metal-organic compounds
{4,4′,6,6′-Tetrabromo-2,2′-[(2,2-dimethylpropane-1,3-diyl)bis(nitrilomethanylylidene)]diphenolato}copper(II)
aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and, Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com
In the title compound, [Cu(C19H16Br4N2O2)], the CuII ion and the substituted C atom of the diamine fragment lie on a crystallographic twofold rotation axis. The geometry around the CuII ion is distorted square-planar, which is defined by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the symmetry-related substituted benzene rings is 25.33 (14)°. The is stabilized by an intermolecular π–π interaction [centroid–centroid distance = 3.8891 (18) Å].
Related literature
For standard bond lengths, see: Allen et al. (1987). For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993); Blower (1998). For a related structure, see: Kargar et al. (2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812009397/bv2199sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009397/bv2199Isup2.hkl
The title compound was synthesized by adding 3,5-dibromo-salicylaldehyde-2,2-dimethyl-1,3- propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Green single crystals of the title compound suitable for X-ray
were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.All hydrogen atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms..
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower (1998)).
The π-π interaction, (Fig. 2), [Cg1···Cg1i = 3.8891 (18)Å; (i) 1 - X, 1 - Y, -Z; Cg1 is the centroid of Cu(1)/O(1)/C(1)/C(6)/C(7)/N(1) ring].
of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The Cu1 and C9 atoms lie on crystallographic two-fold rotation axis. The is further stabilized by the intermolecularFor standard bond lengths, see: Allen et al. (1987). For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993); Blower (1998). For a related structure, see: Kargar et al. (2008).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cu(C19H16Br4N2O2)] | F(000) = 1316 |
Mr = 687.52 | Dx = 2.125 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 1535 reflections |
a = 16.3594 (8) Å | θ = 2.5–27.5° |
b = 15.5106 (8) Å | µ = 8.47 mm−1 |
c = 8.4686 (4) Å | T = 291 K |
V = 2148.86 (18) Å3 | Block, green |
Z = 4 | 0.21 × 0.12 × 0.08 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2537 independent reflections |
Radiation source: fine-focus sealed tube | 1625 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
φ and ω scans | θmax = 28.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −21→18 |
Tmin = 0.269, Tmax = 0.551 | k = −20→13 |
9913 measured reflections | l = −10→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0202P)2 + 1.7635P] where P = (Fo2 + 2Fc2)/3 |
2537 reflections | (Δ/σ)max = 0.001 |
128 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
[Cu(C19H16Br4N2O2)] | V = 2148.86 (18) Å3 |
Mr = 687.52 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 16.3594 (8) Å | µ = 8.47 mm−1 |
b = 15.5106 (8) Å | T = 291 K |
c = 8.4686 (4) Å | 0.21 × 0.12 × 0.08 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2537 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1625 reflections with I > 2σ(I) |
Tmin = 0.269, Tmax = 0.551 | Rint = 0.052 |
9913 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.58 e Å−3 |
2537 reflections | Δρmin = −0.59 e Å−3 |
128 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.33450 (3) | 0.74146 (3) | 0.18143 (5) | 0.05098 (16) | |
Br2 | 0.10313 (3) | 0.54552 (4) | −0.15415 (7) | 0.0733 (2) | |
Cu1 | 0.5000 | 0.48415 (4) | 0.2500 | 0.03410 (18) | |
N1 | 0.4444 (2) | 0.39656 (19) | 0.1258 (3) | 0.0332 (7) | |
O1 | 0.42323 (17) | 0.57112 (16) | 0.1958 (3) | 0.0395 (7) | |
C1 | 0.3547 (2) | 0.5618 (2) | 0.1192 (4) | 0.0341 (9) | |
C2 | 0.3023 (2) | 0.6335 (2) | 0.0965 (4) | 0.0341 (9) | |
C3 | 0.2301 (2) | 0.6285 (3) | 0.0162 (4) | 0.0406 (10) | |
H3 | 0.1982 | 0.6776 | 0.0030 | 0.049* | |
C4 | 0.2042 (2) | 0.5504 (3) | −0.0458 (5) | 0.0417 (10) | |
C5 | 0.2520 (3) | 0.4788 (3) | −0.0299 (4) | 0.0425 (10) | |
H5 | 0.2348 | 0.4267 | −0.0730 | 0.051* | |
C6 | 0.3270 (2) | 0.4831 (2) | 0.0511 (4) | 0.0342 (9) | |
C7 | 0.3757 (3) | 0.4058 (2) | 0.0534 (4) | 0.0368 (10) | |
H7 | 0.3560 | 0.3585 | −0.0022 | 0.044* | |
C8 | 0.4911 (3) | 0.3163 (2) | 0.1017 (4) | 0.0404 (10) | |
H8A | 0.5453 | 0.3310 | 0.0635 | 0.048* | |
H8B | 0.4644 | 0.2825 | 0.0204 | 0.048* | |
C9 | 0.5000 | 0.2606 (3) | 0.2500 | 0.0390 (14) | |
C10 | 0.5749 (3) | 0.2038 (3) | 0.2270 (5) | 0.0574 (13) | |
H10A | 0.6231 | 0.2391 | 0.2253 | 0.086* | |
H10B | 0.5703 | 0.1733 | 0.1288 | 0.086* | |
H10C | 0.5786 | 0.1633 | 0.3123 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0710 (3) | 0.0317 (2) | 0.0503 (3) | 0.0104 (2) | −0.0024 (2) | −0.0063 (2) |
Br2 | 0.0527 (3) | 0.0645 (4) | 0.1027 (4) | 0.0055 (3) | −0.0303 (3) | 0.0001 (3) |
Cu1 | 0.0387 (4) | 0.0275 (3) | 0.0361 (4) | 0.000 | −0.0012 (3) | 0.000 |
N1 | 0.041 (2) | 0.0256 (17) | 0.0334 (17) | 0.0063 (16) | 0.0008 (15) | −0.0012 (14) |
O1 | 0.0416 (17) | 0.0295 (14) | 0.0475 (16) | 0.0014 (13) | −0.0063 (13) | −0.0027 (13) |
C1 | 0.042 (3) | 0.031 (2) | 0.030 (2) | 0.002 (2) | 0.0088 (18) | 0.0010 (18) |
C2 | 0.043 (2) | 0.029 (2) | 0.031 (2) | 0.0058 (19) | 0.0072 (18) | −0.0018 (18) |
C3 | 0.044 (3) | 0.039 (2) | 0.039 (2) | 0.013 (2) | 0.0078 (19) | 0.002 (2) |
C4 | 0.035 (2) | 0.046 (3) | 0.045 (2) | 0.006 (2) | −0.0028 (19) | 0.001 (2) |
C5 | 0.045 (3) | 0.039 (2) | 0.043 (2) | −0.002 (2) | −0.002 (2) | −0.002 (2) |
C6 | 0.041 (2) | 0.029 (2) | 0.032 (2) | 0.005 (2) | 0.0022 (17) | 0.0001 (18) |
C7 | 0.049 (3) | 0.029 (2) | 0.032 (2) | 0.001 (2) | 0.0022 (19) | −0.0042 (18) |
C8 | 0.052 (3) | 0.031 (2) | 0.038 (2) | 0.012 (2) | −0.0001 (19) | −0.0050 (19) |
C9 | 0.047 (4) | 0.026 (3) | 0.044 (3) | 0.000 | −0.007 (3) | 0.000 |
C10 | 0.064 (3) | 0.046 (3) | 0.062 (3) | 0.017 (3) | −0.013 (2) | 0.005 (2) |
Br1—C2 | 1.897 (4) | C4—C5 | 1.364 (6) |
Br2—C4 | 1.893 (4) | C5—C6 | 1.407 (5) |
Cu1—O1i | 1.899 (3) | C5—H5 | 0.9300 |
Cu1—O1 | 1.899 (3) | C6—C7 | 1.440 (5) |
Cu1—N1i | 1.944 (3) | C7—H7 | 0.9300 |
Cu1—N1 | 1.944 (3) | C8—C9 | 1.531 (5) |
N1—C7 | 1.288 (5) | C8—H8A | 0.9700 |
N1—C8 | 1.475 (5) | C8—H8B | 0.9700 |
O1—C1 | 1.303 (5) | C9—C10i | 1.522 (5) |
C1—C2 | 1.418 (5) | C9—C10 | 1.522 (5) |
C1—C6 | 1.425 (5) | C9—C8i | 1.531 (5) |
C2—C3 | 1.364 (5) | C10—H10A | 0.9600 |
C3—C4 | 1.387 (6) | C10—H10B | 0.9600 |
C3—H3 | 0.9300 | C10—H10C | 0.9600 |
O1i—Cu1—O1 | 89.50 (16) | C5—C6—C1 | 121.0 (4) |
O1i—Cu1—N1i | 93.23 (12) | C5—C6—C7 | 116.8 (4) |
O1—Cu1—N1i | 159.45 (11) | C1—C6—C7 | 122.1 (4) |
O1i—Cu1—N1 | 159.45 (11) | N1—C7—C6 | 125.6 (4) |
O1—Cu1—N1 | 93.23 (12) | N1—C7—H7 | 117.2 |
N1i—Cu1—N1 | 91.32 (18) | C6—C7—H7 | 117.2 |
C7—N1—C8 | 118.7 (3) | N1—C8—C9 | 114.3 (3) |
C7—N1—Cu1 | 126.0 (3) | N1—C8—H8A | 108.7 |
C8—N1—Cu1 | 115.0 (3) | C9—C8—H8A | 108.7 |
C1—O1—Cu1 | 127.6 (2) | N1—C8—H8B | 108.7 |
O1—C1—C2 | 120.1 (4) | C9—C8—H8B | 108.7 |
O1—C1—C6 | 124.8 (4) | H8A—C8—H8B | 107.6 |
C2—C1—C6 | 115.1 (4) | C10i—C9—C10 | 109.2 (5) |
C3—C2—C1 | 123.2 (4) | C10i—C9—C8i | 107.3 (2) |
C3—C2—Br1 | 118.7 (3) | C10—C9—C8i | 110.8 (2) |
C1—C2—Br1 | 118.2 (3) | C10i—C9—C8 | 110.8 (2) |
C2—C3—C4 | 120.2 (4) | C10—C9—C8 | 107.3 (2) |
C2—C3—H3 | 119.9 | C8i—C9—C8 | 111.3 (4) |
C4—C3—H3 | 119.9 | C9—C10—H10A | 109.5 |
C5—C4—C3 | 119.9 (4) | C9—C10—H10B | 109.5 |
C5—C4—Br2 | 121.1 (3) | H10A—C10—H10B | 109.5 |
C3—C4—Br2 | 119.0 (3) | C9—C10—H10C | 109.5 |
C4—C5—C6 | 120.6 (4) | H10A—C10—H10C | 109.5 |
C4—C5—H5 | 119.7 | H10B—C10—H10C | 109.5 |
C6—C5—H5 | 119.7 | ||
O1i—Cu1—N1—C7 | −102.7 (4) | C2—C3—C4—Br2 | 179.2 (3) |
O1—Cu1—N1—C7 | −5.5 (3) | C3—C4—C5—C6 | 1.0 (6) |
N1i—Cu1—N1—C7 | 154.5 (4) | Br2—C4—C5—C6 | −179.9 (3) |
O1i—Cu1—N1—C8 | 70.7 (4) | C4—C5—C6—C1 | 0.3 (6) |
O1—Cu1—N1—C8 | 167.9 (2) | C4—C5—C6—C7 | −176.2 (4) |
N1i—Cu1—N1—C8 | −32.2 (2) | O1—C1—C6—C5 | 180.0 (3) |
O1i—Cu1—O1—C1 | 167.4 (3) | C2—C1—C6—C5 | −0.9 (5) |
N1i—Cu1—O1—C1 | −94.7 (4) | O1—C1—C6—C7 | −3.7 (6) |
N1—Cu1—O1—C1 | 7.8 (3) | C2—C1—C6—C7 | 175.4 (3) |
Cu1—O1—C1—C2 | 176.5 (2) | C8—N1—C7—C6 | −173.3 (3) |
Cu1—O1—C1—C6 | −4.5 (5) | Cu1—N1—C7—C6 | −0.1 (6) |
O1—C1—C2—C3 | 179.4 (3) | C5—C6—C7—N1 | −177.5 (4) |
C6—C1—C2—C3 | 0.2 (5) | C1—C6—C7—N1 | 6.1 (6) |
O1—C1—C2—Br1 | −0.4 (5) | C7—N1—C8—C9 | −115.0 (4) |
C6—C1—C2—Br1 | −179.5 (3) | Cu1—N1—C8—C9 | 71.1 (4) |
C1—C2—C3—C4 | 1.0 (6) | N1—C8—C9—C10i | 83.8 (4) |
Br1—C2—C3—C4 | −179.2 (3) | N1—C8—C9—C10 | −157.0 (4) |
C2—C3—C4—C5 | −1.7 (6) | N1—C8—C9—C8i | −35.6 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C19H16Br4N2O2)] |
Mr | 687.52 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 291 |
a, b, c (Å) | 16.3594 (8), 15.5106 (8), 8.4686 (4) |
V (Å3) | 2148.86 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 8.47 |
Crystal size (mm) | 0.21 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.269, 0.551 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9913, 2537, 1625 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.659 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.078, 1.00 |
No. of reflections | 2537 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.59 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
HK and MH thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Blower, P. J. (1998). Transition Met. Chem., 23, 109–112. CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Kargar, H., Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1541–m1542. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower (1998)).
The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The Cu1 and C9 atoms lie on crystallographic two-fold rotation axis. The crystal structure is further stabilized by the intermolecular π-π interaction, (Fig. 2), [Cg1···Cg1i = 3.8891 (18)Å; (i) 1 - X, 1 - Y, -Z; Cg1 is the centroid of Cu(1)/O(1)/C(1)/C(6)/C(7)/N(1) ring].