group P21/c with Z = 4 (Asiri et al., 2011b). The new form crystallizes in the monoclinic space group P21/n with two independent molecules in the asymmetric unit, Fig. 1.

The conformations of the two independent molecules in (I) differ in two regions of the molecule. In the N1-containing molecule, the cyclohexa-1,3-diene ring has a screw-boat conformation as defined by the following geometric parameters (Cremer & Pople, 1975): puckering parameters q2 = 0.527 (2) Å and q3 = 0.156 (2) Å, and amplitudes: Q = 0.549 (2) Å, θ = 73.5 (2)° and φ2 = 93.2 (3)°. By contrast, in the N4-containing molecule, the conformation is based on a distorted half-chair with puckering parameters: q2 = 0.530 (2) Å, q3 = -0.178 (2) Å, Q = 0.558 (2) Å, θ = 108.5 (2)° and φ2 = 265.8 (3) °. In the P21/c polymorph of (I), the conformation matches more closely a distorted half-chair.

For the first independent molecule, the benzene rings of the 1,2-dihydronaphthalene and methoxybenzene residues form dihedral angles of 33.19 (10) and 49.22 (10)°, respectively, with the amino-benzene ring, indicating non-planarity in the fused ring system and a twist of the methoxybenzene out of the plane of the benzene ring to which it is connected. The comparable angles for the second independent molecule are 30.6 (10) and 73.27 (10)°, respectively. Figure 2 shows an overlay diagram for the three independent molecules of (I) characterized in the two polymorphs.

In the crystal structure of (I) the two independent molecules self-associate via N—H···N hydrogen bonds to generate 12-membered {···HNC3N}2 synthons, Fig. 3 and Table 1. One of the amino-H atoms forms a hydrogen bond to a methoxy-O atom leading to the formation of a supramolecular tape along [1 0 1], Fig. 3 and Table 1. The fourth independent amino-H atom does not participate in a significant intermolecular interaction. In the previously described P21/c form of (I), supramolecular arrays with a zigzag topology were formed through N—H···N hydrogen bonds, leading to {···HNC3N}2 synthons, as well N—H···O(methoxy) hydrogen bonding.

Related literature top

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010); Rostom et al. (2011). For related structures, see: Asiri et al. (2011a,b); Al-Youbi et al. (2012). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 4-methoxybenzaldehyde (1.38 g, 0.01 mmol), 1-tetralone (1.46 g, 0.01 mmol), malononitrile (0.66 g, 0.01 mmol) and ammonium acetate (6.2 g, 0.08 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool, and the formed precipitate was filtered, washed with water, dried and recrystallized from ethanol. Yield: 69%. M.pt: 533–535 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined. Owing to poor agreement, the (1 0 1) and (0 2 1) reflections were omitted from the final cycles of refinement.

Structure description top

In connection with structural studies on phenanthrene compounds (Asiri et al., 2011a; Asiri et al., 2011b; Al-Youbi et al., 2012), of interest owing to biological activity (Wang et al. 2010; Rostom et al., 2011), a new monoclinic polymorph of the title compound 3-amino-1-(4-methoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (I) was found. Previously (I) was isolated in the monoclinic space group P21/c with Z = 4 (Asiri et al., 2011b). The new form crystallizes in the monoclinic space group P21/n with two independent molecules in the asymmetric unit, Fig. 1.

The conformations of the two independent molecules in (I) differ in two regions of the molecule. In the N1-containing molecule, the cyclohexa-1,3-diene ring has a screw-boat conformation as defined by the following geometric parameters (Cremer & Pople, 1975): puckering parameters q2 = 0.527 (2) Å and q3 = 0.156 (2) Å, and amplitudes: Q = 0.549 (2) Å, θ = 73.5 (2)° and φ2 = 93.2 (3)°. By contrast, in the N4-containing molecule, the conformation is based on a distorted half-chair with puckering parameters: q2 = 0.530 (2) Å, q3 = -0.178 (2) Å, Q = 0.558 (2) Å, θ = 108.5 (2)° and φ2 = 265.8 (3) °. In the P21/c polymorph of (I), the conformation matches more closely a distorted half-chair.

For the first independent molecule, the benzene rings of the 1,2-dihydronaphthalene and methoxybenzene residues form dihedral angles of 33.19 (10) and 49.22 (10)°, respectively, with the amino-benzene ring, indicating non-planarity in the fused ring system and a twist of the methoxybenzene out of the plane of the benzene ring to which it is connected. The comparable angles for the second independent molecule are 30.6 (10) and 73.27 (10)°, respectively. Figure 2 shows an overlay diagram for the three independent molecules of (I) characterized in the two polymorphs.

In the crystal structure of (I) the two independent molecules self-associate via N—H···N hydrogen bonds to generate 12-membered {···HNC3N}2 synthons, Fig. 3 and Table 1. One of the amino-H atoms forms a hydrogen bond to a methoxy-O atom leading to the formation of a supramolecular tape along [1 0 1], Fig. 3 and Table 1. The fourth independent amino-H atom does not participate in a significant intermolecular interaction. In the previously described P21/c form of (I), supramolecular arrays with a zigzag topology were formed through N—H···N hydrogen bonds, leading to {···HNC3N}2 synthons, as well N—H···O(methoxy) hydrogen bonding.

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010); Rostom et al. (2011). For related structures, see: Asiri et al. (2011a,b); Al-Youbi et al. (2012). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules of (I) and the polymorph of (I). The molecules have been aligned so that nitrile-N atom closest to the partially saturated ring, amino-N and the C atom diagonally opposite to the amino-N atom have been superimposed. Colour code: red = N1-molecule of (I), green = N4-molecule (inverted) of (I) and blue = polymorph of (I).
[Figure 3] Fig. 3. A view of the supramolecular tape along [1 0 1] in (I). The N—H···N and N—H···O hydrogen bonds are shown as blue and orange dashed lines, respectively.
3-amino-1-(4-methoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile top
Crystal data top
C23H17N3OF(000) = 1472
Mr = 351.40Dx = 1.347 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4701 reflections
a = 11.5197 (6) Åθ = 2.4–27.5°
b = 25.1585 (12) ŵ = 0.09 mm1
c = 11.9564 (6) ÅT = 100 K
β = 90.719 (5)°Prism, orange
V = 3464.9 (3) Å30.35 × 0.35 × 0.10 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7990 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5348 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2432
Tmin = 0.971, Tmax = 0.992l = 1512
20450 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.057P)2 + 0.839P]
where P = (Fo2 + 2Fc2)/3
7990 reflections(Δ/σ)max = 0.001
503 parametersΔρmax = 0.33 e Å3
4 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H17N3OV = 3464.9 (3) Å3
Mr = 351.40Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.5197 (6) ŵ = 0.09 mm1
b = 25.1585 (12) ÅT = 100 K
c = 11.9564 (6) Å0.35 × 0.35 × 0.10 mm
β = 90.719 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7990 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5348 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.992Rint = 0.055
20450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0604 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
7990 reflectionsΔρmin = 0.25 e Å3
503 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10070 (14)0.15244 (6)0.28185 (14)0.0303 (4)
O20.84581 (15)0.39154 (6)1.09183 (14)0.0328 (4)
N10.35813 (17)0.54827 (8)0.59073 (16)0.0301 (5)
N20.44427 (18)0.41933 (8)0.60868 (17)0.0286 (4)
N30.45795 (18)0.28657 (8)0.52814 (17)0.0341 (5)
N40.48229 (19)0.77085 (8)0.78737 (19)0.0377 (5)
N50.49102 (17)0.64209 (8)0.72209 (16)0.0268 (4)
N60.56385 (16)0.51011 (7)0.73917 (15)0.0249 (4)
C10.15965 (18)0.40545 (8)0.38717 (18)0.0220 (5)
C20.04533 (18)0.40182 (9)0.32242 (19)0.0242 (5)
H2A0.05960.40630.24150.029*
H2B0.01020.36640.33380.029*
C30.03757 (19)0.44473 (8)0.36222 (19)0.0256 (5)
H3A0.11060.44320.31780.031*
H3B0.05660.43860.44170.031*
C40.01701 (19)0.49843 (9)0.34957 (18)0.0235 (5)
C50.0443 (2)0.54234 (9)0.31252 (19)0.0275 (5)
H50.12520.53930.29740.033*
C60.0111 (2)0.59115 (9)0.29700 (19)0.0292 (5)
H60.03230.62160.27480.035*
C70.1298 (2)0.59477 (9)0.31422 (18)0.0268 (5)
H70.16860.62730.29920.032*
C80.1925 (2)0.55150 (9)0.35315 (18)0.0249 (5)
H80.27380.55460.36530.030*
C90.13701 (19)0.50318 (8)0.37478 (17)0.0222 (5)
C100.19815 (18)0.45619 (8)0.41975 (18)0.0220 (5)
C110.29307 (18)0.46056 (8)0.49625 (18)0.0218 (5)
C120.35534 (19)0.41555 (8)0.53271 (18)0.0225 (5)
C130.32176 (19)0.36595 (8)0.48802 (18)0.0225 (5)
C140.22155 (19)0.36049 (8)0.41905 (18)0.0211 (5)
C150.32687 (18)0.51051 (9)0.54559 (18)0.0221 (5)
C160.3947 (2)0.32124 (9)0.51117 (18)0.0256 (5)
C170.18686 (18)0.30606 (8)0.38398 (18)0.0228 (5)
C180.1762 (2)0.26602 (9)0.46277 (19)0.0268 (5)
H180.18860.27420.53960.032*
C190.1478 (2)0.21416 (9)0.4326 (2)0.0278 (5)
H190.14180.18720.48790.033*
C200.12838 (18)0.20240 (9)0.3206 (2)0.0248 (5)
C210.13611 (18)0.24202 (9)0.24038 (19)0.0248 (5)
H210.12130.23390.16390.030*
C220.16527 (18)0.29310 (9)0.27145 (18)0.0242 (5)
H220.17080.31990.21590.029*
C230.1006 (2)0.11064 (9)0.3630 (2)0.0355 (6)
H23A0.08080.07700.32630.053*
H23B0.04300.11850.42040.053*
H23C0.17770.10780.39800.053*
C240.69808 (19)0.63961 (8)1.01349 (18)0.0218 (5)
C250.7659 (2)0.64074 (9)1.12243 (18)0.0259 (5)
H25A0.84550.65401.10920.031*
H25B0.77170.60431.15350.031*
C260.7052 (2)0.67681 (9)1.20495 (18)0.0262 (5)
H26A0.62650.66301.22030.031*
H26B0.74960.67801.27630.031*
C270.69672 (18)0.73163 (9)1.15568 (18)0.0233 (5)
C280.71185 (19)0.77700 (9)1.22026 (19)0.0269 (5)
H280.71950.77381.29920.032*
C290.71595 (19)0.82680 (9)1.1717 (2)0.0290 (5)
H290.72530.85751.21720.035*
C300.7064 (2)0.83184 (9)1.0572 (2)0.0279 (5)
H300.71400.86581.02330.033*
C310.68564 (19)0.78737 (9)0.99132 (19)0.0252 (5)
H310.67640.79120.91270.030*
C320.67824 (18)0.73687 (8)1.03971 (19)0.0229 (5)
C330.65311 (18)0.68813 (8)0.97334 (18)0.0219 (5)
C340.58428 (18)0.68879 (8)0.87531 (18)0.0213 (5)
C350.56000 (18)0.64163 (8)0.81431 (18)0.0210 (5)
C360.61077 (18)0.59420 (8)0.85423 (18)0.0213 (5)
C370.67812 (19)0.59281 (8)0.95346 (18)0.0215 (5)
C380.5298 (2)0.73604 (9)0.8308 (2)0.0275 (5)
C390.58701 (18)0.54667 (9)0.79306 (18)0.0215 (5)
C400.72664 (19)0.54034 (8)0.99069 (17)0.0209 (5)
C410.6805 (2)0.51357 (9)1.08273 (19)0.0266 (5)
H410.61930.52931.12370.032*
C420.7230 (2)0.46448 (9)1.11451 (19)0.0282 (5)
H420.69080.44671.17690.034*
C430.81266 (19)0.44099 (9)1.05564 (18)0.0244 (5)
C440.8609 (2)0.46710 (9)0.96590 (19)0.0253 (5)
H440.92370.45170.92660.030*
C450.81622 (19)0.51622 (8)0.93386 (18)0.0240 (5)
H450.84820.53370.87100.029*
C460.9325 (2)0.36427 (10)1.0298 (2)0.0368 (6)
H46A0.94750.32951.06400.055*
H46B1.00410.38521.03030.055*
H46C0.90520.35930.95250.055*
H10.4837 (17)0.3901 (6)0.6221 (18)0.020 (6)*
H20.466 (2)0.4511 (6)0.633 (2)0.044 (8)*
H30.469 (2)0.6121 (6)0.690 (2)0.037 (7)*
H40.460 (2)0.6715 (6)0.695 (2)0.034 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0352 (9)0.0210 (8)0.0348 (9)0.0020 (7)0.0035 (8)0.0052 (7)
O20.0406 (10)0.0253 (9)0.0326 (9)0.0105 (7)0.0036 (8)0.0064 (7)
N10.0324 (11)0.0285 (11)0.0292 (11)0.0001 (9)0.0087 (9)0.0013 (9)
N20.0327 (11)0.0217 (11)0.0312 (11)0.0024 (9)0.0098 (9)0.0009 (9)
N30.0395 (12)0.0264 (11)0.0360 (12)0.0011 (10)0.0081 (10)0.0000 (9)
N40.0426 (12)0.0272 (11)0.0431 (13)0.0031 (10)0.0126 (11)0.0005 (10)
N50.0344 (11)0.0204 (11)0.0254 (10)0.0015 (9)0.0075 (9)0.0019 (9)
N60.0275 (10)0.0229 (10)0.0240 (10)0.0010 (8)0.0055 (8)0.0010 (8)
C10.0230 (11)0.0243 (11)0.0187 (10)0.0033 (9)0.0022 (9)0.0005 (9)
C20.0256 (11)0.0244 (11)0.0226 (11)0.0036 (9)0.0024 (10)0.0009 (9)
C30.0243 (11)0.0280 (12)0.0246 (11)0.0025 (9)0.0003 (10)0.0016 (10)
C40.0249 (11)0.0267 (12)0.0190 (11)0.0006 (9)0.0006 (9)0.0039 (9)
C50.0280 (12)0.0300 (13)0.0245 (12)0.0007 (10)0.0009 (10)0.0031 (10)
C60.0370 (13)0.0264 (12)0.0243 (12)0.0070 (10)0.0035 (11)0.0011 (10)
C70.0352 (13)0.0240 (12)0.0213 (11)0.0032 (10)0.0014 (10)0.0053 (9)
C80.0301 (12)0.0242 (12)0.0204 (11)0.0010 (9)0.0024 (10)0.0037 (9)
C90.0270 (11)0.0222 (11)0.0174 (10)0.0000 (9)0.0013 (9)0.0037 (9)
C100.0220 (11)0.0244 (11)0.0199 (11)0.0014 (9)0.0044 (9)0.0006 (9)
C110.0222 (11)0.0205 (11)0.0228 (11)0.0030 (9)0.0025 (9)0.0018 (9)
C120.0233 (11)0.0238 (11)0.0205 (11)0.0027 (9)0.0033 (9)0.0002 (9)
C130.0269 (11)0.0213 (11)0.0194 (11)0.0003 (9)0.0017 (9)0.0018 (9)
C140.0255 (11)0.0200 (11)0.0180 (10)0.0019 (9)0.0035 (9)0.0004 (9)
C150.0218 (11)0.0222 (11)0.0221 (11)0.0009 (9)0.0009 (9)0.0005 (9)
C160.0327 (12)0.0219 (12)0.0220 (11)0.0069 (10)0.0011 (10)0.0020 (9)
C170.0223 (11)0.0224 (11)0.0238 (11)0.0005 (9)0.0010 (10)0.0008 (9)
C180.0326 (12)0.0253 (12)0.0225 (11)0.0028 (10)0.0016 (10)0.0028 (10)
C190.0330 (12)0.0224 (12)0.0279 (12)0.0025 (10)0.0010 (11)0.0024 (10)
C200.0212 (11)0.0221 (11)0.0311 (12)0.0010 (9)0.0008 (10)0.0064 (10)
C210.0227 (11)0.0276 (12)0.0239 (11)0.0003 (9)0.0008 (10)0.0044 (10)
C220.0241 (11)0.0273 (12)0.0212 (11)0.0005 (9)0.0033 (10)0.0007 (9)
C230.0446 (15)0.0202 (12)0.0415 (15)0.0017 (11)0.0057 (13)0.0033 (11)
C240.0239 (11)0.0224 (11)0.0191 (11)0.0022 (9)0.0000 (9)0.0012 (9)
C250.0321 (12)0.0221 (11)0.0232 (12)0.0008 (9)0.0065 (10)0.0004 (9)
C260.0326 (12)0.0269 (12)0.0190 (11)0.0045 (10)0.0032 (10)0.0012 (9)
C270.0222 (11)0.0253 (12)0.0223 (11)0.0014 (9)0.0005 (10)0.0021 (9)
C280.0280 (12)0.0277 (12)0.0250 (12)0.0024 (10)0.0025 (10)0.0041 (10)
C290.0259 (12)0.0286 (12)0.0323 (13)0.0041 (10)0.0031 (11)0.0106 (10)
C300.0296 (12)0.0191 (11)0.0349 (13)0.0007 (9)0.0021 (11)0.0006 (10)
C310.0272 (11)0.0239 (12)0.0246 (12)0.0012 (9)0.0014 (10)0.0003 (10)
C320.0210 (11)0.0214 (11)0.0266 (12)0.0008 (9)0.0033 (10)0.0022 (9)
C330.0227 (11)0.0238 (11)0.0195 (11)0.0012 (9)0.0031 (9)0.0002 (9)
C340.0242 (11)0.0191 (11)0.0206 (11)0.0007 (9)0.0009 (9)0.0009 (9)
C350.0222 (11)0.0222 (11)0.0187 (11)0.0015 (9)0.0016 (9)0.0004 (9)
C360.0250 (11)0.0187 (11)0.0201 (11)0.0016 (9)0.0016 (9)0.0011 (9)
C370.0263 (11)0.0199 (11)0.0183 (10)0.0016 (9)0.0019 (9)0.0028 (9)
C380.0295 (12)0.0256 (12)0.0274 (12)0.0002 (10)0.0029 (10)0.0034 (10)
C390.0212 (11)0.0242 (11)0.0193 (10)0.0030 (9)0.0003 (9)0.0037 (9)
C400.0256 (11)0.0199 (11)0.0170 (10)0.0032 (9)0.0042 (9)0.0005 (9)
C410.0278 (12)0.0273 (12)0.0248 (11)0.0025 (10)0.0029 (10)0.0012 (10)
C420.0332 (13)0.0277 (12)0.0240 (12)0.0001 (10)0.0045 (11)0.0057 (10)
C430.0285 (12)0.0224 (11)0.0223 (11)0.0008 (9)0.0043 (10)0.0018 (9)
C440.0263 (11)0.0261 (12)0.0236 (11)0.0002 (9)0.0022 (10)0.0038 (10)
C450.0301 (12)0.0226 (11)0.0191 (11)0.0052 (9)0.0007 (10)0.0010 (9)
C460.0420 (14)0.0291 (13)0.0392 (15)0.0112 (11)0.0017 (13)0.0003 (11)
Geometric parameters (Å, º) top
O1—C201.376 (3)C20—C211.387 (3)
O1—C231.431 (3)C21—C221.378 (3)
O2—C431.370 (3)C21—H210.9500
O2—C461.427 (3)C22—H220.9500
N1—C151.148 (3)C23—H23A0.9800
N2—C121.364 (3)C23—H23B0.9800
N2—H10.879 (9)C23—H23C0.9800
N2—H20.887 (10)C24—C371.396 (3)
N3—C161.153 (3)C24—C331.408 (3)
N4—C381.153 (3)C24—C251.511 (3)
N5—C351.351 (3)C25—C261.518 (3)
N5—H30.884 (10)C25—H25A0.9900
N5—H40.881 (10)C25—H25B0.9900
N6—C391.152 (3)C26—C271.503 (3)
C1—C141.388 (3)C26—H26A0.9900
C1—C101.405 (3)C26—H26B0.9900
C1—C21.522 (3)C27—C281.388 (3)
C2—C31.521 (3)C27—C321.406 (3)
C2—H2A0.9900C28—C291.382 (3)
C2—H2B0.9900C28—H280.9500
C3—C41.499 (3)C29—C301.378 (3)
C3—H3A0.9900C29—H290.9500
C3—H3B0.9900C30—C311.387 (3)
C4—C51.381 (3)C30—H300.9500
C4—C91.416 (3)C31—C321.399 (3)
C5—C61.398 (3)C31—H310.9500
C5—H50.9500C32—C331.487 (3)
C6—C71.383 (3)C33—C341.407 (3)
C6—H60.9500C34—C351.419 (3)
C7—C81.384 (3)C34—C381.443 (3)
C7—H70.9500C35—C361.410 (3)
C8—C91.399 (3)C36—C371.410 (3)
C8—H80.9500C36—C391.426 (3)
C9—C101.474 (3)C37—C401.499 (3)
C10—C111.421 (3)C40—C451.383 (3)
C11—C121.407 (3)C40—C411.401 (3)
C11—C151.440 (3)C41—C421.380 (3)
C12—C131.410 (3)C41—H410.9500
C13—C141.417 (3)C42—C431.389 (3)
C13—C161.429 (3)C42—H420.9500
C14—C171.486 (3)C43—C441.381 (3)
C17—C181.386 (3)C44—C451.391 (3)
C17—C221.404 (3)C44—H440.9500
C18—C191.391 (3)C45—H450.9500
C18—H180.9500C46—H46A0.9800
C19—C201.387 (3)C46—H46B0.9800
C19—H190.9500C46—H46C0.9800
C20—O1—C23116.44 (18)H23A—C23—H23B109.5
C43—O2—C46117.81 (17)O1—C23—H23C109.5
C12—N2—H1116.5 (15)H23A—C23—H23C109.5
C12—N2—H2119.4 (18)H23B—C23—H23C109.5
H1—N2—H2123 (2)C37—C24—C33119.9 (2)
C35—N5—H3121.0 (18)C37—C24—C25122.62 (19)
C35—N5—H4122.4 (17)C33—C24—C25117.50 (19)
H3—N5—H4116 (2)C24—C25—C26109.51 (19)
C14—C1—C10120.3 (2)C24—C25—H25A109.8
C14—C1—C2121.95 (19)C26—C25—H25A109.8
C10—C1—C2117.62 (19)C24—C25—H25B109.8
C3—C2—C1109.93 (18)C26—C25—H25B109.8
C3—C2—H2A109.7H25A—C25—H25B108.2
C1—C2—H2A109.7C27—C26—C25108.80 (17)
C3—C2—H2B109.7C27—C26—H26A109.9
C1—C2—H2B109.7C25—C26—H26A109.9
H2A—C2—H2B108.2C27—C26—H26B109.9
C4—C3—C2110.02 (18)C25—C26—H26B109.9
C4—C3—H3A109.7H26A—C26—H26B108.3
C2—C3—H3A109.7C28—C27—C32119.2 (2)
C4—C3—H3B109.7C28—C27—C26122.0 (2)
C2—C3—H3B109.7C32—C27—C26118.74 (19)
H3A—C3—H3B108.2C29—C28—C27121.1 (2)
C5—C4—C9119.7 (2)C29—C28—H28119.5
C5—C4—C3122.7 (2)C27—C28—H28119.5
C9—C4—C3117.7 (2)C30—C29—C28119.9 (2)
C4—C5—C6120.8 (2)C30—C29—H29120.1
C4—C5—H5119.6C28—C29—H29120.1
C6—C5—H5119.6C29—C30—C31120.1 (2)
C7—C6—C5119.4 (2)C29—C30—H30120.0
C7—C6—H6120.3C31—C30—H30120.0
C5—C6—H6120.3C30—C31—C32120.6 (2)
C6—C7—C8120.6 (2)C30—C31—H31119.7
C6—C7—H7119.7C32—C31—H31119.7
C8—C7—H7119.7C31—C32—C27118.9 (2)
C7—C8—C9120.5 (2)C31—C32—C33122.7 (2)
C7—C8—H8119.7C27—C32—C33118.35 (19)
C9—C8—H8119.7C24—C33—C34119.70 (19)
C8—C9—C4118.7 (2)C24—C33—C32117.69 (19)
C8—C9—C10123.2 (2)C34—C33—C32122.59 (19)
C4—C9—C10118.07 (19)C33—C34—C35121.59 (19)
C1—C10—C11119.1 (2)C33—C34—C38123.69 (19)
C1—C10—C9118.7 (2)C35—C34—C38114.69 (19)
C11—C10—C9122.21 (19)N5—C35—C36121.38 (19)
C12—C11—C10121.5 (2)N5—C35—C34121.51 (19)
C12—C11—C15116.2 (2)C36—C35—C34117.11 (19)
C10—C11—C15122.23 (19)C35—C36—C37121.83 (19)
N2—C12—C13121.0 (2)C35—C36—C39117.39 (19)
N2—C12—C11121.7 (2)C37—C36—C39120.71 (19)
C13—C12—C11117.3 (2)C24—C37—C36119.81 (19)
C12—C13—C14121.6 (2)C24—C37—C40122.10 (19)
C12—C13—C16117.7 (2)C36—C37—C40118.09 (18)
C14—C13—C16120.6 (2)N4—C38—C34173.6 (2)
C1—C14—C13119.5 (2)N6—C39—C36175.8 (2)
C1—C14—C17122.6 (2)C45—C40—C41117.9 (2)
C13—C14—C17117.90 (19)C45—C40—C37121.21 (18)
N1—C15—C11175.0 (2)C41—C40—C37120.86 (19)
N3—C16—C13176.7 (2)C42—C41—C40120.6 (2)
C18—C17—C22117.8 (2)C42—C41—H41119.7
C18—C17—C14120.3 (2)C40—C41—H41119.7
C22—C17—C14121.90 (19)C41—C42—C43120.3 (2)
C17—C18—C19121.9 (2)C41—C42—H42119.8
C17—C18—H18119.1C43—C42—H42119.8
C19—C18—H18119.1O2—C43—C44124.35 (19)
C20—C19—C18119.0 (2)O2—C43—C42115.62 (19)
C20—C19—H19120.5C44—C43—C42120.0 (2)
C18—C19—H19120.5C43—C44—C45119.1 (2)
O1—C20—C19123.6 (2)C43—C44—H44120.5
O1—C20—C21116.1 (2)C45—C44—H44120.5
C19—C20—C21120.2 (2)C40—C45—C44122.0 (2)
C22—C21—C20120.1 (2)C40—C45—H45119.0
C22—C21—H21119.9C44—C45—H45119.0
C20—C21—H21119.9O2—C46—H46A109.5
C21—C22—C17121.0 (2)O2—C46—H46B109.5
C21—C22—H22119.5H46A—C46—H46B109.5
C17—C22—H22119.5O2—C46—H46C109.5
O1—C23—H23A109.5H46A—C46—H46C109.5
O1—C23—H23B109.5H46B—C46—H46C109.5
C14—C1—C2—C3142.7 (2)C37—C24—C25—C26137.3 (2)
C10—C1—C2—C333.8 (3)C33—C24—C25—C2642.0 (3)
C1—C2—C3—C457.0 (2)C24—C25—C26—C2759.1 (2)
C2—C3—C4—C5139.7 (2)C25—C26—C27—C28141.3 (2)
C2—C3—C4—C938.9 (3)C25—C26—C27—C3235.7 (3)
C9—C4—C5—C61.5 (3)C32—C27—C28—C293.9 (3)
C3—C4—C5—C6177.0 (2)C26—C27—C28—C29173.1 (2)
C4—C5—C6—C72.9 (3)C27—C28—C29—C300.8 (3)
C5—C6—C7—C84.0 (3)C28—C29—C30—C313.9 (3)
C6—C7—C8—C90.6 (3)C29—C30—C31—C322.2 (3)
C7—C8—C9—C43.9 (3)C30—C31—C32—C272.5 (3)
C7—C8—C9—C10177.96 (19)C30—C31—C32—C33178.4 (2)
C5—C4—C9—C84.9 (3)C28—C27—C32—C315.5 (3)
C3—C4—C9—C8173.76 (19)C26—C27—C32—C31171.6 (2)
C5—C4—C9—C10176.82 (19)C28—C27—C32—C33175.32 (19)
C3—C4—C9—C104.5 (3)C26—C27—C32—C337.6 (3)
C14—C1—C10—C117.3 (3)C37—C24—C33—C342.6 (3)
C2—C1—C10—C11169.22 (19)C25—C24—C33—C34176.74 (18)
C14—C1—C10—C9173.81 (19)C37—C24—C33—C32179.21 (18)
C2—C1—C10—C99.7 (3)C25—C24—C33—C321.5 (3)
C8—C9—C10—C1147.5 (2)C31—C32—C33—C24151.2 (2)
C4—C9—C10—C130.7 (3)C27—C32—C33—C2427.9 (3)
C8—C9—C10—C1133.7 (3)C31—C32—C33—C3430.6 (3)
C4—C9—C10—C11148.1 (2)C27—C32—C33—C34150.2 (2)
C1—C10—C11—C125.4 (3)C24—C33—C34—C350.9 (3)
C9—C10—C11—C12175.76 (19)C32—C33—C34—C35179.01 (19)
C1—C10—C11—C15171.03 (18)C24—C33—C34—C38176.9 (2)
C9—C10—C11—C157.8 (3)C32—C33—C34—C381.2 (3)
C10—C11—C12—N2178.0 (2)C33—C34—C35—N5177.97 (19)
C15—C11—C12—N21.4 (3)C38—C34—C35—N50.0 (3)
C10—C11—C12—C131.6 (3)C33—C34—C35—C361.9 (3)
C15—C11—C12—C13178.25 (18)C38—C34—C35—C36179.84 (19)
N2—C12—C13—C14172.7 (2)N5—C35—C36—C37176.77 (19)
C11—C12—C13—C146.9 (3)C34—C35—C36—C373.1 (3)
N2—C12—C13—C169.5 (3)N5—C35—C36—C390.3 (3)
C11—C12—C13—C16170.85 (19)C34—C35—C36—C39179.80 (18)
C10—C1—C14—C132.2 (3)C33—C24—C37—C361.4 (3)
C2—C1—C14—C13174.18 (19)C25—C24—C37—C36177.87 (19)
C10—C1—C14—C17178.03 (18)C33—C24—C37—C40178.31 (18)
C2—C1—C14—C175.6 (3)C25—C24—C37—C402.4 (3)
C12—C13—C14—C15.1 (3)C35—C36—C37—C241.5 (3)
C16—C13—C14—C1172.57 (19)C39—C36—C37—C24178.50 (19)
C12—C13—C14—C17174.65 (18)C35—C36—C37—C40178.76 (18)
C16—C13—C14—C177.6 (3)C39—C36—C37—C401.7 (3)
C1—C14—C17—C18129.0 (2)C24—C37—C40—C45108.3 (2)
C13—C14—C17—C1850.8 (3)C36—C37—C40—C4571.4 (3)
C1—C14—C17—C2251.8 (3)C24—C37—C40—C4173.3 (3)
C13—C14—C17—C22128.4 (2)C36—C37—C40—C41107.0 (2)
C22—C17—C18—C191.5 (3)C45—C40—C41—C420.5 (3)
C14—C17—C18—C19177.7 (2)C37—C40—C41—C42177.9 (2)
C17—C18—C19—C200.7 (3)C40—C41—C42—C430.2 (4)
C23—O1—C20—C194.4 (3)C46—O2—C43—C442.8 (3)
C23—O1—C20—C21175.8 (2)C46—O2—C43—C42176.1 (2)
C18—C19—C20—O1179.52 (19)C41—C42—C43—O2177.9 (2)
C18—C19—C20—C210.7 (3)C41—C42—C43—C441.0 (4)
O1—C20—C21—C22178.95 (18)O2—C43—C44—C45177.0 (2)
C19—C20—C21—C221.2 (3)C42—C43—C44—C451.8 (3)
C20—C21—C22—C170.4 (3)C41—C40—C45—C440.3 (3)
C18—C17—C22—C211.0 (3)C37—C40—C45—C44178.8 (2)
C14—C17—C22—C21178.30 (19)C43—C44—C45—C401.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N60.89 (1)2.25 (2)3.081 (3)157 (3)
N5—H3···N10.88 (1)2.36 (1)3.213 (3)162 (2)
N2—H1···O1i0.88 (2)2.56 (2)3.271 (3)139 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H17N3O
Mr351.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.5197 (6), 25.1585 (12), 11.9564 (6)
β (°) 90.719 (5)
V3)3464.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.35 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.971, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
20450, 7990, 5348
Rint0.055
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.156, 1.04
No. of reflections7990
No. of parameters503
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N60.89 (1)2.25 (2)3.081 (3)157 (3)
N5—H3···N10.88 (1)2.36 (1)3.213 (3)162 (2)
N2—H1···O1i0.878 (17)2.56 (2)3.271 (3)138.9 (17)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027–o1028.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011a). Acta Cryst. E67, o2873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260–1272.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337–12342.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1157-o1158
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds