organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1214-o1215

7-Chloro-4-[(E)-2-(3,4,5-trimeth­­oxy­benzyl­­idene)hydrazin-1-yl]quinoline

aInstituto de Tecnologia em Fármacos–Farmanguinhos, FioCruz–Fundação Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 March 2012; accepted 23 March 2012; online 28 March 2012)

In the title compound, C19H18ClN3O3, the r.m.s. deviation through the 23 non-H and non-meth­oxy atoms is 0.088 Å, indicating a planar mol­ecule with the exception of the meth­oxy groups. One meth­oxy group, surrounded on either side by the other meth­oxy groups, is almost normal to the benzene ring to which it is connected [C—O—Car—Car torsion angle = 81.64 (15)°]. In the crystal, N—H⋯O, C—H⋯O and ππ inter­actions [between quinoline residues; centroid–centroid distance = 3.4375 (8) Å] link mol­ecules into a three-dimensional architecture.

Related literature

For the biological activity, including anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009[Souza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474-1480.]); Candea et al. (2009[Candea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272-6274.]); Montenegro et al. (2012[Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., do O Pessoa, C., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Discov. 9, 251-256.]). For related structures, see: Howie et al. (2010[Howie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440-447.]); de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698-o699.], 2012[Souza, M. V. N. de, de Lima Ferreira, M., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1244-o1245.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18ClN3O3

  • Mr = 371.81

  • Orthorhombic, P b c a

  • a = 7.6338 (2) Å

  • b = 15.5335 (4) Å

  • c = 28.7960 (7) Å

  • V = 3414.62 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 K

  • 0.45 × 0.40 × 0.30 mm

Data collection
  • Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.652, Tmax = 0.746

  • 22673 measured reflections

  • 3899 independent reflections

  • 3353 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.02

  • 3899 reflections

  • 241 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O3i 0.87 (1) 2.53 (2) 3.0349 (15) 118 (1)
C19—H19B⋯N1ii 0.98 2.48 3.3602 (18) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was investigated as part of on-going crystallographic investigations of arylaldehyde 7-chloroquinoline-4-hydrazone species (Howie et al., 2010; de Souza et al., 2010; de Souza et al., 2012). The structural studies complement biological studies which show these hydrazones to possess a wide range of pharmacological activities such as anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities, which are ascribed to the presence of the quinoline nucleus (de Souza et al., 2009).

In (I), Fig. 1, with the exception of two of the methyoxy groups, the molecule is planar. The r.m.s. deviation through the 23 non-hydrogen and non-methoxy atoms is 0.0879 Å. The maximum deviations from this plane are 0.1219 (11) Å for the N2 atom and -0.1498 (11) for the C14 atom. The terminal carbon atoms, C17–C19, of the methoxy groups lie -0.0840 (17), 0.7910 (16) and -0.3504 (19) Å, respectively, out of the least-squares plane, indicating that the central methoxy group is almost orthogonal to the benzene ring to which it is connected with the C18—O2—C14—C13 torsion angle being 81.64 (15)°. The conformation about the N3C10 bond [1.2829 (17) Å] is E.

In the crystal packing, weak N—H···O hydrogen bonds along with C—H···O interactions, Table 1, and ππ interactions between symmetry related quinolinyl residues [centroid···centroid distance = 3.4375 (8) Å for symmetry operation -1/2 + x, y, 1/2 - z] link molecules into a three-dimensional architecture. Globally, molecules stack along the c axis with alternating layers of quinolinyl and trimethoxybenzene residues, Fig. 2.

Related literature top

For the biological activity, including anti-tubercular and anti-tumour activity of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009); Candea et al. (2009); Montenegro et al. (2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010, 2012).

Experimental top

The compound was prepared from 7-chloro-4-quinolinylhydrazone and 3,4,5-trimethoxybenzaldehyde (Montenegro et al., 2012) and was recrystallized from an EtOCH2CH2OH solution of the compound.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was located in a difference Fourier map and refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). Owing to poor agreement, the (2 2 0), (2 3 0), (0 4 1), (2 2 1), (1 0 4), (2 1 2) and (1 0 2) reflections were omitted from the final cycles of refinement.

Structure description top

The title compound, (I), was investigated as part of on-going crystallographic investigations of arylaldehyde 7-chloroquinoline-4-hydrazone species (Howie et al., 2010; de Souza et al., 2010; de Souza et al., 2012). The structural studies complement biological studies which show these hydrazones to possess a wide range of pharmacological activities such as anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities, which are ascribed to the presence of the quinoline nucleus (de Souza et al., 2009).

In (I), Fig. 1, with the exception of two of the methyoxy groups, the molecule is planar. The r.m.s. deviation through the 23 non-hydrogen and non-methoxy atoms is 0.0879 Å. The maximum deviations from this plane are 0.1219 (11) Å for the N2 atom and -0.1498 (11) for the C14 atom. The terminal carbon atoms, C17–C19, of the methoxy groups lie -0.0840 (17), 0.7910 (16) and -0.3504 (19) Å, respectively, out of the least-squares plane, indicating that the central methoxy group is almost orthogonal to the benzene ring to which it is connected with the C18—O2—C14—C13 torsion angle being 81.64 (15)°. The conformation about the N3C10 bond [1.2829 (17) Å] is E.

In the crystal packing, weak N—H···O hydrogen bonds along with C—H···O interactions, Table 1, and ππ interactions between symmetry related quinolinyl residues [centroid···centroid distance = 3.4375 (8) Å for symmetry operation -1/2 + x, y, 1/2 - z] link molecules into a three-dimensional architecture. Globally, molecules stack along the c axis with alternating layers of quinolinyl and trimethoxybenzene residues, Fig. 2.

For the biological activity, including anti-tubercular and anti-tumour activity of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009); Candea et al. (2009); Montenegro et al. (2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010, 2012).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The N—H···O, C—H···N and π···π interactions are shown as orange, blue and purple dashed lines, respectively.
7-Chloro-4-[(E)-2-(3,4,5-trimethoxybenzylidene)hydrazin-1-yl]quinoline top
Crystal data top
C19H18ClN3O3F(000) = 1552
Mr = 371.81Dx = 1.447 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 24183 reflections
a = 7.6338 (2) Åθ = 2.9–27.5°
b = 15.5335 (4) ŵ = 0.25 mm1
c = 28.7960 (7) ÅT = 120 K
V = 3414.62 (15) Å3Prism, colourless
Z = 80.45 × 0.40 × 0.30 mm
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
3899 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode3353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 79
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1920
Tmin = 0.652, Tmax = 0.746l = 2637
22673 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0576P)2 + 1.3595P]
where P = (Fo2 + 2Fc2)/3
3899 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
C19H18ClN3O3V = 3414.62 (15) Å3
Mr = 371.81Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.6338 (2) ŵ = 0.25 mm1
b = 15.5335 (4) ÅT = 120 K
c = 28.7960 (7) Å0.45 × 0.40 × 0.30 mm
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
3899 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3353 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.746Rint = 0.040
22673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
3899 reflectionsΔρmin = 0.30 e Å3
241 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32570 (5)0.04598 (2)0.339654 (12)0.02558 (12)
O10.29202 (13)0.51292 (6)0.01170 (3)0.0189 (2)
O20.26948 (13)0.42177 (6)0.09143 (3)0.0185 (2)
O30.08960 (13)0.27516 (6)0.09550 (3)0.0185 (2)
N10.03404 (15)0.32333 (7)0.28807 (4)0.0185 (2)
N20.06914 (15)0.25871 (7)0.14639 (4)0.0166 (2)
H2n0.123 (2)0.2115 (8)0.1386 (5)0.020*
N30.00092 (14)0.30964 (7)0.11233 (4)0.0160 (2)
C10.02236 (18)0.37484 (8)0.25478 (5)0.0183 (3)
H10.07380.42780.26410.022*
C20.01331 (18)0.35863 (9)0.20702 (5)0.0168 (3)
H2A0.05790.39910.18530.020*
C30.06177 (17)0.28249 (8)0.19210 (4)0.0144 (3)
C40.12967 (17)0.22434 (8)0.22641 (4)0.0141 (3)
C50.21216 (17)0.14533 (9)0.21567 (5)0.0167 (3)
H50.22710.12950.18400.020*
C60.27103 (18)0.09103 (9)0.24970 (5)0.0177 (3)
H60.32680.03830.24190.021*
C70.24732 (18)0.11490 (9)0.29641 (5)0.0174 (3)
C80.16982 (18)0.19071 (9)0.30860 (5)0.0179 (3)
H80.15640.20520.34050.021*
C90.10938 (17)0.24777 (9)0.27378 (4)0.0152 (3)
C100.01112 (17)0.27774 (9)0.07136 (5)0.0157 (3)
H100.06560.22310.06790.019*
C110.05455 (17)0.32096 (9)0.02980 (4)0.0152 (3)
C120.14098 (17)0.40041 (8)0.03151 (4)0.0155 (3)
H120.15510.42970.06020.019*
C130.20597 (17)0.43605 (8)0.00934 (5)0.0153 (3)
C140.18806 (17)0.39204 (9)0.05162 (4)0.0157 (3)
C150.09928 (17)0.31355 (8)0.05291 (4)0.0152 (3)
C160.03088 (18)0.27845 (8)0.01241 (4)0.0160 (3)
H160.03180.22570.01350.019*
C170.31426 (19)0.55864 (9)0.03114 (5)0.0219 (3)
H17A0.38870.52490.05210.033*
H17B0.36960.61440.02500.033*
H17C0.19970.56780.04560.033*
C180.1751 (2)0.48981 (9)0.11456 (5)0.0225 (3)
H18A0.15140.53640.09250.034*
H18B0.24560.51200.14040.034*
H18C0.06410.46730.12660.034*
C190.0276 (2)0.18760 (9)0.09654 (5)0.0228 (3)
H19A0.09540.18600.08690.034*
H19B0.03820.16480.12820.034*
H19C0.09790.15240.07530.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0281 (2)0.0275 (2)0.02106 (19)0.00361 (14)0.00295 (14)0.00990 (14)
O10.0219 (5)0.0175 (5)0.0174 (5)0.0038 (4)0.0027 (4)0.0002 (4)
O20.0205 (5)0.0199 (5)0.0151 (5)0.0036 (4)0.0054 (4)0.0060 (4)
O30.0240 (5)0.0200 (5)0.0115 (4)0.0007 (4)0.0005 (4)0.0013 (4)
N10.0204 (6)0.0187 (6)0.0164 (5)0.0006 (5)0.0001 (4)0.0014 (5)
N20.0216 (6)0.0163 (5)0.0120 (5)0.0049 (5)0.0013 (4)0.0017 (4)
N30.0168 (6)0.0177 (5)0.0135 (5)0.0003 (4)0.0015 (4)0.0039 (4)
C10.0193 (7)0.0155 (6)0.0201 (7)0.0008 (5)0.0019 (5)0.0019 (5)
C20.0187 (7)0.0154 (6)0.0164 (6)0.0006 (5)0.0004 (5)0.0022 (5)
C30.0133 (6)0.0161 (6)0.0139 (6)0.0025 (5)0.0002 (5)0.0008 (5)
C40.0133 (6)0.0157 (6)0.0133 (6)0.0033 (5)0.0001 (5)0.0013 (5)
C50.0168 (6)0.0185 (6)0.0148 (6)0.0011 (5)0.0010 (5)0.0010 (5)
C60.0172 (7)0.0151 (6)0.0209 (7)0.0001 (5)0.0018 (5)0.0004 (5)
C70.0161 (6)0.0191 (6)0.0169 (6)0.0031 (5)0.0030 (5)0.0057 (5)
C80.0186 (7)0.0222 (7)0.0128 (6)0.0024 (5)0.0001 (5)0.0005 (5)
C90.0139 (6)0.0166 (6)0.0151 (6)0.0028 (5)0.0002 (5)0.0001 (5)
C100.0166 (6)0.0154 (6)0.0152 (6)0.0000 (5)0.0006 (5)0.0009 (5)
C110.0134 (6)0.0184 (6)0.0139 (6)0.0028 (5)0.0008 (5)0.0019 (5)
C120.0162 (6)0.0174 (6)0.0129 (6)0.0025 (5)0.0012 (5)0.0005 (5)
C130.0137 (6)0.0137 (6)0.0184 (7)0.0018 (5)0.0009 (5)0.0012 (5)
C140.0157 (6)0.0182 (6)0.0132 (6)0.0030 (5)0.0034 (5)0.0035 (5)
C150.0165 (6)0.0169 (6)0.0123 (6)0.0040 (5)0.0004 (5)0.0002 (5)
C160.0165 (6)0.0158 (6)0.0159 (6)0.0009 (5)0.0001 (5)0.0019 (5)
C170.0241 (7)0.0196 (7)0.0218 (7)0.0045 (6)0.0039 (6)0.0038 (6)
C180.0281 (8)0.0202 (7)0.0190 (7)0.0047 (6)0.0019 (6)0.0062 (6)
C190.0316 (8)0.0207 (7)0.0162 (6)0.0024 (6)0.0010 (6)0.0032 (6)
Geometric parameters (Å, º) top
Cl1—C71.7478 (13)C6—H60.9500
O1—C131.3646 (16)C7—C81.364 (2)
O1—C171.4335 (17)C8—C91.4156 (18)
O2—C141.3836 (15)C8—H80.9500
O2—C181.4422 (16)C10—C111.4609 (18)
O3—C151.3659 (15)C10—H100.9500
O3—C191.4403 (17)C11—C161.3949 (18)
N1—C11.3208 (18)C11—C121.4003 (18)
N1—C91.3704 (17)C12—C131.3915 (18)
N2—C31.3684 (16)C12—H120.9500
N2—N31.3687 (15)C13—C141.4030 (18)
N2—H2n0.871 (9)C14—C151.3954 (19)
N3—C101.2829 (17)C15—C161.3893 (18)
C1—C21.4001 (19)C16—H160.9500
C1—H10.9500C17—H17A0.9800
C2—C31.3826 (19)C17—H17B0.9800
C2—H2A0.9500C17—H17C0.9800
C3—C41.4355 (18)C18—H18A0.9800
C4—C51.4136 (19)C18—H18B0.9800
C4—C91.4202 (17)C18—H18C0.9800
C5—C61.3689 (19)C19—H19A0.9800
C5—H50.9500C19—H19B0.9800
C6—C71.4068 (19)C19—H19C0.9800
C13—O1—C17116.59 (10)C11—C10—H10118.3
C14—O2—C18113.76 (10)C16—C11—C12120.60 (12)
C15—O3—C19116.66 (10)C16—C11—C10116.86 (12)
C1—N1—C9115.96 (12)C12—C11—C10122.53 (12)
C3—N2—N3121.14 (11)C13—C12—C11119.26 (12)
C3—N2—H2n119.7 (11)C13—C12—H12120.4
N3—N2—H2n119.1 (11)C11—C12—H12120.4
C10—N3—N2114.06 (11)O1—C13—C12124.19 (12)
N1—C1—C2126.01 (13)O1—C13—C14115.47 (11)
N1—C1—H1117.0C12—C13—C14120.33 (12)
C2—C1—H1117.0O2—C14—C15119.20 (12)
C3—C2—C1118.65 (12)O2—C14—C13120.84 (12)
C3—C2—H2A120.7C15—C14—C13119.75 (12)
C1—C2—H2A120.7O3—C15—C16124.20 (12)
N2—C3—C2123.15 (12)O3—C15—C14115.58 (11)
N2—C3—C4118.51 (12)C16—C15—C14120.21 (12)
C2—C3—C4118.30 (12)C15—C16—C11119.79 (12)
C5—C4—C9118.76 (12)C15—C16—H16120.1
C5—C4—C3123.82 (12)C11—C16—H16120.1
C9—C4—C3117.41 (12)O1—C17—H17A109.5
C6—C5—C4121.64 (12)O1—C17—H17B109.5
C6—C5—H5119.2H17A—C17—H17B109.5
C4—C5—H5119.2O1—C17—H17C109.5
C5—C6—C7118.67 (12)H17A—C17—H17C109.5
C5—C6—H6120.7H17B—C17—H17C109.5
C7—C6—H6120.7O2—C18—H18A109.5
C8—C7—C6121.97 (12)O2—C18—H18B109.5
C8—C7—Cl1119.60 (10)H18A—C18—H18B109.5
C6—C7—Cl1118.40 (11)O2—C18—H18C109.5
C7—C8—C9119.98 (12)H18A—C18—H18C109.5
C7—C8—H8120.0H18B—C18—H18C109.5
C9—C8—H8120.0O3—C19—H19A109.5
N1—C9—C8117.41 (12)O3—C19—H19B109.5
N1—C9—C4123.62 (12)H19A—C19—H19B109.5
C8—C9—C4118.97 (12)O3—C19—H19C109.5
N3—C10—C11123.46 (12)H19A—C19—H19C109.5
N3—C10—H10118.3H19B—C19—H19C109.5
C3—N2—N3—C10177.97 (12)N2—N3—C10—C11179.92 (12)
C9—N1—C1—C20.7 (2)N3—C10—C11—C16179.59 (12)
N1—C1—C2—C30.4 (2)N3—C10—C11—C121.8 (2)
N3—N2—C3—C20.9 (2)C16—C11—C12—C131.09 (19)
N3—N2—C3—C4176.90 (11)C10—C11—C12—C13177.49 (12)
C1—C2—C3—N2176.69 (12)C17—O1—C13—C120.29 (18)
C1—C2—C3—C41.07 (19)C17—O1—C13—C14179.15 (12)
N2—C3—C4—C53.29 (19)C11—C12—C13—O1179.96 (12)
C2—C3—C4—C5178.84 (12)C11—C12—C13—C141.23 (19)
N2—C3—C4—C9175.68 (11)C18—O2—C14—C15103.67 (14)
C2—C3—C4—C92.19 (18)C18—O2—C14—C1381.64 (15)
C9—C4—C5—C60.58 (19)O1—C13—C14—O26.46 (18)
C3—C4—C5—C6178.38 (13)C12—C13—C14—O2172.44 (12)
C4—C5—C6—C70.3 (2)O1—C13—C14—C15178.87 (11)
C5—C6—C7—C80.9 (2)C12—C13—C14—C152.22 (19)
C5—C6—C7—Cl1179.08 (10)C19—O3—C15—C169.53 (19)
C6—C7—C8—C90.4 (2)C19—O3—C15—C14169.05 (12)
Cl1—C7—C8—C9178.63 (10)O2—C14—C15—O34.77 (18)
C1—N1—C9—C8179.44 (12)C13—C14—C15—O3179.53 (11)
C1—N1—C9—C40.65 (19)O2—C14—C15—C16173.87 (12)
C7—C8—C9—N1179.42 (12)C13—C14—C15—C160.88 (19)
C7—C8—C9—C40.50 (19)O3—C15—C16—C11177.10 (12)
C5—C4—C9—N1178.92 (12)C14—C15—C16—C111.4 (2)
C3—C4—C9—N12.05 (19)C12—C11—C16—C152.4 (2)
C5—C4—C9—C80.99 (18)C10—C11—C16—C15176.23 (12)
C3—C4—C9—C8178.03 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O3i0.87 (1)2.53 (2)3.0349 (15)118 (1)
C19—H19B···N1ii0.982.483.3602 (18)149
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18ClN3O3
Mr371.81
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)7.6338 (2), 15.5335 (4), 28.7960 (7)
V3)3414.62 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerBruker–Nonius Roper CCD camera on a κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.652, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
22673, 3899, 3353
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.02
No. of reflections3899
No. of parameters241
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O3i0.870 (13)2.529 (15)3.0349 (15)117.9 (11)
C19—H19B···N1ii0.982.483.3602 (18)149
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCandea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272–6274.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440–447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMontenegro, R. C., Lotufo, L. V., de Moraes, M. O., do O Pessoa, C., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Discov. 9, 251–256.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, de Lima Ferreira, M., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1244–o1245.  CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474–1480.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1214-o1215
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds