organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­pyridinium 5-(2,4-di­nitro­phen­yl)-1,3-di­methyl­barbiturate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 26 November 2011; accepted 4 March 2012; online 14 March 2012)

In the title mol­ecular salt [systematic name: 2-methyl­pyridinium 5-(2,4-dinitro­phen­yl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate], C6H8N+·C12H9N4O7, the cation and anion are linked a through strong N—H⋯O hydrogen bond. In the crystal, C—H⋯O inter­actions link the ions, generating a chain along [010].

Related literature

For the biological properties of mol­ecules containing pyridine and pyrimidine units, see: Terekhova & Scriba (2007[Terekhova, I. V. & Scriba, G. K. E. (2007). J. Pharm. Biomed. Anal. 45, 688-693.]); Comins et al. (2008[Comins, D. L., Connor, S. O. & Al-awar, R. S. (2008). Pyridines and their derivatives, pp. 1-59. Indianapolis, IN, USA: Eli Lilly & Co.]); Hueso et al. (2003[Hueso, F., Moreno, M. N., Martinez, J. M. & Ramirez, M. J. (2003). J. Inorg. Biochem. 94, 326-334.]); Jain et al. (2006[Jain, K. S., Chitra, T. S., Miniyar, P. B., Kathiravan, M. K., Bendre, V. S., Veer, V. S., Shahane, S. R. & Shishoo, C. J. (2006). Curr. Sci. 90, 793-803.]). For the structures of barbiturates similar to the title compound, see: Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]); Kalaivani & Buvaneswari (2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. UK: WSEAS Publications.]); Buvaneswari & Kalaivani (2011[Buvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433-o1434.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N+·C12H9N4O7

  • Mr = 415.37

  • Monoclinic, P 21 /n

  • a = 12.8242 (8) Å

  • b = 7.0696 (5) Å

  • c = 21.5409 (14) Å

  • β = 101.029 (2)°

  • V = 1916.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.983

  • 3527 measured reflections

  • 3527 independent reflections

  • 2790 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.04

  • 3527 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O3 0.86 1.82 2.6645 (16) 168
C13—H13B⋯O5i 0.96 2.42 3.340 (2) 161
C13—H13C⋯O1ii 0.96 2.42 3.160 (2) 134
C15—H15⋯O2iii 0.93 2.29 3.021 (2) 135
C16—H16⋯O6iv 0.93 2.58 3.323 (2) 138
C17—H17⋯O1v 0.93 2.52 3.303 (2) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Many molecules containing the pyridine moiety exhibit notable biological activity (Terekhova & Scriba, 2007; Comins et al., 2008). Molecules with pyrimidine ring residues are also biologically active (Hueso et al., 2003; Jain et al., 2006). The title molecular salt comprises of both pyrimidine (barbiturate moiety) and pyridine (2-methyl pyridinium) moieties and hence expected to have significant biological activity. Good crystallinity of the title compound prompted us to undertake single-crystal X-ray studies. The bond lengths and bond angles of the barbiturate residue of the molecular salt reported in the present article are compatible with those of related barbiturates synthesized in our laboratory earlier (Kalaivani & Malarvizhi, 2009; Kalaivani & Buvaneswari, 2010; Buvaneswari & Kalaivani, 2011). The structure of the molecular salt of the present work is shown in scheme 1. The ORTEP view showing 30% probability displacement ellipsoids is indicated in Fig.1. In the title molecule, the one dimensional zigzag chains which run along [010] direction are linked through C13—H13···O1, C17—H17···O1, C16—H16···O6, C13—H13···O3 and C15—H15···O2 weak interactions thus generating a three dimensional network and hence constituting the molecular packing of the crystal (Fig. 2). The 2,4-dinitrophenyl ring and 1,3-dimethylbarbiturate ring of the title molecule are not perfectly planar and the dihedral angle observed between them is 44.54 (2)degree.

Related literature top

For the biological properties of molecules containing pyridine and pyrimidine units, see: Terekhova & Scriba (2007); Comins et al. (2008); Hueso et al. (2003); Jain et al. (2006). For the structures of barbiturates similar to the title compound, see: Kalaivani & Malarvizhi (2009); Kalaivani & Buvaneswari (2010); Buvaneswari & Kalaivani (2011).

Experimental top

1-Chloro-2,4-dinitrobenzene(2.02 g,0.01 mol) was dissolved in 20 ml of ethanol. 1,3-Dimethylbarbituric acid (1.56 g,0.01 mol) was also dissolved in 15 ml of ethanol. These two solutions were mixed and to this mixture a five fold excess of 2-methylpyridine (4.65 g, 0.05 mol) was added and the resulting blood red coloured solution was shaken well for about three hours and kept as such at 25 /%C. Dark shiny maroon red coloured crystals were deposited from the solution after seventy two hours. The crystals were filtered and washed with 30 ml of ether. The crystals were powdered well and washed with 40 ml of ether to remove the unreacted reactants and finally with 10 ml of ethanol. The pure powder was recrystallized from hot ethanol (Yield: 75%; m.p.; 451 K). The crystals for X-ray analysis were obtained by slow evaporation of ethanol at room temperature.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93Å (CH), 0.96Å (CH2) or 0.98Å (CH3) and an N—H distance of 0.86 Å. The isotropic displacement parameters for these atoms were set to 1.2 (CH, and NH) or 1.50 times Ueq (CH3) of the parent atom.

Structure description top

Many molecules containing the pyridine moiety exhibit notable biological activity (Terekhova & Scriba, 2007; Comins et al., 2008). Molecules with pyrimidine ring residues are also biologically active (Hueso et al., 2003; Jain et al., 2006). The title molecular salt comprises of both pyrimidine (barbiturate moiety) and pyridine (2-methyl pyridinium) moieties and hence expected to have significant biological activity. Good crystallinity of the title compound prompted us to undertake single-crystal X-ray studies. The bond lengths and bond angles of the barbiturate residue of the molecular salt reported in the present article are compatible with those of related barbiturates synthesized in our laboratory earlier (Kalaivani & Malarvizhi, 2009; Kalaivani & Buvaneswari, 2010; Buvaneswari & Kalaivani, 2011). The structure of the molecular salt of the present work is shown in scheme 1. The ORTEP view showing 30% probability displacement ellipsoids is indicated in Fig.1. In the title molecule, the one dimensional zigzag chains which run along [010] direction are linked through C13—H13···O1, C17—H17···O1, C16—H16···O6, C13—H13···O3 and C15—H15···O2 weak interactions thus generating a three dimensional network and hence constituting the molecular packing of the crystal (Fig. 2). The 2,4-dinitrophenyl ring and 1,3-dimethylbarbiturate ring of the title molecule are not perfectly planar and the dihedral angle observed between them is 44.54 (2)degree.

For the biological properties of molecules containing pyridine and pyrimidine units, see: Terekhova & Scriba (2007); Comins et al. (2008); Hueso et al. (2003); Jain et al. (2006). For the structures of barbiturates similar to the title compound, see: Kalaivani & Malarvizhi (2009); Kalaivani & Buvaneswari (2010); Buvaneswari & Kalaivani (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title molecule showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing view of title molecule showing the chains in the [010] direction.
2-Methylpyridinium 5-(2,4-dinitrophenyl)-1,3-dimethyl-2,6-dioxo- 1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C6H8N+·C12H9N4O7F(000) = 864
Mr = 415.37Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6197 reflections
a = 12.8242 (8) Åθ = 2.9–25.3°
b = 7.0696 (5) ŵ = 0.11 mm1
c = 21.5409 (14) ÅT = 293 K
β = 101.029 (2)°Block, red
V = 1916.9 (2) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3527 independent reflections
Radiation source: fine-focus sealed tube2790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω and φ scanθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.917, Tmax = 0.983k = 08
3527 measured reflectionsl = 025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4365P]
where P = (Fo2 + 2Fc2)/3
3527 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H8N+·C12H9N4O7V = 1916.9 (2) Å3
Mr = 415.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8242 (8) ŵ = 0.11 mm1
b = 7.0696 (5) ÅT = 293 K
c = 21.5409 (14) Å0.30 × 0.25 × 0.15 mm
β = 101.029 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3527 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2790 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.983Rint = 0.000
3527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
3527 reflectionsΔρmin = 0.17 e Å3
275 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.25790 (8)0.59806 (19)0.13771 (6)0.0652 (4)
O20.58313 (8)0.84817 (17)0.13910 (5)0.0521 (3)
O30.49962 (8)0.55652 (17)0.31960 (5)0.0550 (3)
O40.53244 (10)0.9752 (2)0.33842 (6)0.0694 (4)
O50.60991 (12)0.8263 (2)0.42199 (6)0.0831 (4)
O60.98964 (12)0.8224 (3)0.43012 (8)0.1054 (6)
O71.04967 (11)0.7451 (2)0.34758 (8)0.0851 (5)
N10.41979 (10)0.72838 (19)0.13974 (6)0.0457 (3)
N20.37859 (9)0.58307 (18)0.22914 (6)0.0453 (3)
N30.60166 (12)0.8717 (2)0.36639 (6)0.0552 (4)
N40.97702 (13)0.7814 (2)0.37450 (9)0.0678 (5)
C10.38684 (15)0.7872 (3)0.07370 (8)0.0711 (6)
H1A0.41280.91250.06850.107*0.62 (3)
H1B0.31070.78670.06250.107*0.62 (3)
H1C0.41540.70110.04680.107*0.62 (3)
H1C10.44840.81990.05670.107*0.38 (3)
H1C20.34080.89510.07150.107*0.38 (3)
H1C30.34970.68530.04960.107*0.38 (3)
C20.34662 (11)0.6346 (2)0.16695 (7)0.0461 (4)
C30.30525 (14)0.4711 (3)0.25827 (10)0.0714 (6)
H3A0.29000.53710.29450.107*
H3B0.33700.35100.27130.107*
H3C0.24050.45160.22820.107*
C40.48022 (11)0.6176 (2)0.26412 (7)0.0404 (3)
C50.55251 (10)0.71463 (19)0.23462 (6)0.0363 (3)
C60.52461 (11)0.7686 (2)0.17015 (7)0.0390 (3)
C70.65998 (11)0.74854 (18)0.26967 (6)0.0351 (3)
C80.68428 (11)0.8054 (2)0.33312 (7)0.0412 (3)
C90.78652 (12)0.8162 (2)0.36788 (7)0.0476 (4)
H90.79910.84980.41040.057*
C100.86841 (12)0.7759 (2)0.33778 (8)0.0472 (4)
C110.85129 (12)0.7277 (2)0.27469 (8)0.0466 (4)
H110.90820.70470.25470.056*
C120.74849 (11)0.7141 (2)0.24194 (7)0.0405 (3)
H120.73720.68050.19940.049*
N50.61757 (9)0.36331 (18)0.41383 (6)0.0434 (3)
H5A0.58290.41530.38000.052*
C130.44507 (13)0.3047 (3)0.43878 (8)0.0616 (5)
H13A0.42460.42610.42050.092*
H13B0.41580.28830.47620.092*
H13C0.41870.20720.40890.092*
C140.56244 (12)0.2933 (2)0.45537 (7)0.0447 (4)
C150.72358 (12)0.3570 (2)0.42194 (8)0.0530 (4)
H150.75790.40670.39130.064*
C160.78080 (14)0.2779 (3)0.47504 (9)0.0638 (5)
H160.85450.27170.48110.077*
C170.72821 (16)0.2074 (3)0.51962 (9)0.0686 (5)
H170.76640.15460.55660.082*
C180.61948 (15)0.2143 (3)0.50993 (8)0.0602 (5)
H180.58410.16550.54030.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0384 (6)0.0833 (9)0.0665 (7)0.0017 (6)0.0081 (5)0.0018 (7)
O20.0521 (6)0.0640 (7)0.0406 (6)0.0043 (5)0.0101 (5)0.0080 (5)
O30.0508 (6)0.0660 (8)0.0458 (6)0.0074 (5)0.0030 (5)0.0188 (5)
O40.0682 (8)0.0715 (9)0.0722 (8)0.0120 (7)0.0225 (7)0.0144 (7)
O50.1004 (10)0.1142 (12)0.0405 (7)0.0185 (9)0.0278 (7)0.0079 (7)
O60.0762 (10)0.1480 (16)0.0739 (10)0.0106 (10)0.0311 (8)0.0053 (10)
O70.0414 (7)0.0957 (11)0.1117 (12)0.0104 (7)0.0020 (8)0.0226 (9)
N10.0428 (7)0.0528 (8)0.0379 (7)0.0017 (6)0.0018 (5)0.0019 (6)
N20.0368 (6)0.0482 (8)0.0497 (7)0.0033 (5)0.0050 (5)0.0045 (6)
N30.0637 (9)0.0614 (9)0.0440 (8)0.0126 (8)0.0187 (7)0.0133 (7)
N40.0493 (9)0.0633 (10)0.0807 (12)0.0116 (7)0.0128 (8)0.0157 (9)
C10.0662 (11)0.0939 (15)0.0451 (10)0.0040 (10)0.0097 (8)0.0135 (10)
C20.0386 (8)0.0465 (9)0.0505 (9)0.0043 (7)0.0021 (7)0.0032 (7)
C30.0498 (10)0.0804 (14)0.0828 (13)0.0159 (9)0.0093 (9)0.0196 (11)
C40.0389 (7)0.0388 (8)0.0423 (8)0.0018 (6)0.0048 (6)0.0017 (6)
C50.0374 (7)0.0344 (7)0.0360 (7)0.0018 (6)0.0047 (6)0.0009 (6)
C60.0398 (7)0.0373 (8)0.0393 (8)0.0034 (6)0.0059 (6)0.0030 (6)
C70.0399 (7)0.0289 (7)0.0356 (7)0.0002 (6)0.0050 (6)0.0019 (5)
C80.0468 (8)0.0383 (8)0.0384 (8)0.0052 (6)0.0084 (6)0.0009 (6)
C90.0556 (9)0.0452 (9)0.0378 (8)0.0107 (7)0.0018 (7)0.0024 (7)
C100.0413 (8)0.0397 (8)0.0541 (9)0.0072 (7)0.0073 (7)0.0089 (7)
C110.0395 (8)0.0399 (8)0.0607 (10)0.0014 (6)0.0102 (7)0.0050 (7)
C120.0425 (7)0.0374 (8)0.0411 (8)0.0030 (6)0.0062 (6)0.0019 (6)
N50.0440 (7)0.0465 (7)0.0380 (6)0.0003 (6)0.0035 (5)0.0016 (6)
C130.0480 (9)0.0805 (13)0.0576 (10)0.0059 (9)0.0132 (8)0.0028 (9)
C140.0498 (8)0.0434 (9)0.0402 (8)0.0049 (7)0.0070 (7)0.0030 (7)
C150.0449 (9)0.0567 (10)0.0574 (10)0.0032 (7)0.0097 (7)0.0012 (8)
C160.0472 (9)0.0676 (12)0.0707 (12)0.0041 (8)0.0040 (9)0.0013 (10)
C170.0714 (12)0.0662 (12)0.0584 (11)0.0080 (10)0.0121 (9)0.0101 (9)
C180.0725 (12)0.0598 (11)0.0466 (9)0.0047 (9)0.0071 (8)0.0110 (8)
Geometric parameters (Å, º) top
O1—C21.2181 (17)C5—C71.4591 (18)
O2—C61.2325 (17)C7—C121.401 (2)
O3—C41.2501 (17)C7—C81.4014 (19)
O4—N31.2174 (19)C8—C91.382 (2)
O5—N31.2248 (18)C9—C101.366 (2)
O6—N41.213 (2)C9—H90.9300
O7—N41.215 (2)C10—C111.377 (2)
N1—C21.369 (2)C11—C121.374 (2)
N1—C61.4071 (18)C11—H110.9300
N1—C11.465 (2)C12—H120.9300
N2—C21.3728 (19)N5—C141.3370 (19)
N2—C41.3966 (18)N5—C151.3379 (19)
N2—C31.460 (2)N5—H5A0.8600
N3—C81.465 (2)C13—C141.481 (2)
N4—C101.465 (2)C13—H13A0.9600
C1—H1A0.9600C13—H13B0.9600
C1—H1B0.9600C13—H13C0.9600
C1—H1C0.9600C14—C181.378 (2)
C1—H1C10.9599C15—C161.356 (2)
C1—H1C20.9600C15—H150.9300
C1—H1C30.9600C16—C171.369 (3)
C3—H3A0.9600C16—H160.9300
C3—H3B0.9600C17—C181.371 (3)
C3—H3C0.9600C17—H170.9300
C4—C51.400 (2)C18—H180.9300
C5—C61.418 (2)
C2—N1—C6124.79 (12)C8—C7—C5124.30 (13)
C2—N1—C1117.35 (13)C9—C8—C7123.72 (14)
C6—N1—C1117.85 (13)C9—C8—N3114.66 (13)
C2—N2—C4123.63 (13)C7—C8—N3121.48 (13)
C2—N2—C3117.81 (13)C10—C9—C8117.86 (14)
C4—N2—C3118.32 (13)C10—C9—H9121.1
O4—N3—O5124.05 (15)C8—C9—H9121.1
O4—N3—C8118.52 (13)C9—C10—C11121.88 (13)
O5—N3—C8117.33 (15)C9—C10—N4118.44 (15)
O6—N4—O7123.52 (16)C11—C10—N4119.67 (16)
O6—N4—C10118.22 (18)C12—C11—C10118.68 (15)
O7—N4—C10118.26 (17)C12—C11—H11120.7
N1—C1—H1A109.5C10—C11—H11120.7
N1—C1—H1B109.5C11—C12—C7123.00 (14)
N1—C1—H1C109.5C11—C12—H12118.5
N1—C1—H1C1109.5C7—C12—H12118.5
N1—C1—H1C2109.5C14—N5—C15123.68 (13)
H1C1—C1—H1C2109.5C14—N5—H5A118.2
N1—C1—H1C3109.5C15—N5—H5A118.2
H1C1—C1—H1C3109.5C14—C13—H13A109.5
H1C2—C1—H1C3109.5C14—C13—H13B109.5
O1—C2—N1122.01 (14)H13A—C13—H13B109.5
O1—C2—N2121.56 (15)C14—C13—H13C109.5
N1—C2—N2116.43 (12)H13A—C13—H13C109.5
N2—C3—H3A109.5H13B—C13—H13C109.5
N2—C3—H3B109.5N5—C14—C18117.29 (15)
H3A—C3—H3B109.5N5—C14—C13117.48 (13)
N2—C3—H3C109.5C18—C14—C13125.23 (15)
H3A—C3—H3C109.5N5—C15—C16119.76 (16)
H3B—C3—H3C109.5N5—C15—H15120.1
O3—C4—N2116.74 (13)C16—C15—H15120.1
O3—C4—C5125.13 (13)C15—C16—C17118.83 (17)
N2—C4—C5118.13 (13)C15—C16—H16120.6
C4—C5—C6120.76 (12)C17—C16—H16120.6
C4—C5—C7119.19 (12)C16—C17—C18120.25 (16)
C6—C5—C7119.92 (12)C16—C17—H17119.9
O2—C6—N1117.79 (13)C18—C17—H17119.9
O2—C6—C5126.04 (13)C17—C18—C14120.18 (17)
N1—C6—C5116.17 (13)C17—C18—H18119.9
C12—C7—C8114.74 (13)C14—C18—H18119.9
C12—C7—C5120.86 (13)
C6—N1—C2—O1177.51 (15)C5—C7—C8—C9172.31 (14)
C1—N1—C2—O11.1 (2)C12—C7—C8—N3171.51 (13)
C6—N1—C2—N22.3 (2)C5—C7—C8—N312.2 (2)
C1—N1—C2—N2179.10 (15)O4—N3—C8—C9134.74 (15)
C4—N2—C2—O1178.35 (15)O5—N3—C8—C941.7 (2)
C3—N2—C2—O14.1 (2)O4—N3—C8—C741.1 (2)
C4—N2—C2—N11.5 (2)O5—N3—C8—C7142.42 (15)
C3—N2—C2—N1175.71 (15)C7—C8—C9—C102.6 (2)
C2—N2—C4—O3177.37 (14)N3—C8—C9—C10173.16 (14)
C3—N2—C4—O33.1 (2)C8—C9—C10—C110.6 (2)
C2—N2—C4—C51.8 (2)C8—C9—C10—N4178.24 (14)
C3—N2—C4—C5176.00 (15)O6—N4—C10—C90.4 (2)
O3—C4—C5—C6176.28 (14)O7—N4—C10—C9179.87 (15)
N2—C4—C5—C62.8 (2)O6—N4—C10—C11179.24 (17)
O3—C4—C5—C70.5 (2)O7—N4—C10—C111.0 (2)
N2—C4—C5—C7178.55 (12)C9—C10—C11—C122.1 (2)
C2—N1—C6—O2177.41 (14)N4—C10—C11—C12176.75 (14)
C1—N1—C6—O21.2 (2)C10—C11—C12—C70.5 (2)
C2—N1—C6—C53.3 (2)C8—C7—C12—C112.4 (2)
C1—N1—C6—C5178.11 (14)C5—C7—C12—C11174.04 (13)
C4—C5—C6—O2177.32 (14)C15—N5—C14—C181.4 (2)
C7—C5—C6—O21.6 (2)C15—N5—C14—C13177.90 (16)
C4—C5—C6—N13.4 (2)C14—N5—C15—C160.7 (2)
C7—C5—C6—N1179.18 (12)N5—C15—C16—C170.6 (3)
C4—C5—C7—C12133.84 (15)C15—C16—C17—C181.1 (3)
C6—C5—C7—C1241.96 (19)C16—C17—C18—C140.4 (3)
C4—C5—C7—C842.2 (2)N5—C14—C18—C170.8 (3)
C6—C5—C7—C8142.00 (14)C13—C14—C18—C17178.41 (18)
C12—C7—C8—C93.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O30.861.822.6645 (16)168
C13—H13B···O5i0.962.423.340 (2)161
C13—H13C···O1ii0.962.423.160 (2)134
C15—H15···O2iii0.932.293.021 (2)135
C16—H16···O6iv0.932.583.323 (2)138
C17—H17···O1v0.932.523.303 (2)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H8N+·C12H9N4O7
Mr415.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.8242 (8), 7.0696 (5), 21.5409 (14)
β (°) 101.029 (2)
V3)1916.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.917, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
3527, 3527, 2790
Rint0.000
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.04
No. of reflections3527
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O30.861.822.6645 (16)168.4
C13—H13B···O5i0.962.423.340 (2)161.0
C13—H13C···O1ii0.962.423.160 (2)133.5
C15—H15···O2iii0.932.293.021 (2)134.5
C16—H16···O6iv0.932.583.323 (2)137.7
C17—H17···O1v0.932.523.303 (2)142.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433–o1434.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationComins, D. L., Connor, S. O. & Al-awar, R. S. (2008). Pyridines and their derivatives, pp. 1–59. Indianapolis, IN, USA: Eli Lilly & Co.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHueso, F., Moreno, M. N., Martinez, J. M. & Ramirez, M. J. (2003). J. Inorg. Biochem. 94, 326–334.  Web of Science PubMed Google Scholar
First citationJain, K. S., Chitra, T. S., Miniyar, P. B., Kathiravan, M. K., Bendre, V. S., Veer, V. S., Shahane, S. R. & Shishoo, C. J. (2006). Curr. Sci. 90, 793–803.  CAS Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. UK: WSEAS Publications.  Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerekhova, I. V. & Scriba, G. K. E. (2007). J. Pharm. Biomed. Anal. 45, 688–693.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds