organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Nitro-1-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

aLaboratoire de Chimie Organique Appliquée, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, cCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, dLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and fChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 March 2012; accepted 26 March 2012; online 31 March 2012)

In the two independent mol­ecules of the title compound, C10H7N3O3, the nitro substitutent is twisted slightly with respect to the benzodiazol fused-ring system [dihedral angles = 4.9 (3) and 8.5 (1)°]. The two independent mol­ecules are disposed about a pseudo inversion center and are held together by N—H⋯O hydrogen bonds. The supramolecular dimer is essentially planar [dihedral angle between the fused rings = 2.0 (1)°]. Adjacent dimers are linked by acetyl­ene–nitro C—H⋯O inter­actions, generating a ribbon motif along (110).

Related literature

For related structures, see: Ouzidan et al. (2011a[Ouzidan, Y., Kandri Rodi, Y., Essassi, E. M., El Ammari, L., Fronczek, F. R. & Venkatraman, R. (2011a). Acta Cryst. E67, o669.],b[Ouzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011b). Acta Cryst. E67, o1091.],c[Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011c). Acta Cryst. E67, o558.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7N3O3

  • Mr = 217.19

  • Triclinic, [P \overline 1]

  • a = 7.2541 (2) Å

  • b = 10.0362 (2) Å

  • c = 14.6793 (3) Å

  • α = 100.978 (1)°

  • β = 92.047 (1)°

  • γ = 109.043 (1)°

  • V = 986.20 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.27 × 0.22 × 0.13 mm

Data collection
  • Bruker APEX DUO diffractometer

  • 20686 measured reflections

  • 4506 independent reflections

  • 2855 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.158

  • S = 1.05

  • 4506 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.96 (2) 1.81 (3) 2.766 (2) 173 (2)
N4—H4⋯O1 0.92 (2) 1.91 (2) 2.823 (2) 172 (2)
C4—H41⋯O3i 0.92 (4) 2.39 (4) 3.231 (4) 153 (3)
C14—H141⋯O6ii 0.88 (3) 2.51 (3) 3.383 (4) 169 (3)
Symmetry codes: (i) x-1, y-1, z; (ii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzodiazoles are of interest owing to their pharmacological properties. When the parent compound, benzodiazol-2-one, reacts with propargyl bromide, both amino groups are alkylated to give 1,3-bis(prop-2-ynyl)-benziodiazol-2-one (Ouzidan et al., 2011b). The presence of an electron-withdrawing nitro group allows only one amino group to be alklylated, as noted from the reactions of 5-nitrobenzodiazol-2-onezol with n-octyl bromide and n-nonyl bromide (Ouzidan et al., 2011b, 2011c). In the two independent molecules of C10H7N3O3 (Scheme I), the nitro substitutent is slightly bent with respect to the benzodiazol fused-ring (Fig. 2). The two are disposed about a false inversion center, and are held together by N–H···O hydrogen bonds. Adjacent dimers are linked by C–Hacetylene···Onitro interactions to generate a ribbon motif (Fig. 2).

Related literature top

For related structures, see: Ouzidan et al. (2011a,b,c).

Experimental top

To a mixture of 5-nitro-1H-benzodiazol-2(3H)-one (0.25 g, 1.5 mmol), potassium carbonate (0.35 g, 2.5 mmol), tetra-n-butylammonium bromide (0.1 g,0.2 mmol) in DMF (15 ml) was added propargyl bromide (0.14 ml, 1.6 mmol). Stirring was continued at room temperature for 6 hours. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethylacetate/hexane; yellow crystals were obtained upon evaporation of the solvent.

Refinement top

All H atoms were located in a difference map. The aromatic and methylene H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino and acetylenic H-atoms were freely refined.

The (0 0 1) reflection was omitted owing to bad disagreement.

Structure description top

Benzodiazoles are of interest owing to their pharmacological properties. When the parent compound, benzodiazol-2-one, reacts with propargyl bromide, both amino groups are alkylated to give 1,3-bis(prop-2-ynyl)-benziodiazol-2-one (Ouzidan et al., 2011b). The presence of an electron-withdrawing nitro group allows only one amino group to be alklylated, as noted from the reactions of 5-nitrobenzodiazol-2-onezol with n-octyl bromide and n-nonyl bromide (Ouzidan et al., 2011b, 2011c). In the two independent molecules of C10H7N3O3 (Scheme I), the nitro substitutent is slightly bent with respect to the benzodiazol fused-ring (Fig. 2). The two are disposed about a false inversion center, and are held together by N–H···O hydrogen bonds. Adjacent dimers are linked by C–Hacetylene···Onitro interactions to generate a ribbon motif (Fig. 2).

For related structures, see: Ouzidan et al. (2011a,b,c).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the two independent molecules of C10H7N3O3 molecule at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the hydrogen-bonded ribbon motif.
5-Nitro-1-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one top
Crystal data top
C10H7N3O3Z = 4
Mr = 217.19F(000) = 448
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2541 (2) ÅCell parameters from 5674 reflections
b = 10.0362 (2) Åθ = 2.2–28.0°
c = 14.6793 (3) ŵ = 0.11 mm1
α = 100.978 (1)°T = 293 K
β = 92.047 (1)°Prism, yellow
γ = 109.043 (1)°0.27 × 0.22 × 0.13 mm
V = 986.20 (4) Å3
Data collection top
Bruker APEX DUO
diffractometer
2855 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 99
20686 measured reflectionsk = 1312
4506 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.2589P]
where P = (Fo2 + 2Fc2)/3
4506 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H7N3O3γ = 109.043 (1)°
Mr = 217.19V = 986.20 (4) Å3
Triclinic, P1Z = 4
a = 7.2541 (2) ÅMo Kα radiation
b = 10.0362 (2) ŵ = 0.11 mm1
c = 14.6793 (3) ÅT = 293 K
α = 100.978 (1)°0.27 × 0.22 × 0.13 mm
β = 92.047 (1)°
Data collection top
Bruker APEX DUO
diffractometer
2855 reflections with I > 2σ(I)
20686 measured reflectionsRint = 0.032
4506 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
4506 reflectionsΔρmin = 0.24 e Å3
305 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4863 (2)0.28214 (16)0.32061 (10)0.0583 (4)
O20.2729 (3)0.70175 (19)0.06407 (12)0.0780 (5)
O30.4106 (3)0.84006 (18)0.06741 (13)0.0826 (6)
O40.7053 (2)0.67457 (15)0.41638 (10)0.0556 (4)
O51.0136 (4)0.2778 (2)0.79280 (13)0.1056 (8)
O60.8109 (3)0.13338 (17)0.67890 (13)0.0826 (6)
N10.4993 (2)0.47954 (18)0.25677 (11)0.0459 (4)
N20.3361 (2)0.26206 (16)0.17380 (10)0.0438 (4)
N30.3367 (2)0.72031 (19)0.01736 (13)0.0535 (4)
N40.7143 (2)0.48027 (17)0.47997 (11)0.0416 (4)
N50.8738 (2)0.70106 (16)0.55973 (10)0.0429 (4)
N60.9101 (3)0.25456 (19)0.72058 (13)0.0583 (5)
C10.4468 (3)0.3367 (2)0.25799 (13)0.0447 (4)
C20.2539 (3)0.1058 (2)0.14690 (15)0.0555 (5)
H2A0.30070.06440.19360.067*
H2B0.29880.07340.08800.067*
C30.0406 (4)0.0549 (2)0.13742 (15)0.0585 (6)
C40.1296 (5)0.0194 (3)0.1295 (2)0.0859 (9)
C50.3154 (3)0.35855 (19)0.12192 (12)0.0391 (4)
C60.2169 (3)0.3381 (2)0.03563 (13)0.0450 (4)
H60.14710.24610.00110.054*
C70.2259 (3)0.4598 (2)0.00241 (13)0.0454 (4)
H70.16280.45050.05590.054*
C80.3287 (3)0.5950 (2)0.05579 (13)0.0418 (4)
C90.4281 (3)0.6184 (2)0.14315 (13)0.0428 (4)
H90.49610.71070.17780.051*
C100.4197 (2)0.49734 (19)0.17501 (12)0.0391 (4)
C110.7577 (3)0.6231 (2)0.47796 (13)0.0432 (4)
C120.9419 (3)0.8575 (2)0.58554 (15)0.0552 (5)
H12A0.88990.88700.64300.066*
H12B0.89160.89430.53720.066*
C131.1548 (4)0.9205 (2)0.59851 (15)0.0621 (6)
C141.3251 (5)0.9698 (3)0.6118 (2)0.0942 (10)
C150.9034 (3)0.60770 (18)0.61264 (12)0.0381 (4)
C161.0082 (3)0.6333 (2)0.69790 (13)0.0452 (4)
H161.07560.72670.73100.054*
C171.0092 (3)0.5145 (2)0.73252 (13)0.0463 (5)
H171.07860.52710.78980.056*
C180.9065 (3)0.3768 (2)0.68142 (13)0.0432 (4)
C190.7999 (3)0.34865 (19)0.59536 (12)0.0404 (4)
H190.73180.25520.56250.048*
C200.8012 (2)0.46764 (19)0.56177 (12)0.0371 (4)
H10.574 (3)0.554 (3)0.3093 (17)0.073 (7)*
H40.645 (3)0.409 (2)0.4297 (16)0.060 (6)*
H410.263 (6)0.002 (4)0.122 (3)0.138 (14)*
H1411.454 (5)1.011 (3)0.621 (2)0.118 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0683 (9)0.0531 (9)0.0505 (8)0.0149 (7)0.0098 (7)0.0175 (7)
O20.0971 (13)0.0713 (11)0.0680 (11)0.0265 (10)0.0142 (9)0.0289 (9)
O30.1019 (14)0.0448 (10)0.0931 (13)0.0164 (9)0.0181 (10)0.0160 (9)
O40.0672 (9)0.0501 (8)0.0493 (8)0.0188 (7)0.0090 (7)0.0151 (7)
O50.169 (2)0.0641 (12)0.0750 (12)0.0367 (12)0.0557 (13)0.0130 (10)
O60.1049 (14)0.0406 (9)0.0919 (13)0.0138 (9)0.0253 (10)0.0156 (9)
N10.0484 (9)0.0429 (9)0.0398 (9)0.0081 (7)0.0054 (7)0.0082 (7)
N20.0512 (9)0.0392 (9)0.0398 (8)0.0157 (7)0.0000 (7)0.0060 (7)
N30.0492 (10)0.0468 (10)0.0649 (12)0.0145 (8)0.0006 (8)0.0172 (9)
N40.0445 (9)0.0383 (9)0.0376 (8)0.0107 (7)0.0035 (7)0.0050 (7)
N50.0526 (9)0.0351 (8)0.0396 (8)0.0146 (7)0.0018 (7)0.0055 (7)
N60.0762 (12)0.0428 (10)0.0556 (11)0.0211 (9)0.0062 (9)0.0104 (8)
C10.0451 (10)0.0465 (11)0.0416 (10)0.0147 (8)0.0014 (8)0.0092 (9)
C20.0770 (15)0.0389 (11)0.0518 (12)0.0243 (10)0.0004 (10)0.0051 (9)
C30.0795 (16)0.0329 (10)0.0503 (12)0.0084 (10)0.0016 (11)0.0006 (9)
C40.082 (2)0.0561 (16)0.088 (2)0.0025 (14)0.0001 (16)0.0130 (14)
C50.0418 (9)0.0385 (10)0.0380 (9)0.0159 (8)0.0051 (7)0.0064 (8)
C60.0519 (11)0.0399 (10)0.0384 (10)0.0142 (8)0.0013 (8)0.0008 (8)
C70.0472 (10)0.0484 (11)0.0404 (10)0.0175 (9)0.0019 (8)0.0081 (8)
C80.0400 (9)0.0437 (10)0.0446 (10)0.0156 (8)0.0057 (8)0.0131 (8)
C90.0402 (10)0.0371 (10)0.0460 (11)0.0087 (7)0.0039 (8)0.0046 (8)
C100.0356 (9)0.0422 (10)0.0363 (9)0.0106 (7)0.0031 (7)0.0059 (8)
C110.0428 (10)0.0440 (11)0.0422 (10)0.0144 (8)0.0033 (8)0.0089 (8)
C120.0725 (14)0.0361 (11)0.0553 (12)0.0177 (10)0.0026 (10)0.0076 (9)
C130.0790 (17)0.0394 (11)0.0541 (13)0.0046 (11)0.0032 (11)0.0067 (10)
C140.081 (2)0.0721 (19)0.096 (2)0.0106 (16)0.0107 (17)0.0092 (16)
C150.0429 (9)0.0350 (9)0.0360 (9)0.0137 (7)0.0070 (7)0.0054 (7)
C160.0537 (11)0.0372 (10)0.0379 (10)0.0119 (8)0.0001 (8)0.0008 (8)
C170.0558 (11)0.0465 (11)0.0344 (9)0.0180 (9)0.0018 (8)0.0032 (8)
C180.0498 (10)0.0393 (10)0.0415 (10)0.0173 (8)0.0039 (8)0.0075 (8)
C190.0432 (10)0.0337 (9)0.0401 (10)0.0111 (7)0.0020 (8)0.0021 (7)
C200.0365 (9)0.0399 (10)0.0337 (9)0.0138 (7)0.0040 (7)0.0036 (7)
Geometric parameters (Å, º) top
O1—C11.226 (2)C4—H410.92 (4)
O2—N31.224 (2)C5—C61.377 (2)
O3—N31.219 (2)C5—C101.406 (2)
O4—C111.229 (2)C6—C71.382 (3)
O5—N61.215 (2)C6—H60.9300
O6—N61.219 (2)C7—C81.380 (3)
N1—C11.362 (2)C7—H70.9300
N1—C101.380 (2)C8—C91.389 (3)
N1—H10.96 (2)C9—C101.367 (3)
N2—C51.381 (2)C9—H90.9300
N2—C11.385 (2)C12—C131.455 (3)
N2—C21.452 (2)C12—H12A0.9700
N3—C81.459 (2)C12—H12B0.9700
N4—C111.370 (2)C13—C141.164 (4)
N4—C201.383 (2)C14—H1410.88 (3)
N4—H40.92 (2)C15—C161.375 (2)
N5—C111.379 (2)C15—C201.401 (2)
N5—C151.387 (2)C16—C171.384 (3)
N5—C121.452 (2)C16—H160.9300
N6—C181.457 (2)C17—C181.387 (3)
C2—C31.455 (3)C17—H170.9300
C2—H2A0.9700C18—C191.388 (3)
C2—H2B0.9700C19—C201.373 (2)
C3—C41.162 (4)C19—H190.9300
C1—N1—C10110.23 (16)C7—C8—C9123.72 (17)
C1—N1—H1121.9 (14)C7—C8—N3118.08 (17)
C10—N1—H1127.7 (14)C9—C8—N3118.18 (17)
C5—N2—C1109.67 (15)C10—C9—C8115.85 (17)
C5—N2—C2126.40 (16)C10—C9—H9122.1
C1—N2—C2123.92 (16)C8—C9—H9122.1
O3—N3—O2122.50 (18)C9—C10—N1131.69 (17)
O3—N3—C8118.46 (18)C9—C10—C5121.39 (16)
O2—N3—C8119.03 (18)N1—C10—C5106.92 (16)
C11—N4—C20109.80 (15)O4—C11—N4127.80 (18)
C11—N4—H4120.7 (13)O4—C11—N5125.54 (18)
C20—N4—H4129.3 (14)N4—C11—N5106.66 (16)
C11—N5—C15109.80 (15)N5—C12—C13112.49 (17)
C11—N5—C12123.13 (16)N5—C12—H12A109.1
C15—N5—C12126.98 (16)C13—C12—H12A109.1
O5—N6—O6122.84 (18)N5—C12—H12B109.1
O5—N6—C18118.59 (18)C13—C12—H12B109.1
O6—N6—C18118.57 (17)H12A—C12—H12B107.8
O1—C1—N1127.84 (18)C14—C13—C12177.7 (3)
O1—C1—N2125.59 (18)C13—C14—H141177 (2)
N1—C1—N2106.57 (16)C16—C15—N5131.48 (17)
N2—C2—C3111.72 (17)C16—C15—C20122.06 (16)
N2—C2—H2A109.3N5—C15—C20106.46 (15)
C3—C2—H2A109.3C15—C16—C17117.40 (17)
N2—C2—H2B109.3C15—C16—H16121.3
C3—C2—H2B109.3C17—C16—H16121.3
H2A—C2—H2B107.9C16—C17—C18119.75 (17)
C4—C3—C2177.4 (3)C16—C17—H17120.1
C3—C4—H41176 (2)C18—C17—H17120.1
C6—C5—N2131.73 (17)C19—C18—C17123.75 (17)
C6—C5—C10121.69 (17)C19—C18—N6118.16 (17)
N2—C5—C10106.58 (15)C17—C18—N6118.09 (17)
C5—C6—C7117.37 (17)C20—C19—C18115.76 (16)
C5—C6—H6121.3C20—C19—H19122.1
C7—C6—H6121.3C18—C19—H19122.1
C8—C7—C6119.97 (17)C19—C20—N4131.45 (16)
C8—C7—H7120.0C19—C20—C15121.28 (16)
C6—C7—H7120.0N4—C20—C15107.28 (15)
C10—N1—C1—O1177.65 (19)C20—N4—C11—O4179.86 (18)
C10—N1—C1—N21.7 (2)C20—N4—C11—N50.1 (2)
C5—N2—C1—O1177.68 (18)C15—N5—C11—O4179.94 (18)
C2—N2—C1—O11.5 (3)C12—N5—C11—O43.2 (3)
C5—N2—C1—N11.7 (2)C15—N5—C11—N40.1 (2)
C2—N2—C1—N1179.04 (16)C12—N5—C11—N4176.74 (17)
C5—N2—C2—C364.0 (2)C11—N5—C12—C13120.6 (2)
C1—N2—C2—C3115.0 (2)C15—N5—C12—C1363.0 (3)
C1—N2—C5—C6178.67 (19)C11—N5—C15—C16179.53 (19)
C2—N2—C5—C60.5 (3)C12—N5—C15—C163.7 (3)
C1—N2—C5—C101.1 (2)C11—N5—C15—C200.27 (19)
C2—N2—C5—C10179.73 (17)C12—N5—C15—C20176.45 (17)
N2—C5—C6—C7179.67 (18)N5—C15—C16—C17179.89 (18)
C10—C5—C6—C70.6 (3)C20—C15—C16—C170.1 (3)
C5—C6—C7—C80.8 (3)C15—C16—C17—C180.2 (3)
C6—C7—C8—C90.4 (3)C16—C17—C18—C190.1 (3)
C6—C7—C8—N3179.11 (16)C16—C17—C18—N6179.55 (17)
O3—N3—C8—C7172.97 (18)O5—N6—C18—C19175.1 (2)
O2—N3—C8—C78.4 (3)O6—N6—C18—C194.0 (3)
O3—N3—C8—C98.3 (3)O5—N6—C18—C175.2 (3)
O2—N3—C8—C9170.30 (18)O6—N6—C18—C17175.7 (2)
C7—C8—C9—C100.1 (3)C17—C18—C19—C200.2 (3)
N3—C8—C9—C10178.55 (15)N6—C18—C19—C20179.91 (16)
C8—C9—C10—N1179.90 (18)C18—C19—C20—N4179.50 (18)
C8—C9—C10—C50.3 (2)C18—C19—C20—C150.5 (2)
C1—N1—C10—C9178.72 (19)C11—N4—C20—C19179.75 (18)
C1—N1—C10—C51.1 (2)C11—N4—C20—C150.23 (19)
C6—C5—C10—C90.1 (3)C16—C15—C20—C190.5 (3)
N2—C5—C10—C9179.84 (15)N5—C15—C20—C19179.68 (15)
C6—C5—C10—N1179.78 (16)C16—C15—C20—N4179.52 (16)
N2—C5—C10—N10.01 (19)N5—C15—C20—N40.30 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.96 (2)1.81 (3)2.766 (2)173 (2)
N4—H4···O10.92 (2)1.91 (2)2.823 (2)172 (2)
C4—H41···O3i0.92 (4)2.39 (4)3.231 (4)153 (3)
C14—H141···O6ii0.88 (3)2.51 (3)3.383 (4)169 (3)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H7N3O3
Mr217.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2541 (2), 10.0362 (2), 14.6793 (3)
α, β, γ (°)100.978 (1), 92.047 (1), 109.043 (1)
V3)986.20 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.22 × 0.13
Data collection
DiffractometerBruker APEX DUO
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20686, 4506, 2855
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.158, 1.05
No. of reflections4506
No. of parameters305
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.96 (2)1.81 (3)2.766 (2)173 (2)
N4—H4···O10.92 (2)1.91 (2)2.823 (2)172 (2)
C4—H41···O3i0.92 (4)2.39 (4)3.231 (4)153 (3)
C14—H141···O6ii0.88 (3)2.51 (3)3.383 (4)169 (3)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z.
 

Acknowledgements

We thank Université Mohammed V-Agdal and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Essassi, E. M., El Ammari, L., Fronczek, F. R. & Venkatraman, R. (2011a). Acta Cryst. E67, o669.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011b). Acta Cryst. E67, o1091.  CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011c). Acta Cryst. E67, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds