metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis(pyrazine-2-carboxamide-κN4)zinc

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadif.shirvan1@gmail.com

(Received 27 March 2012; accepted 27 March 2012; online 31 March 2012)

The title complex, [ZnBr2(C5H5N3O)2], shows crystallographic mirror symmetry with the Zn atom and the two bromine ligands located on the mirror plane. The Zn atom is four-coordinated in a distorted tetra­hedral fashion by two N atoms from two pyrazine-2-carboxamide ligands and two Br atoms. Only one of the amino H atoms is involved in an N—H⋯O hydrogen bond. The crystal packing is further stabilized by weak N—H⋯N and C—H⋯O inter­actions.

Related literature

For related structures, see: Abu-Youssef et al. (2006[Abu-Youssef, M. A. M., Escuer, A. & Langer, V. (2006). Eur. J. Inorg. Chem. pp. 3177-3184.]); Azhdari Tehrani et al. (2010[Azhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.]); Goher & Mautner (2000[Goher, M. A. S. & Mautner, F. A. (2000). Polyhedron, 19, 601-606.]); Kristiansson (2002[Kristiansson, O. (2002). Acta Cryst. E58, m130-m132.]); Mir Mohammad Sadegh et al. (2010[Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.]); Munakata et al. (1997[Munakata, M., Wu, L. P., Sowa, T. K., Maekawa, M., Moriwaki, K. & Kitagawa, S. (1997). Inorg. Chem. 36, 5416-5418.]); Pacigova et al. (2008[Pacigova, S., Gyepes, R., Tatiersky, J. & Sivak, M. (2008). Dalton Trans. pp. 121-130.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C5H5N3O)2]

  • Mr = 471.43

  • Monoclinic, P 21 /m

  • a = 5.6042 (4) Å

  • b = 19.5147 (19) Å

  • c = 7.0656 (5) Å

  • β = 106.835 (5)°

  • V = 739.61 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.08 mm−1

  • T = 298 K

  • 0.25 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.205, Tmax = 0.250

  • 3935 measured reflections

  • 1495 independent reflections

  • 1247 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.111

  • S = 1.10

  • 1495 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1i 0.86 2.01 2.869 (7) 175
N3—H3C⋯N2 0.86 2.38 2.732 (7) 105
N3—H3C⋯N2ii 0.86 2.54 3.182 (7) 132
C3—H3⋯O1iii 0.93 2.49 3.414 (7) 172
Symmetry codes: (i) -x+1, -y+1, -z+3; (ii) -x, -y+1, -z+2; (iii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A few complexes of pyrazine-2-carboxamide (pzc) have been prepared, such as that of mercury (Azhdari Tehrani et al., 2010; Mir Mohammad Sadegh et al., 2010) and vanadium (Pacigova et al., 2008), manganese (Abu-Youssef et al., 2006) and copper (Kristiansson, 2002; Munakata et al., 1997; Goher & Mautner, 2000).

The asymmetric unit of the title compound, (Fig. 1), contains one ZnII atom, two Br atoms and one pyrazine-2-carboxamide ligand. The ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two pyrazine-2-carboxamide ligands and two terminal Br atoms.

Only one of the amino H atoms is involved in a N—H···O hydrogen bond. The crystal packing is further stabilized by weak N—H···N and C—H···O interactions.

Related literature top

For related structures, see: Abu-Youssef et al. (2006); Azhdari Tehrani et al. (2010); Goher & Mautner (2000); Kristiansson (2002); Mir Mohammad Sadegh et al. (2010); Munakata et al. (1997); Pacigova et al. (2008).

Experimental top

A solution of pyrazine-2-carboxamide (0.25 g, 2.0 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.23 g, 1.0 mmol) in methanol (10 ml) and the resulting colourless solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colourless block shaped crystals of the title compound were isolated (yield 0.38 g, 80.6%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å and N—H = 0.86 Å and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(C,N).

Structure description top

A few complexes of pyrazine-2-carboxamide (pzc) have been prepared, such as that of mercury (Azhdari Tehrani et al., 2010; Mir Mohammad Sadegh et al., 2010) and vanadium (Pacigova et al., 2008), manganese (Abu-Youssef et al., 2006) and copper (Kristiansson, 2002; Munakata et al., 1997; Goher & Mautner, 2000).

The asymmetric unit of the title compound, (Fig. 1), contains one ZnII atom, two Br atoms and one pyrazine-2-carboxamide ligand. The ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two pyrazine-2-carboxamide ligands and two terminal Br atoms.

Only one of the amino H atoms is involved in a N—H···O hydrogen bond. The crystal packing is further stabilized by weak N—H···N and C—H···O interactions.

For related structures, see: Abu-Youssef et al. (2006); Azhdari Tehrani et al. (2010); Goher & Mautner (2000); Kristiansson (2002); Mir Mohammad Sadegh et al. (2010); Munakata et al. (1997); Pacigova et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) x,3/2 - y,z].
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule. Hydrogen bonds are shown as dashed lines.
Dibromidobis(pyrazine-2-carboxamide-κN4)zinc top
Crystal data top
[ZnBr2(C5H5N3O)2]F(000) = 456
Mr = 471.43Dx = 2.117 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 5.6042 (4) ÅCell parameters from 3935 reflections
b = 19.5147 (19) Åθ = 3.0–26.0°
c = 7.0656 (5) ŵ = 7.08 mm1
β = 106.835 (5)°T = 298 K
V = 739.61 (10) Å3Block, colorless
Z = 20.25 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1495 independent reflections
Radiation source: fine-focus sealed tube1247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 66
Tmin = 0.205, Tmax = 0.250k = 2124
3935 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0663P)2]
where P = (Fo2 + 2Fc2)/3
1495 reflections(Δ/σ)max = 0.003
100 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[ZnBr2(C5H5N3O)2]V = 739.61 (10) Å3
Mr = 471.43Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.6042 (4) ŵ = 7.08 mm1
b = 19.5147 (19) ÅT = 298 K
c = 7.0656 (5) Å0.25 × 0.24 × 0.20 mm
β = 106.835 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1495 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1247 reflections with I > 2σ(I)
Tmin = 0.205, Tmax = 0.250Rint = 0.053
3935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.10Δρmax = 0.77 e Å3
1495 reflectionsΔρmin = 1.19 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5931 (9)0.6363 (3)1.0284 (7)0.0268 (10)
H10.73060.64661.13500.032*
C20.3658 (9)0.6512 (3)0.7068 (8)0.0322 (11)
H20.34290.67170.58390.039*
C30.1931 (10)0.6034 (3)0.7302 (8)0.0360 (12)
H30.05500.59360.62370.043*
C40.4230 (9)0.5883 (3)1.0503 (7)0.0264 (10)
C50.4616 (10)0.5526 (3)1.2446 (8)0.0320 (11)
N10.5632 (7)0.6684 (2)0.8557 (6)0.0256 (9)
N20.2205 (7)0.5714 (2)0.9018 (7)0.0334 (10)
N30.2721 (10)0.5171 (3)1.2679 (8)0.0532 (15)
H3B0.28500.49631.37780.064*
H3C0.13550.51471.17320.064*
O10.6621 (7)0.5585 (2)1.3724 (6)0.0469 (11)
Zn10.79117 (14)0.75000.82766 (12)0.0244 (2)
Br10.79321 (15)0.75000.49867 (12)0.0392 (2)
Br21.13911 (12)0.75001.10460 (11)0.0351 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (2)0.029 (3)0.023 (2)0.0022 (18)0.0017 (19)0.001 (2)
C20.035 (3)0.035 (3)0.023 (3)0.001 (2)0.002 (2)0.002 (2)
C30.033 (3)0.043 (3)0.026 (3)0.011 (2)0.001 (2)0.003 (2)
C40.025 (2)0.026 (2)0.027 (3)0.0027 (19)0.0062 (19)0.001 (2)
C50.036 (3)0.032 (3)0.026 (3)0.009 (2)0.006 (2)0.001 (2)
N10.0247 (18)0.028 (2)0.024 (2)0.0028 (17)0.0075 (16)0.0010 (17)
N20.027 (2)0.037 (3)0.033 (2)0.0069 (18)0.0033 (18)0.001 (2)
N30.044 (3)0.074 (4)0.034 (3)0.028 (3)0.000 (2)0.017 (3)
O10.043 (2)0.055 (3)0.032 (2)0.0183 (19)0.0068 (17)0.0147 (19)
Zn10.0224 (4)0.0275 (4)0.0247 (4)0.0000.0088 (3)0.000
Br10.0424 (4)0.0536 (5)0.0242 (4)0.0000.0138 (3)0.000
Br20.0222 (4)0.0511 (5)0.0302 (4)0.0000.0049 (3)0.000
Geometric parameters (Å, º) top
C1—N11.338 (6)C4—C51.499 (7)
C1—C41.377 (7)C5—O11.226 (6)
C1—H10.9300C5—N31.317 (7)
C2—N11.331 (7)N1—Zn12.086 (4)
C2—C31.388 (8)N3—H3B0.8600
C2—H20.9300N3—H3C0.8600
C3—N21.333 (7)Zn1—N1i2.086 (4)
C3—H30.9300Zn1—Br12.3278 (11)
C4—N21.345 (6)Zn1—Br22.3283 (11)
N1—C1—C4120.8 (5)N3—C5—C4116.8 (5)
N1—C1—H1119.6C2—N1—C1117.3 (4)
C4—C1—H1119.6C2—N1—Zn1120.6 (4)
N1—C2—C3121.6 (5)C1—N1—Zn1121.7 (3)
N1—C2—H2119.2C3—N2—C4116.3 (4)
C3—C2—H2119.2C5—N3—H3B120.0
N2—C3—C2121.6 (5)C5—N3—H3C120.0
N2—C3—H3119.2H3B—N3—H3C120.0
C2—C3—H3119.2N1—Zn1—N1i99.5 (2)
N2—C4—C1122.4 (5)N1—Zn1—Br1105.96 (12)
N2—C4—C5117.7 (4)N1i—Zn1—Br1105.96 (12)
C1—C4—C5119.9 (4)N1—Zn1—Br2107.88 (12)
O1—C5—N3123.9 (5)N1i—Zn1—Br2107.88 (12)
O1—C5—C4119.3 (5)Br1—Zn1—Br2126.45 (4)
N1—C2—C3—N21.7 (9)C4—C1—N1—Zn1172.0 (4)
N1—C1—C4—N20.1 (8)C2—C3—N2—C40.5 (8)
N1—C1—C4—C5179.4 (5)C1—C4—N2—C30.4 (8)
N2—C4—C5—O1168.4 (5)C5—C4—N2—C3179.2 (5)
C1—C4—C5—O111.2 (8)C2—N1—Zn1—N1i75.8 (4)
N2—C4—C5—N312.6 (8)C1—N1—Zn1—N1i97.0 (4)
C1—C4—C5—N3167.8 (5)C2—N1—Zn1—Br133.9 (4)
C3—C2—N1—C11.9 (8)C1—N1—Zn1—Br1153.3 (4)
C3—C2—N1—Zn1171.2 (4)C2—N1—Zn1—Br2171.8 (4)
C4—C1—N1—C21.0 (7)C1—N1—Zn1—Br215.4 (4)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1ii0.862.012.869 (7)175
N3—H3C···N20.862.382.732 (7)105
N3—H3C···N2iii0.862.543.182 (7)132
C3—H3···O1iv0.932.493.414 (7)172
Symmetry codes: (ii) x+1, y+1, z+3; (iii) x, y+1, z+2; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formula[ZnBr2(C5H5N3O)2]
Mr471.43
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)5.6042 (4), 19.5147 (19), 7.0656 (5)
β (°) 106.835 (5)
V3)739.61 (10)
Z2
Radiation typeMo Kα
µ (mm1)7.08
Crystal size (mm)0.25 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.205, 0.250
No. of measured, independent and
observed [I > 2σ(I)] reflections
3935, 1495, 1247
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.111, 1.10
No. of reflections1495
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 1.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.86002.01002.869 (7)175.00
N3—H3C···N20.86002.38002.732 (7)105.00
N3—H3C···N2ii0.86002.54003.182 (7)132.00
C3—H3···O1iii0.93002.49003.414 (7)172.00
Symmetry codes: (i) x+1, y+1, z+3; (ii) x, y+1, z+2; (iii) x1, y, z1.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch for financial support.

References

First citationAbu-Youssef, M. A. M., Escuer, A. & Langer, V. (2006). Eur. J. Inorg. Chem. pp. 3177–3184.  Google Scholar
First citationAzhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (2000). Polyhedron, 19, 601–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationKristiansson, O. (2002). Acta Cryst. E58, m130–m132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMunakata, M., Wu, L. P., Sowa, T. K., Maekawa, M., Moriwaki, K. & Kitagawa, S. (1997). Inorg. Chem. 36, 5416–5418.  CSD CrossRef CAS Web of Science Google Scholar
First citationPacigova, S., Gyepes, R., Tatiersky, J. & Sivak, M. (2008). Dalton Trans. pp. 121–130.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds