organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[Bis(4-fluoro­phen­yl)meth­yl]piperazin-1-ium 2-hy­dr­oxy­benzoate 2-hy­dr­oxy­benzoic acid monosolvate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 20 March 2012; accepted 21 March 2012; online 24 March 2012)

The title compound, C17H19F2N2+·C7H5O3·C7H6O3, is a co-crystal from 4-[bis­(4-fluoro­phen­yl)meth­yl]piperazin-1-ium, salicylate anion and salicylic acid in a 1:1:1 ratio. In addition to an intra­molecular O—H⋯O hydrogen bond, the crystal packing shows hydrogen bonds between the piperazinium cation and salicylate anion (N—H⋯O), as well as between the salicylic acid mol­ecule and anion (O—H⋯O), giving rise to a three-dimensional network.

Related literature

For the biological activity of piperazines, see: Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]). For related structures, see: Betz et al. (2011a[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o2783-o2784.],b[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2587-o2588.]); Fun et al. (2011[Fun, H.-K., Yeap, C. S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1584.]); Jebamony & Thomas Muthiah (1998[Jebamony, J. R. & Thomas Muthiah, P. (1998). Acta Cryst. C54, 539-540.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19F2N2+·C7H5O3·C7H6O3

  • Mr = 564.57

  • Monoclinic, C 2/c

  • a = 33.157 (4) Å

  • b = 10.3007 (14) Å

  • c = 20.105 (3) Å

  • β = 124.447 (2)°

  • V = 5662.6 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 130 K

  • 0.39 × 0.37 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.980

  • 26180 measured reflections

  • 6761 independent reflections

  • 4481 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 0.86

  • 6761 reflections

  • 373 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O22i 0.92 2.00 2.892 (2) 162
N2—H2D⋯O21 0.92 1.87 2.742 (2) 158
O12—H12⋯O22 0.84 1.73 2.5654 (18) 179
O13—H13⋯O11 0.84 1.83 2.574 (2) 146
O23—H23⋯O21 0.84 1.80 2.544 (2) 146
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). The crystal structures of 8-hydroxyquinolinium-salicylate-salicylic acid (Jebamony & Thomas Muthiah, 1998), 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium 2-(2-phenylethyl) benzoate (Betz et al., 2011a), 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium picrate (Betz et al., 2011b) and cyclobenzaprinium salicylate (Fun et al., 2011) have been reported. In the course of our studies on the salts of piperazines and in view of the importance of piperazines, we now report the crystal and molecular structure of the title compound. The molecular structure of the cation is well known from ABADAK (Betz et al., 2011a) and AZOTOZ (Betz et al., 2011b). The packing is stabilized from intermolecular N2—H2C···O22(-x + 0.5, y + 0.5, -z + 1.5), N2—H2D···O21, O12—H···O22 interactions, intra-molecular H bonds are O13—H···O11 (salicylic acid) and O23—H···O21 (anion).

Related literature top

For the biological activity of piperazines, see: Bogatcheva et al. (2006); Brockunier et al. (2004). For related structures, see: Betz et al. (2011a,b); Fun et al. (2011); Jebamony & Thomas Muthiah (1998).

Experimental top

4,4'-Difluorobenzhydryl piperazine was obtained from R. L. Fine Chem., Bengaluru, India. 4,4'-Difluorobenzhydryl piperazine (2.88 g, 0.01 mol) was dissolved in 10 ml of ethanol and salicylic acid (1.38 g, 0.01 mol) was also dissolved in 10 ml of ethanol. Both the solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for a day at room temperature. The salt formed was filtered & dried in vaccum desiccator over phosphorous pentoxide. The compound was recrystallized from toluene by slow evaporation (m.p.: 408–413 K).

Refinement top

H atoms were clearly identified in difference syntheses, idealized and refined riding on the C/N parent atoms with C—H = 0.95 (aromatic) - 1.00 Å, N—H = 0.92 Å and with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq). Hydroxyl H atoms were refined with HFIX 147, O—H 0.84 Å and Uiso(H) = 1.5U(Oeq)

Structure description top

Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). The crystal structures of 8-hydroxyquinolinium-salicylate-salicylic acid (Jebamony & Thomas Muthiah, 1998), 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium 2-(2-phenylethyl) benzoate (Betz et al., 2011a), 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium picrate (Betz et al., 2011b) and cyclobenzaprinium salicylate (Fun et al., 2011) have been reported. In the course of our studies on the salts of piperazines and in view of the importance of piperazines, we now report the crystal and molecular structure of the title compound. The molecular structure of the cation is well known from ABADAK (Betz et al., 2011a) and AZOTOZ (Betz et al., 2011b). The packing is stabilized from intermolecular N2—H2C···O22(-x + 0.5, y + 0.5, -z + 1.5), N2—H2D···O21, O12—H···O22 interactions, intra-molecular H bonds are O13—H···O11 (salicylic acid) and O23—H···O21 (anion).

For the biological activity of piperazines, see: Bogatcheva et al. (2006); Brockunier et al. (2004). For related structures, see: Betz et al. (2011a,b); Fun et al. (2011); Jebamony & Thomas Muthiah (1998).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level.
4-[Bis(4-fluorophenyl)methyl]piperazin-1-ium 2-hydroxybenzoate 2-hydroxybenzoic acid monosolvate top
Crystal data top
C17H19F2N2+·C7H5O3·C7H6O3F(000) = 2368
Mr = 564.57Dx = 1.324 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3289 reflections
a = 33.157 (4) Åθ = 2.2–21.4°
b = 10.3007 (14) ŵ = 0.10 mm1
c = 20.105 (3) ÅT = 130 K
β = 124.447 (2)°Prism, colourless
V = 5662.6 (13) Å30.39 × 0.37 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
6761 independent reflections
Radiation source: sealed tube4481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 27.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 4343
Tmin = 0.962, Tmax = 0.980k = 1313
26180 measured reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.138H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0737P)2 + 5.3951P]
where P = (Fo2 + 2Fc2)/3
6761 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H19F2N2+·C7H5O3·C7H6O3V = 5662.6 (13) Å3
Mr = 564.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.157 (4) ŵ = 0.10 mm1
b = 10.3007 (14) ÅT = 130 K
c = 20.105 (3) Å0.39 × 0.37 × 0.20 mm
β = 124.447 (2)°
Data collection top
Bruker SMART APEX
diffractometer
6761 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4481 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.980Rint = 0.045
26180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.86Δρmax = 0.27 e Å3
6761 reflectionsΔρmin = 0.21 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.02784 (6)0.43978 (13)0.29760 (8)0.0704 (5)
F20.09200 (5)1.15292 (13)0.19161 (7)0.0558 (4)
N10.13141 (5)0.87077 (13)0.50424 (8)0.0238 (3)
N20.20766 (5)0.90714 (14)0.67270 (8)0.0280 (3)
H2C0.19560.97160.68860.034*
H2D0.23810.88410.71660.034*
C10.08253 (6)0.89679 (16)0.42988 (10)0.0252 (4)
H1A0.06430.95430.44440.030*
C20.12578 (6)0.82397 (16)0.56757 (10)0.0263 (4)
H2A0.10490.74540.54820.032*
H2B0.10910.89130.57890.032*
C30.17451 (6)0.79218 (16)0.64442 (10)0.0281 (4)
H3A0.16950.76590.68660.034*
H3B0.18980.71850.63470.034*
C40.21198 (6)0.95705 (17)0.60753 (10)0.0290 (4)
H4A0.22810.89110.59430.035*
H4B0.23251.03630.62640.035*
C50.16196 (6)0.98805 (16)0.53291 (10)0.0263 (4)
H5A0.14621.05610.54560.032*
H5B0.16531.02150.49010.032*
C310.08625 (6)0.96641 (16)0.36695 (10)0.0259 (4)
C320.06248 (7)1.08357 (19)0.33563 (11)0.0345 (4)
H32A0.04491.12130.35510.041*
C330.06396 (7)1.1470 (2)0.27582 (12)0.0415 (5)
H33A0.04731.22690.25380.050*
C340.08997 (7)1.0914 (2)0.24974 (11)0.0370 (5)
C350.11481 (7)0.9764 (2)0.28002 (11)0.0362 (4)
H35A0.13320.94110.26140.043*
C360.11238 (7)0.91335 (18)0.33841 (11)0.0319 (4)
H36A0.12880.83280.35930.038*
C410.05368 (6)0.77155 (17)0.39516 (10)0.0275 (4)
C420.07650 (7)0.65443 (17)0.40271 (11)0.0338 (4)
H42A0.11110.65110.43110.041*
C430.04914 (8)0.54192 (19)0.36909 (12)0.0431 (5)
H43A0.06450.46130.37380.052*
C440.00086 (9)0.5509 (2)0.32877 (12)0.0473 (6)
C450.02476 (8)0.6645 (2)0.31923 (12)0.0449 (5)
H45A0.05940.66720.29040.054*
C460.00301 (7)0.7753 (2)0.35278 (11)0.0350 (4)
H46A0.01280.85560.34680.042*
O110.26379 (5)0.42053 (13)0.65952 (8)0.0436 (4)
O120.26128 (5)0.62897 (12)0.62845 (8)0.0369 (3)
H120.27970.63540.67890.055*
O130.21326 (9)0.25463 (17)0.54577 (11)0.0899 (7)
H130.23070.28180.59350.135*
C100.24981 (7)0.50656 (17)0.60834 (11)0.0309 (4)
C110.21896 (6)0.48031 (18)0.52110 (11)0.0319 (4)
C120.20593 (7)0.5776 (2)0.46407 (11)0.0357 (4)
H12A0.21710.66380.48160.043*
C130.17710 (7)0.5505 (2)0.38262 (12)0.0450 (5)
H13A0.16850.61750.34430.054*
C140.16096 (9)0.4253 (3)0.35743 (14)0.0609 (7)
H14A0.14100.40640.30140.073*
C150.17332 (11)0.3276 (3)0.41204 (16)0.0743 (9)
H15A0.16210.24160.39370.089*
C160.20226 (9)0.3541 (2)0.49448 (14)0.0554 (6)
O210.30573 (5)0.85892 (12)0.77852 (8)0.0380 (3)
O220.31737 (5)0.64556 (11)0.78271 (7)0.0335 (3)
O230.37289 (5)1.00850 (13)0.88348 (10)0.0485 (4)
H230.34470.98760.84460.073*
C200.33227 (6)0.75940 (16)0.80967 (10)0.0272 (4)
C210.38365 (6)0.77746 (16)0.88016 (10)0.0256 (4)
C220.40114 (7)0.90104 (17)0.91386 (11)0.0314 (4)
C230.44917 (7)0.9159 (2)0.98053 (12)0.0381 (5)
H23B0.46100.99971.00300.046*
C240.47949 (7)0.8101 (2)1.01393 (12)0.0400 (5)
H24A0.51200.82081.06010.048*
C250.46300 (7)0.6875 (2)0.98067 (12)0.0380 (5)
H25A0.48410.61461.00350.046*
C260.41582 (7)0.67260 (17)0.91448 (11)0.0306 (4)
H26A0.40480.58870.89150.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0875 (10)0.0534 (8)0.0425 (7)0.0436 (8)0.0201 (7)0.0115 (6)
F20.0613 (8)0.0717 (9)0.0370 (7)0.0058 (7)0.0295 (6)0.0173 (6)
N10.0243 (7)0.0247 (7)0.0190 (7)0.0016 (6)0.0102 (6)0.0004 (5)
N20.0287 (8)0.0272 (7)0.0188 (7)0.0012 (6)0.0079 (6)0.0005 (6)
C10.0269 (9)0.0257 (8)0.0221 (8)0.0015 (7)0.0134 (7)0.0001 (6)
C20.0296 (9)0.0250 (8)0.0219 (8)0.0019 (7)0.0132 (7)0.0005 (7)
C30.0335 (9)0.0244 (8)0.0224 (8)0.0003 (7)0.0133 (8)0.0020 (7)
C40.0276 (9)0.0308 (9)0.0232 (8)0.0037 (7)0.0112 (7)0.0004 (7)
C50.0276 (9)0.0263 (8)0.0208 (8)0.0039 (7)0.0111 (7)0.0004 (7)
C310.0226 (8)0.0293 (9)0.0191 (8)0.0023 (7)0.0078 (7)0.0013 (7)
C320.0316 (10)0.0382 (10)0.0322 (10)0.0060 (8)0.0171 (8)0.0085 (8)
C330.0377 (11)0.0425 (11)0.0383 (11)0.0061 (9)0.0179 (9)0.0157 (9)
C340.0335 (10)0.0495 (11)0.0216 (9)0.0097 (9)0.0117 (8)0.0054 (8)
C350.0369 (10)0.0474 (11)0.0267 (9)0.0055 (9)0.0195 (8)0.0059 (8)
C360.0347 (10)0.0328 (9)0.0258 (9)0.0016 (8)0.0157 (8)0.0005 (7)
C410.0298 (9)0.0322 (9)0.0193 (8)0.0040 (7)0.0132 (7)0.0013 (7)
C420.0386 (10)0.0320 (9)0.0262 (9)0.0031 (8)0.0157 (8)0.0021 (7)
C430.0633 (14)0.0299 (10)0.0306 (10)0.0069 (9)0.0231 (10)0.0032 (8)
C440.0568 (14)0.0462 (12)0.0247 (10)0.0298 (11)0.0145 (10)0.0085 (9)
C450.0367 (11)0.0589 (14)0.0285 (10)0.0172 (10)0.0120 (9)0.0008 (9)
C460.0299 (10)0.0447 (11)0.0250 (9)0.0051 (8)0.0123 (8)0.0000 (8)
O110.0574 (9)0.0336 (7)0.0321 (7)0.0096 (7)0.0208 (7)0.0002 (6)
O120.0432 (8)0.0277 (6)0.0261 (7)0.0005 (6)0.0114 (6)0.0047 (5)
O130.1187 (18)0.0419 (10)0.0549 (11)0.0374 (10)0.0165 (12)0.0063 (9)
C100.0319 (9)0.0304 (9)0.0298 (9)0.0035 (7)0.0171 (8)0.0025 (7)
C110.0275 (9)0.0357 (10)0.0283 (9)0.0049 (8)0.0134 (8)0.0058 (8)
C120.0312 (10)0.0410 (10)0.0318 (10)0.0009 (8)0.0159 (8)0.0032 (8)
C130.0361 (11)0.0642 (14)0.0292 (10)0.0020 (10)0.0152 (9)0.0013 (10)
C140.0469 (13)0.0823 (19)0.0323 (12)0.0077 (13)0.0097 (11)0.0219 (12)
C150.0783 (19)0.0596 (16)0.0462 (15)0.0229 (14)0.0119 (14)0.0231 (13)
C160.0601 (15)0.0418 (12)0.0397 (12)0.0186 (11)0.0134 (11)0.0099 (10)
O210.0328 (7)0.0314 (7)0.0348 (7)0.0038 (6)0.0102 (6)0.0002 (6)
O220.0393 (7)0.0266 (6)0.0256 (6)0.0061 (5)0.0131 (6)0.0041 (5)
O230.0414 (8)0.0256 (7)0.0559 (10)0.0013 (6)0.0139 (7)0.0105 (6)
C200.0317 (9)0.0265 (8)0.0225 (8)0.0013 (7)0.0149 (8)0.0006 (7)
C210.0292 (9)0.0251 (8)0.0218 (8)0.0022 (7)0.0140 (7)0.0011 (7)
C220.0341 (10)0.0278 (9)0.0308 (10)0.0012 (7)0.0174 (8)0.0048 (7)
C230.0363 (11)0.0398 (11)0.0339 (10)0.0105 (9)0.0173 (9)0.0124 (8)
C240.0288 (10)0.0555 (12)0.0269 (10)0.0068 (9)0.0105 (8)0.0028 (9)
C250.0356 (11)0.0412 (11)0.0344 (10)0.0079 (9)0.0182 (9)0.0094 (9)
C260.0362 (10)0.0269 (9)0.0282 (9)0.0016 (7)0.0180 (8)0.0005 (7)
Geometric parameters (Å, º) top
F1—C441.368 (2)C43—H43A0.9500
F2—C341.364 (2)C44—C451.364 (3)
N1—C51.469 (2)C45—C461.379 (3)
N1—C21.469 (2)C45—H45A0.9500
N1—C11.481 (2)C46—H46A0.9500
N2—C41.488 (2)O11—C101.233 (2)
N2—C31.492 (2)O12—C101.313 (2)
N2—H2C0.9200O12—H120.8400
N2—H2D0.9200O13—C161.349 (3)
C1—C411.520 (2)O13—H130.8400
C1—C311.519 (2)C10—C111.472 (3)
C1—H1A1.0000C11—C161.396 (3)
C2—C31.510 (2)C11—C121.395 (3)
C2—H2A0.9900C12—C131.379 (3)
C2—H2B0.9900C12—H12A0.9500
C3—H3A0.9900C13—C141.379 (3)
C3—H3B0.9900C13—H13A0.9500
C4—C51.513 (2)C14—C151.370 (4)
C4—H4A0.9900C14—H14A0.9500
C4—H4B0.9900C15—C161.394 (3)
C5—H5A0.9900C15—H15A0.9500
C5—H5B0.9900O21—C201.262 (2)
C31—C321.383 (2)O22—C201.269 (2)
C31—C361.393 (2)O23—C221.352 (2)
C32—C331.393 (3)O23—H230.8400
C32—H32A0.9500C20—C211.488 (2)
C33—C341.363 (3)C21—C261.396 (2)
C33—H33A0.9500C21—C221.404 (2)
C34—C351.373 (3)C22—C231.393 (3)
C35—C361.383 (3)C23—C241.373 (3)
C35—H35A0.9500C23—H23B0.9500
C36—H36A0.9500C24—C251.388 (3)
C41—C421.386 (3)C24—H24A0.9500
C41—C461.389 (3)C25—C261.373 (3)
C42—C431.389 (3)C25—H25A0.9500
C42—H42A0.9500C26—H26A0.9500
C43—C441.376 (3)
C5—N1—C2109.10 (13)C41—C42—C43120.49 (19)
C5—N1—C1111.43 (12)C41—C42—H42A119.8
C2—N1—C1109.35 (13)C43—C42—H42A119.8
C4—N2—C3110.84 (13)C44—C43—C42117.9 (2)
C4—N2—H2C109.5C44—C43—H43A121.1
C3—N2—H2C109.5C42—C43—H43A121.1
C4—N2—H2D109.5C45—C44—F1118.4 (2)
C3—N2—H2D109.5C45—C44—C43123.46 (18)
H2C—N2—H2D108.1F1—C44—C43118.1 (2)
N1—C1—C41110.80 (13)C44—C45—C46117.8 (2)
N1—C1—C31111.61 (14)C44—C45—H45A121.1
C41—C1—C31110.16 (13)C46—C45—H45A121.1
N1—C1—H1A108.0C45—C46—C41121.2 (2)
C41—C1—H1A108.0C45—C46—H46A119.4
C31—C1—H1A108.0C41—C46—H46A119.4
N1—C2—C3111.77 (14)C10—O12—H12109.5
N1—C2—H2A109.3C16—O13—H13109.5
C3—C2—H2A109.3O11—C10—O12121.78 (16)
N1—C2—H2B109.3O11—C10—C11122.85 (17)
C3—C2—H2B109.3O12—C10—C11115.37 (16)
H2A—C2—H2B107.9C16—C11—C12118.86 (18)
N2—C3—C2110.42 (13)C16—C11—C10119.05 (18)
N2—C3—H3A109.6C12—C11—C10122.08 (17)
C2—C3—H3A109.6C13—C12—C11121.03 (19)
N2—C3—H3B109.6C13—C12—H12A119.5
C2—C3—H3B109.6C11—C12—H12A119.5
H3A—C3—H3B108.1C14—C13—C12119.3 (2)
N2—C4—C5110.40 (14)C14—C13—H13A120.3
N2—C4—H4A109.6C12—C13—H13A120.3
C5—C4—H4A109.6C13—C14—C15121.0 (2)
N2—C4—H4B109.6C13—C14—H14A119.5
C5—C4—H4B109.6C15—C14—H14A119.5
H4A—C4—H4B108.1C14—C15—C16120.1 (2)
N1—C5—C4109.97 (13)C14—C15—H15A119.9
N1—C5—H5A109.7C16—C15—H15A119.9
C4—C5—H5A109.7O13—C16—C15117.8 (2)
N1—C5—H5B109.7O13—C16—C11122.5 (2)
C4—C5—H5B109.7C15—C16—C11119.7 (2)
H5A—C5—H5B108.2C22—O23—H23109.5
C32—C31—C36118.80 (16)O21—C20—O22123.02 (16)
C32—C31—C1119.83 (16)O21—C20—C21118.18 (15)
C36—C31—C1121.36 (15)O22—C20—C21118.80 (15)
C31—C32—C33120.86 (18)C26—C21—C22118.14 (16)
C31—C32—H32A119.6C26—C21—C20121.14 (15)
C33—C32—H32A119.6C22—C21—C20120.72 (15)
C34—C33—C32118.29 (18)O23—C22—C23117.87 (16)
C34—C33—H33A120.9O23—C22—C21122.19 (16)
C32—C33—H33A120.9C23—C22—C21119.94 (17)
F2—C34—C35118.22 (19)C24—C23—C22120.37 (18)
F2—C34—C33118.89 (18)C24—C23—H23B119.8
C35—C34—C33122.89 (18)C22—C23—H23B119.8
C34—C35—C36118.25 (18)C23—C24—C25120.42 (18)
C34—C35—H35A120.9C23—C24—H24A119.8
C36—C35—H35A120.9C25—C24—H24A119.8
C35—C36—C31120.89 (17)C26—C25—C24119.40 (18)
C35—C36—H36A119.6C26—C25—H25A120.3
C31—C36—H36A119.6C24—C25—H25A120.3
C42—C41—C46119.15 (17)C25—C26—C21121.71 (17)
C42—C41—C1121.71 (16)C25—C26—H26A119.1
C46—C41—C1119.11 (16)C21—C26—H26A119.1
C5—N1—C1—C41172.94 (14)F1—C44—C45—C46178.36 (17)
C2—N1—C1—C4166.37 (17)C43—C44—C45—C460.8 (3)
C5—N1—C1—C3149.78 (18)C44—C45—C46—C410.2 (3)
C2—N1—C1—C31170.47 (13)C42—C41—C46—C450.9 (3)
C5—N1—C2—C359.47 (17)C1—C41—C46—C45179.10 (17)
C1—N1—C2—C3178.43 (13)O11—C10—C11—C163.9 (3)
C4—N2—C3—C253.61 (19)O12—C10—C11—C16175.59 (19)
N1—C2—C3—N255.98 (18)O11—C10—C11—C12176.00 (18)
C3—N2—C4—C555.80 (18)O12—C10—C11—C124.6 (3)
C2—N1—C5—C460.67 (18)C16—C11—C12—C130.1 (3)
C1—N1—C5—C4178.49 (14)C10—C11—C12—C13179.79 (18)
N2—C4—C5—N159.57 (18)C11—C12—C13—C140.0 (3)
N1—C1—C31—C32123.99 (17)C12—C13—C14—C150.3 (4)
C41—C1—C31—C32112.49 (18)C13—C14—C15—C160.6 (5)
N1—C1—C31—C3657.4 (2)C14—C15—C16—O13179.8 (3)
C41—C1—C31—C3666.1 (2)C14—C15—C16—C110.6 (5)
C36—C31—C32—C330.9 (3)C12—C11—C16—O13180.0 (2)
C1—C31—C32—C33177.75 (17)C10—C11—C16—O130.1 (4)
C31—C32—C33—C340.8 (3)C12—C11—C16—C150.3 (4)
C32—C33—C34—F2179.56 (17)C10—C11—C16—C15179.5 (2)
C32—C33—C34—C350.3 (3)O21—C20—C21—C26176.14 (16)
F2—C34—C35—C36179.38 (16)O22—C20—C21—C262.6 (3)
C33—C34—C35—C361.3 (3)O21—C20—C21—C223.7 (3)
C34—C35—C36—C311.3 (3)O22—C20—C21—C22177.59 (16)
C32—C31—C36—C350.2 (3)C26—C21—C22—O23178.55 (17)
C1—C31—C36—C35178.82 (16)C20—C21—C22—O231.3 (3)
N1—C1—C41—C4232.2 (2)C26—C21—C22—C231.0 (3)
C31—C1—C41—C4291.76 (19)C20—C21—C22—C23179.13 (17)
N1—C1—C41—C46149.63 (16)O23—C22—C23—C24179.95 (18)
C31—C1—C41—C4686.38 (19)C21—C22—C23—C240.5 (3)
C46—C41—C42—C430.7 (3)C22—C23—C24—C251.4 (3)
C1—C41—C42—C43178.80 (16)C23—C24—C25—C260.7 (3)
C41—C42—C43—C440.3 (3)C24—C25—C26—C210.8 (3)
C42—C43—C44—C451.0 (3)C22—C21—C26—C251.7 (3)
C42—C43—C44—F1178.13 (17)C20—C21—C26—C25178.48 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O22i0.922.002.892 (2)162
N2—H2D···O210.921.872.742 (2)158
O12—H12···O220.841.732.5654 (18)179
O13—H13···O110.841.832.574 (2)146
O23—H23···O210.841.802.544 (2)146
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H19F2N2+·C7H5O3·C7H6O3
Mr564.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)130
a, b, c (Å)33.157 (4), 10.3007 (14), 20.105 (3)
β (°) 124.447 (2)
V3)5662.6 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.37 × 0.20
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.962, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
26180, 6761, 4481
Rint0.045
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 0.86
No. of reflections6761
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O22i0.92002.00002.892 (2)162.00
N2—H2D···O210.92001.87002.742 (2)158.00
O12—H12···O220.84001.73002.5654 (18)179.00
O13—H13···O110.84001.83002.574 (2)146.00
O23—H23···O210.84001.80002.544 (2)146.00
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities.

References

First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o2783–o2784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2587–o2588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Yeap, C. S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJebamony, J. R. & Thomas Muthiah, P. (1998). Acta Cryst. C54, 539–540.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds