organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-(4-amino­phen­yl)isoxazole-3-carboxyl­ate

aDepartment of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
*Correspondence e-mail: ljg20060508@yahoo.com.cn

(Received 1 December 2011; accepted 10 March 2012; online 17 March 2012)

The asymmetric unit of the title compound, C12H12N2O3, contains two mol­ecules in which the benzene and isoxazole rings are almost coplanar, the dihedral angles between their mean planes being 1.76 (9) and 5.85 (8)°. The two mol­ecules inter­act with each other via N—H⋯N and N—H⋯O hydrogen bonds, which link the mol­ecules into layers parallel to the ac plane. The layers stack in a parallel mode with an inter­layer distance of 3.36 (7) Å.

Related literature

For the synthesis and biological activity of soxazoles, see; Silva et al. (2002[Silva, N. M., Tributino, J. L. M., Miranda, A. L. P., Barreiro, E. J. & Fraga, C. A. M. (2002). Eur. J. Med. Chem. 37, 163-170.]); Changtam et al. (2010[Changtam, C., Hongmanee, P. & Suksamrarn, A. (2010). Eur. J. Med. Chem. 45, 4446-4457.]); Patel et al. (2010[Patel, S. A., Rajale, T., O'Brien, E., Burkhart, D. J., Nelson, J. K., Twamley, B., Blumenfeld, A., Szabon-Watola, M. I., Gerdes, J. M., Bridges, R. J. & Natale, N. R. (2010). Bioorg. Med. Chem. 18, 202-213.]); Barceló et al. (2007[Barceló, M., Ravińa, E., Masaguer, C. F., Domínguez, E., Areias, F. M., Brea, J. & Loza, M. I. (2007). Bioorg. Med. Chem. Lett. 17, 4873-4877.]); Yamamoto et al. (2007[Yamamoto, T., Fujita, K., Asari, K., Chiba, A., Kataba, Y., Ohsumi, K., Ohmuta, N., Iida, Y., Ijichi, C., Iwayama, S., Fukuchi, N. & Shoji, M. (2007). Bioorg. Med. Chem. Lett. 17, 3736-3740.]); Mao et al. (2010[Mao, J., Yuan, H., Wang, Y., Wan, B., Pak, D., He, R. & Franzblau, S. G. (2010). Bioorg. Med. Chem. Lett. 20, 1263-1268.]). For their structure–activity relationships, see: Andrzejak et al. (2011[Andrzejak, V., Muccioli, G. G., Body-Malapel, M., Bakali, J. E., Djouina, M., Renault, N., Chavatte, P., Desreumaux, P., Lambert, D. M. & Millet, R. (2011). Bioorg. Med. Chem. 19, 3777-3786.]); Becht et al. (2006[Becht, J., Marin, S. D. L., Maruani, M., Wagner, A. & Mioskowski, C. (2006). Tetrahedron, 62, 4430-4434.]); Veronese et al. (1997[Veronese, A. C., Callegari, R., Morelli, C. F. & Vicentini, C. B. (1997). Tetrahedron, 53, 14497-14506.]). For our research in this area, see: Qi et al. (2011[Qi, J., Zhu, J., Liu, X., Ding, L., Zheng, C., Hab, G., Lv, J. & Zhou, Y. (2011). Bioorg. Med. Chem. Lett. 21, 5822-5825.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O3

  • Mr = 232.24

  • Triclinic, [P \overline 1]

  • a = 7.591 (2) Å

  • b = 11.303 (4) Å

  • c = 13.818 (4) Å

  • α = 88.155 (4)°

  • β = 87.008 (4)°

  • γ = 86.233 (4)°

  • V = 1181.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.15 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.992

  • 4901 measured reflections

  • 4074 independent reflections

  • 2636 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 0.98

  • 4074 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯N2i 0.86 2.44 3.243 (3) 157
N3—H3B⋯O6ii 0.86 2.62 3.396 (2) 150
N1—H1B⋯N4 0.86 2.44 3.255 (3) 159
N1—H1A⋯O3iii 0.86 2.63 3.394 (3) 149
Symmetry codes: (i) x-1, y, z+1; (ii) x, y+1, z; (iii) x, y-1, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isoxazoles are important compounds possessing pharmaceutical properties. Extensive investigation on the crystal structures of isoxazoles helps disclose their structure-activity relationship (Veronese et al. (1997); Becht et al. (2006); Andrzejak et al. (2011)). In a continuation of our research (Qi et al. (2011)), herein, we report the crystal structure of the title isoxazole derivative. The asymmetric unit of the title compound, C12H12N2O3, contains two planar molecules. In the molecular structure, (I) (Fig. 1), the dihedral angle between the isoxazole ring C7/C8/C9/N2/O1 and phenyl ring C1/C2/C3/C4/C5/C6 is 1.76 (9)° for molecule 1. The amino-group of the benzene ring is nearly into the same plane (r.m.s. deviation = 0.034 Å) as is usual for amino groups attached to aromatic rings. The COOEt group of the isoxazole ring is also in the same plane. The dihedral angle between the carboxylate and the isoxazole ring is 0.92 (13)°. For molecule 2, the dihedral angle for the isoxazole ring C19/C20/C21/N4/O4 and phenyl ring C13/C14/C15/C16/C17/C18 is 5.85 (8)°, which is slightly larger than molecule 1. The carboxylate group also has a little distortion with the larger dihedral angle between the carboxylate and the isoxazole ring being 1.58 (11)°. The two molecules interact with each other by strong N—H···N and N—H···O hydrogen bonds, which link the molecules into a layer (Fig. 2, Table 1). The layers then stack in parallel mode with the interlayer distance of 3.36 (7) Å.

Related literature top

For the synthesis and biological activity of soxazoles, see; Silva et al. (2002); Changtam et al. (2010); Patel et al. (2010); Barceló et al. (2007); Yamamoto et al. (2007); Mao et al. (2010) For their structure–activity relationships, see: Andrzejak et al. (2011); Becht et al. (2006); Veronese et al. (1997). For our research in this area, see: Qi et al. (2011).

Experimental top

After a reaction of 4-nitroacetophenone and diethyl oxalate in a basic solution of ethanol for 2hrs, then add acetic acid to neutralize the solution from former reaction to obtain yellow solids. The solids were collected and reacted with hydroxylamine hydrochloride in ethanol at reflux for 4 hrs to form yellow products which were then reduced with stannous chloride in ethyl acetate to yield the title compound.

Refinement top

H atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.93 Å (aromatic CH), 0.97 (CH2) with Uiso = 1.2Ueq(C) and 0.96 Å (methyl CH3) with Uiso = 1.5Ueq(C). The N—H distances are fixed to 0.86 Å (Uiso = 1.5Ueq(N)).

Structure description top

Isoxazoles are important compounds possessing pharmaceutical properties. Extensive investigation on the crystal structures of isoxazoles helps disclose their structure-activity relationship (Veronese et al. (1997); Becht et al. (2006); Andrzejak et al. (2011)). In a continuation of our research (Qi et al. (2011)), herein, we report the crystal structure of the title isoxazole derivative. The asymmetric unit of the title compound, C12H12N2O3, contains two planar molecules. In the molecular structure, (I) (Fig. 1), the dihedral angle between the isoxazole ring C7/C8/C9/N2/O1 and phenyl ring C1/C2/C3/C4/C5/C6 is 1.76 (9)° for molecule 1. The amino-group of the benzene ring is nearly into the same plane (r.m.s. deviation = 0.034 Å) as is usual for amino groups attached to aromatic rings. The COOEt group of the isoxazole ring is also in the same plane. The dihedral angle between the carboxylate and the isoxazole ring is 0.92 (13)°. For molecule 2, the dihedral angle for the isoxazole ring C19/C20/C21/N4/O4 and phenyl ring C13/C14/C15/C16/C17/C18 is 5.85 (8)°, which is slightly larger than molecule 1. The carboxylate group also has a little distortion with the larger dihedral angle between the carboxylate and the isoxazole ring being 1.58 (11)°. The two molecules interact with each other by strong N—H···N and N—H···O hydrogen bonds, which link the molecules into a layer (Fig. 2, Table 1). The layers then stack in parallel mode with the interlayer distance of 3.36 (7) Å.

For the synthesis and biological activity of soxazoles, see; Silva et al. (2002); Changtam et al. (2010); Patel et al. (2010); Barceló et al. (2007); Yamamoto et al. (2007); Mao et al. (2010) For their structure–activity relationships, see: Andrzejak et al. (2011); Becht et al. (2006); Veronese et al. (1997). For our research in this area, see: Qi et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Intermolecular N—H···N and N—H···O contacts forming a supramolecular sheet.
Ethyl 5-(4-aminophenyl)isoxazole-3-carboxylate top
Crystal data top
C12H12N2O3Z = 4
Mr = 232.24F(000) = 488
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.591 (2) ÅCell parameters from 1005 reflections
b = 11.303 (4) Åθ = 3.0–24.5°
c = 13.818 (4) ŵ = 0.10 mm1
α = 88.155 (4)°T = 293 K
β = 87.008 (4)°Block, yellow
γ = 86.233 (4)°0.15 × 0.09 × 0.08 mm
V = 1181.0 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4074 independent reflections
Radiation source: fine-focus sealed tube2636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 98
Tmin = 0.986, Tmax = 0.992k = 1213
4901 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0658P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
4074 reflectionsΔρmax = 0.18 e Å3
308 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (16)
Crystal data top
C12H12N2O3γ = 86.233 (4)°
Mr = 232.24V = 1181.0 (6) Å3
Triclinic, P1Z = 4
a = 7.591 (2) ÅMo Kα radiation
b = 11.303 (4) ŵ = 0.10 mm1
c = 13.818 (4) ÅT = 293 K
α = 88.155 (4)°0.15 × 0.09 × 0.08 mm
β = 87.008 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4074 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2636 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.992Rint = 0.022
4901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.98Δρmax = 0.18 e Å3
4074 reflectionsΔρmin = 0.20 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5335 (2)0.04171 (15)0.21800 (13)0.0772 (6)
H1A0.54760.10510.18500.093*
H1B0.49060.04500.27680.093*
N20.8174 (2)0.50932 (15)0.07787 (12)0.0667 (5)
O10.7833 (2)0.39375 (12)0.04673 (10)0.0676 (4)
O20.85208 (17)0.74084 (11)0.09551 (9)0.0599 (4)
O30.7322 (2)0.76842 (12)0.05446 (10)0.0754 (5)
C10.5794 (3)0.06453 (17)0.17699 (14)0.0546 (5)
C20.6487 (3)0.07114 (18)0.08224 (14)0.0588 (5)
H2B0.66680.00210.04730.071*
C30.6913 (3)0.17713 (17)0.03879 (14)0.0568 (5)
H3A0.73800.17880.02480.068*
C40.6653 (2)0.28223 (16)0.08896 (13)0.0487 (5)
C50.5955 (3)0.27542 (17)0.18384 (14)0.0559 (5)
H5A0.57740.34440.21890.067*
C60.5525 (3)0.16923 (18)0.22717 (14)0.0585 (5)
H6A0.50500.16750.29060.070*
C70.7110 (2)0.39554 (17)0.04488 (13)0.0483 (5)
C80.6983 (2)0.50841 (17)0.07360 (13)0.0517 (5)
H8A0.65490.53620.13340.062*
C90.7640 (2)0.57479 (17)0.00509 (13)0.0492 (5)
C100.7795 (3)0.70477 (18)0.01060 (14)0.0530 (5)
C110.8622 (3)0.86764 (17)0.11021 (14)0.0612 (6)
H11A0.94010.89780.06470.073*
H11B0.74600.90770.10050.073*
C120.9325 (3)0.8886 (2)0.21169 (16)0.0807 (7)
H12A0.94060.97220.22400.121*
H12B0.85440.85830.25600.121*
H12C1.04770.84890.22030.121*
N30.0413 (3)0.56811 (15)0.72204 (13)0.0812 (6)
H3B0.05320.63320.68910.097*
H3C0.00110.56990.78100.097*
N40.3229 (2)0.01690 (15)0.42390 (11)0.0633 (5)
O40.2962 (2)0.13256 (12)0.45691 (9)0.0659 (4)
O50.33623 (18)0.21554 (12)0.40201 (9)0.0609 (4)
O60.2162 (2)0.24455 (13)0.55129 (10)0.0821 (5)
C130.0896 (3)0.46186 (17)0.68074 (14)0.0552 (5)
C140.1581 (3)0.45657 (18)0.58602 (14)0.0600 (6)
H14A0.17500.52680.55080.072*
C150.2013 (3)0.35068 (17)0.54298 (14)0.0561 (5)
H15A0.24590.35040.47900.067*
C160.1801 (2)0.24361 (16)0.59284 (13)0.0480 (5)
C170.1131 (3)0.24851 (17)0.68872 (13)0.0539 (5)
H17A0.09840.17810.72400.065*
C180.0685 (3)0.35428 (17)0.73236 (13)0.0554 (5)
H18A0.02410.35480.79640.066*
C190.2207 (2)0.13038 (16)0.54784 (13)0.0476 (5)
C200.1997 (3)0.01638 (16)0.57400 (13)0.0538 (5)
H20A0.15170.01240.63270.065*
C210.2648 (2)0.04958 (16)0.49515 (13)0.0478 (5)
C220.2698 (3)0.18029 (18)0.48701 (14)0.0541 (5)
C230.3394 (3)0.34175 (17)0.38527 (15)0.0625 (6)
H23A0.22140.36950.39490.075*
H23B0.41570.38530.43010.075*
C240.4079 (3)0.3605 (2)0.28296 (16)0.0858 (8)
H24A0.41140.44350.26950.129*
H24B0.52480.33300.27440.129*
H24C0.33140.31710.23930.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.1088 (16)0.0514 (11)0.0701 (12)0.0117 (10)0.0120 (11)0.0054 (9)
N20.0963 (14)0.0488 (11)0.0533 (10)0.0078 (9)0.0149 (9)0.0033 (8)
O10.0967 (12)0.0534 (9)0.0509 (8)0.0076 (7)0.0199 (7)0.0033 (6)
O20.0678 (10)0.0536 (9)0.0568 (8)0.0068 (7)0.0106 (7)0.0064 (6)
O30.1151 (13)0.0534 (9)0.0553 (9)0.0011 (8)0.0141 (9)0.0025 (7)
C10.0528 (13)0.0533 (13)0.0576 (12)0.0051 (9)0.0034 (10)0.0033 (10)
C20.0649 (14)0.0523 (13)0.0592 (13)0.0035 (10)0.0018 (10)0.0088 (10)
C30.0693 (15)0.0539 (13)0.0465 (11)0.0036 (10)0.0044 (10)0.0044 (9)
C40.0496 (12)0.0488 (12)0.0472 (11)0.0020 (9)0.0003 (9)0.0007 (9)
C50.0620 (14)0.0509 (12)0.0542 (12)0.0048 (10)0.0088 (10)0.0077 (9)
C60.0676 (14)0.0577 (13)0.0492 (11)0.0079 (10)0.0102 (10)0.0008 (10)
C70.0473 (12)0.0544 (13)0.0423 (10)0.0010 (9)0.0023 (8)0.0016 (9)
C80.0592 (13)0.0518 (13)0.0433 (11)0.0030 (9)0.0069 (9)0.0031 (9)
C90.0488 (12)0.0525 (12)0.0456 (11)0.0009 (9)0.0011 (9)0.0010 (9)
C100.0570 (13)0.0518 (12)0.0492 (12)0.0001 (9)0.0022 (10)0.0050 (10)
C110.0560 (13)0.0543 (13)0.0723 (14)0.0050 (10)0.0010 (11)0.0117 (10)
C120.0848 (18)0.0749 (16)0.0781 (16)0.0020 (13)0.0148 (13)0.0259 (12)
N30.1247 (18)0.0499 (12)0.0672 (12)0.0007 (11)0.0104 (11)0.0075 (9)
N40.0878 (13)0.0491 (11)0.0515 (10)0.0044 (9)0.0132 (9)0.0037 (8)
O40.0948 (11)0.0497 (9)0.0510 (8)0.0054 (7)0.0186 (7)0.0013 (6)
O50.0722 (10)0.0545 (9)0.0560 (9)0.0103 (7)0.0109 (7)0.0109 (6)
O60.1332 (15)0.0530 (9)0.0592 (9)0.0192 (9)0.0197 (9)0.0005 (7)
C130.0627 (14)0.0497 (12)0.0533 (12)0.0020 (10)0.0045 (10)0.0040 (9)
C140.0734 (15)0.0504 (13)0.0558 (12)0.0088 (10)0.0014 (11)0.0075 (10)
C150.0680 (14)0.0541 (13)0.0452 (11)0.0061 (10)0.0073 (10)0.0032 (9)
C160.0503 (12)0.0468 (12)0.0462 (11)0.0025 (9)0.0012 (9)0.0002 (9)
C170.0649 (14)0.0476 (12)0.0482 (11)0.0036 (9)0.0033 (10)0.0058 (9)
C180.0657 (14)0.0544 (13)0.0450 (11)0.0012 (10)0.0033 (9)0.0019 (9)
C190.0469 (12)0.0542 (12)0.0409 (10)0.0039 (9)0.0028 (8)0.0024 (9)
C200.0666 (14)0.0495 (12)0.0446 (11)0.0096 (10)0.0093 (10)0.0018 (9)
C210.0493 (12)0.0505 (12)0.0434 (11)0.0078 (9)0.0028 (9)0.0008 (9)
C220.0595 (13)0.0561 (13)0.0470 (12)0.0079 (10)0.0026 (10)0.0062 (10)
C230.0619 (14)0.0555 (14)0.0712 (14)0.0097 (10)0.0025 (11)0.0152 (10)
C240.0895 (19)0.0888 (18)0.0801 (17)0.0188 (14)0.0221 (14)0.0357 (14)
Geometric parameters (Å, º) top
N1—C11.369 (2)N3—C131.366 (2)
N1—H1A0.8600N3—H3B0.8600
N1—H1B0.8600N3—H3C0.8600
N2—C91.300 (2)N4—C211.296 (2)
N2—O11.398 (2)N4—O41.397 (2)
O1—C71.354 (2)O4—C191.354 (2)
O2—C101.333 (2)O5—C221.317 (2)
O2—C111.448 (2)O5—C231.451 (2)
O3—C101.195 (2)O6—C221.201 (2)
C1—C21.387 (3)C13—C141.384 (3)
C1—C61.389 (3)C13—C181.404 (3)
C2—C31.373 (3)C14—C151.367 (3)
C2—H2B0.9300C14—H14A0.9300
C3—C41.392 (3)C15—C161.388 (3)
C3—H3A0.9300C15—H15A0.9300
C4—C51.390 (2)C16—C171.396 (2)
C4—C71.455 (2)C16—C191.449 (3)
C5—C61.375 (3)C17—C181.371 (3)
C5—H5A0.9300C17—H17A0.9300
C6—H6A0.9300C18—H18A0.9300
C7—C81.344 (3)C19—C201.344 (2)
C8—C91.391 (2)C20—C211.391 (2)
C8—H8A0.9300C20—H20A0.9300
C9—C101.481 (3)C21—C221.483 (3)
C11—C121.491 (3)C23—C241.497 (3)
C11—H11A0.9700C23—H23A0.9700
C11—H11B0.9700C23—H23B0.9700
C12—H12A0.9600C24—H24A0.9600
C12—H12B0.9600C24—H24B0.9600
C12—H12C0.9600C24—H24C0.9600
C1—N1—H1A120.0C13—N3—H3B120.0
C1—N1—H1B120.0C13—N3—H3C120.0
H1A—N1—H1B120.0H3B—N3—H3C120.0
C9—N2—O1104.72 (15)C21—N4—O4104.79 (15)
C7—O1—N2109.27 (14)C19—O4—N4109.59 (13)
C10—O2—C11116.18 (15)C22—O5—C23116.53 (15)
N1—C1—C2120.60 (18)N3—C13—C14121.13 (18)
N1—C1—C6121.43 (19)N3—C13—C18121.11 (19)
C2—C1—C6117.93 (18)C14—C13—C18117.75 (18)
C3—C2—C1121.62 (18)C15—C14—C13121.60 (18)
C3—C2—H2B119.2C15—C14—H14A119.2
C1—C2—H2B119.2C13—C14—H14A119.2
C2—C3—C4120.66 (18)C14—C15—C16121.32 (18)
C2—C3—H3A119.7C14—C15—H15A119.3
C4—C3—H3A119.7C16—C15—H15A119.3
C5—C4—C3117.62 (17)C15—C16—C17117.28 (17)
C5—C4—C7120.65 (16)C15—C16—C19122.22 (17)
C3—C4—C7121.72 (17)C17—C16—C19120.48 (16)
C6—C5—C4121.65 (18)C18—C17—C16121.82 (17)
C6—C5—H5A119.2C18—C17—H17A119.1
C4—C5—H5A119.2C16—C17—H17A119.1
C5—C6—C1120.52 (19)C17—C18—C13120.22 (18)
C5—C6—H6A119.7C17—C18—H18A119.9
C1—C6—H6A119.7C13—C18—H18A119.9
C8—C7—O1108.23 (16)C20—C19—O4107.67 (16)
C8—C7—C4134.92 (17)C20—C19—C16135.29 (17)
O1—C7—C4116.84 (16)O4—C19—C16117.04 (15)
C7—C8—C9105.37 (17)C19—C20—C21105.79 (16)
C7—C8—H8A127.3C19—C20—H20A127.1
C9—C8—H8A127.3C21—C20—H20A127.1
N2—C9—C8112.39 (18)N4—C21—C20112.16 (17)
N2—C9—C10120.72 (17)N4—C21—C22120.80 (17)
C8—C9—C10126.88 (18)C20—C21—C22127.03 (17)
O3—C10—O2124.84 (19)O6—C22—O5125.0 (2)
O3—C10—C9123.04 (18)O6—C22—C21122.62 (18)
O2—C10—C9112.13 (17)O5—C22—C21112.33 (16)
O2—C11—C12107.24 (16)O5—C23—C24107.44 (17)
O2—C11—H11A110.3O5—C23—H23A110.2
C12—C11—H11A110.3C24—C23—H23A110.2
O2—C11—H11B110.3O5—C23—H23B110.2
C12—C11—H11B110.3C24—C23—H23B110.2
H11A—C11—H11B108.5H23A—C23—H23B108.5
C11—C12—H12A109.5C23—C24—H24A109.5
C11—C12—H12B109.5C23—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
C11—C12—H12C109.5C23—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N2i0.862.443.243 (3)157
N3—H3B···O6ii0.862.623.396 (2)150
N1—H1B···N40.862.443.255 (3)159
N1—H1A···O3iii0.862.633.394 (3)149
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H12N2O3
Mr232.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.591 (2), 11.303 (4), 13.818 (4)
α, β, γ (°)88.155 (4), 87.008 (4), 86.233 (4)
V3)1181.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.986, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4901, 4074, 2636
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 0.98
No. of reflections4074
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N2i0.862.443.243 (3)156.6
N3—H3B···O6ii0.862.623.396 (2)150.3
N1—H1B···N40.862.443.255 (3)158.8
N1—H1A···O3iii0.862.633.394 (3)149.2
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z; (iii) x, y1, z.
 

Acknowledgements

The authors are grateful to the Second Military Medical University for supporting this study. J-TZ thanks Dr Zhen-Xia Chen for helpful discussions.

References

First citationAndrzejak, V., Muccioli, G. G., Body-Malapel, M., Bakali, J. E., Djouina, M., Renault, N., Chavatte, P., Desreumaux, P., Lambert, D. M. & Millet, R. (2011). Bioorg. Med. Chem. 19, 3777–3786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBarceló, M., Ravińa, E., Masaguer, C. F., Domínguez, E., Areias, F. M., Brea, J. & Loza, M. I. (2007). Bioorg. Med. Chem. Lett. 17, 4873–4877.  Web of Science PubMed Google Scholar
First citationBecht, J., Marin, S. D. L., Maruani, M., Wagner, A. & Mioskowski, C. (2006). Tetrahedron, 62, 4430–4434.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChangtam, C., Hongmanee, P. & Suksamrarn, A. (2010). Eur. J. Med. Chem. 45, 4446–4457.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMao, J., Yuan, H., Wang, Y., Wan, B., Pak, D., He, R. & Franzblau, S. G. (2010). Bioorg. Med. Chem. Lett. 20, 1263–1268.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPatel, S. A., Rajale, T., O'Brien, E., Burkhart, D. J., Nelson, J. K., Twamley, B., Blumenfeld, A., Szabon-Watola, M. I., Gerdes, J. M., Bridges, R. J. & Natale, N. R. (2010). Bioorg. Med. Chem. 18, 202–213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQi, J., Zhu, J., Liu, X., Ding, L., Zheng, C., Hab, G., Lv, J. & Zhou, Y. (2011). Bioorg. Med. Chem. Lett. 21, 5822–5825.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, N. M., Tributino, J. L. M., Miranda, A. L. P., Barreiro, E. J. & Fraga, C. A. M. (2002). Eur. J. Med. Chem. 37, 163–170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVeronese, A. C., Callegari, R., Morelli, C. F. & Vicentini, C. B. (1997). Tetrahedron, 53, 14497–14506.  CrossRef CAS Web of Science Google Scholar
First citationYamamoto, T., Fujita, K., Asari, K., Chiba, A., Kataba, Y., Ohsumi, K., Ohmuta, N., Iida, Y., Ijichi, C., Iwayama, S., Fukuchi, N. & Shoji, M. (2007). Bioorg. Med. Chem. Lett. 17, 3736–3740.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds