organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-(4-Chloro­phen­yl)-5-(4-meth­­oxy­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 9 February 2012; accepted 3 March 2012; online 10 March 2012)

In the title compound, C18H17ClN2O2, the benzene rings form dihedral angles of 6.69 (6) and 74.88 (5)° with the 4,5-dihydro-1H-pyrazole ring. The benzene rings form a dihedral angle of 76.67 (5)° with each other. In the crystal, mol­ecules are linked via bifurcated (C,C)–H⋯O hydrogen bonds into chains along [010]. The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For general background to and the biological activity of the title compound, see: Samshuddin et al. (2011[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2011). Med. Chem. Res. doi:10.1007/s00044-011-9735-9.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214-224.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17ClN2O2

  • Mr = 328.79

  • Monoclinic, P 21 /c

  • a = 9.3473 (4) Å

  • b = 9.4418 (4) Å

  • c = 19.7840 (7) Å

  • β = 113.830 (2)°

  • V = 1597.19 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.39 × 0.25 × 0.17 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.958

  • 21450 measured reflections

  • 5715 independent reflections

  • 4900 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.08

  • 5715 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2i 0.95 2.55 3.4993 (14) 174
C16—H16B⋯O2ii 0.98 2.59 3.5275 (12) 161
C16—H16CCg1iii 0.98 2.69 3.5333 (10) 145
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolines are know for exhibiting biological properties such as antibacterial, antifungal, antioxidant and analgesic activities (Samshuddin et al., 2011; Sarojini et al., 2010). In continuation of our work on synthesis of pyrazoline derivatives (Fun et al., 2010), the title compound (I) is prepared and its crystal structure is reported.

In the title molecule (Fig. 1), the two benzene rings (C1-C6 and C10-C15) form dihedral angles of 6.69 (6) and 74.88 (5)°, respectively, with the 4,5-dihydro-1H-pyrazole ring (N1/N2/C7-C9). The benzene rings form a dihedral angle of 76.67 (5)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with a related structures (Fun et al., 2010).

In the crystal structure, Fig. 2, molecules are linked via intermolecular bifurcated C5–H5A···O2 and C16–H16B···O2 hydrogen bonds (Table 1) into one-dimensional chains along [010]. The crystal structure is further consolidated by C16–H16C···Cg1iii (Table 1) interactions, where Cg1 is the centroid of C10-C15 benzene ring.

Related literature top

For general background to and the biological activity of the title compound, see: Samshuddin et al. (2011); Sarojini et al. (2010). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986). For a related structure, see: Fun et al. (2010).

Experimental top

A mixture of (2E)-1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2.72 g, 0.01 mol) and hydrazine hydrate (0.5 ml, 0.01 mol) in 25 ml acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. The single crystals were grown from dimethylformamide (DMF) by slow evaporation method and yield of the compound was 82% (m.p. : 409 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

Pyrazolines are know for exhibiting biological properties such as antibacterial, antifungal, antioxidant and analgesic activities (Samshuddin et al., 2011; Sarojini et al., 2010). In continuation of our work on synthesis of pyrazoline derivatives (Fun et al., 2010), the title compound (I) is prepared and its crystal structure is reported.

In the title molecule (Fig. 1), the two benzene rings (C1-C6 and C10-C15) form dihedral angles of 6.69 (6) and 74.88 (5)°, respectively, with the 4,5-dihydro-1H-pyrazole ring (N1/N2/C7-C9). The benzene rings form a dihedral angle of 76.67 (5)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with a related structures (Fun et al., 2010).

In the crystal structure, Fig. 2, molecules are linked via intermolecular bifurcated C5–H5A···O2 and C16–H16B···O2 hydrogen bonds (Table 1) into one-dimensional chains along [010]. The crystal structure is further consolidated by C16–H16C···Cg1iii (Table 1) interactions, where Cg1 is the centroid of C10-C15 benzene ring.

For general background to and the biological activity of the title compound, see: Samshuddin et al. (2011); Sarojini et al. (2010). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986). For a related structure, see: Fun et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1-[3-(4-Chlorophenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol- 1-yl]ethanone top
Crystal data top
C18H17ClN2O2F(000) = 688
Mr = 328.79Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9967 reflections
a = 9.3473 (4) Åθ = 2.4–32.5°
b = 9.4418 (4) ŵ = 0.25 mm1
c = 19.7840 (7) ÅT = 100 K
β = 113.830 (2)°Block, colourless
V = 1597.19 (11) Å30.39 × 0.25 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5715 independent reflections
Radiation source: fine-focus sealed tube4900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 32.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.908, Tmax = 0.958k = 1414
21450 measured reflectionsl = 2830
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.4018P]
where P = (Fo2 + 2Fc2)/3
5715 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H17ClN2O2V = 1597.19 (11) Å3
Mr = 328.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3473 (4) ŵ = 0.25 mm1
b = 9.4418 (4) ÅT = 100 K
c = 19.7840 (7) Å0.39 × 0.25 × 0.17 mm
β = 113.830 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5715 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4900 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.958Rint = 0.020
21450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
5715 reflectionsΔρmin = 0.26 e Å3
210 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39017 (3)0.39544 (3)0.167559 (12)0.02538 (8)
O10.79766 (9)0.66995 (8)0.45133 (4)0.02433 (16)
O20.91233 (9)0.03965 (8)0.36842 (4)0.02099 (15)
N10.71059 (10)0.14269 (8)0.18233 (4)0.01673 (15)
N20.81942 (10)0.13711 (8)0.25551 (4)0.01686 (15)
C10.52427 (13)0.20907 (12)0.02990 (5)0.02301 (19)
H1A0.48560.13810.05220.028*
C20.44026 (13)0.24407 (12)0.04388 (5)0.0241 (2)
H2A0.34420.19790.07210.029*
C30.49847 (12)0.34738 (10)0.07580 (5)0.01920 (18)
C40.63933 (13)0.41499 (11)0.03629 (5)0.02137 (19)
H4A0.67870.48380.05940.026*
C50.72232 (12)0.38032 (10)0.03796 (5)0.01943 (18)
H5A0.81820.42690.06590.023*
C60.66539 (11)0.27739 (10)0.07168 (5)0.01637 (16)
C70.75373 (11)0.24300 (9)0.14994 (5)0.01598 (16)
C80.90463 (11)0.31439 (10)0.19905 (5)0.01772 (17)
H8A0.89370.41880.19710.021*
H8B0.99150.28740.18520.021*
C90.93042 (11)0.25651 (9)0.27597 (5)0.01613 (16)
H9A1.04000.22090.30190.019*
C100.89448 (11)0.36484 (10)0.32356 (5)0.01551 (16)
C111.00985 (11)0.46168 (10)0.36358 (5)0.01698 (16)
H11A1.10920.45670.36120.020*
C120.98297 (11)0.56594 (10)0.40712 (5)0.01733 (16)
H12A1.06330.63090.43430.021*
C130.83702 (12)0.57364 (10)0.41030 (5)0.01832 (17)
C140.71987 (12)0.47712 (12)0.37019 (6)0.0233 (2)
H14A0.62030.48220.37230.028*
C150.74886 (12)0.37390 (11)0.32730 (5)0.02067 (18)
H15A0.66870.30880.30020.025*
C160.91421 (13)0.77111 (10)0.49274 (5)0.02186 (19)
H16A0.87610.82700.52380.033*
H16B0.93600.83410.45870.033*
H16C1.01030.72140.52400.033*
C170.81439 (11)0.03714 (10)0.30430 (5)0.01726 (17)
C180.68751 (13)0.07237 (11)0.27532 (6)0.02370 (19)
H18A0.70540.14610.31270.036*
H18B0.68850.11490.23030.036*
H18C0.58580.02760.26400.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02990 (14)0.02625 (13)0.01582 (11)0.00074 (9)0.00491 (9)0.00026 (8)
O10.0228 (4)0.0255 (3)0.0257 (3)0.0018 (3)0.0108 (3)0.0105 (3)
O20.0233 (4)0.0204 (3)0.0170 (3)0.0018 (3)0.0058 (3)0.0015 (2)
N10.0169 (4)0.0175 (3)0.0150 (3)0.0008 (3)0.0056 (3)0.0001 (3)
N20.0181 (4)0.0164 (3)0.0146 (3)0.0012 (3)0.0051 (3)0.0002 (2)
C10.0202 (5)0.0271 (5)0.0207 (4)0.0054 (4)0.0071 (4)0.0032 (3)
C20.0200 (5)0.0292 (5)0.0198 (4)0.0060 (4)0.0047 (4)0.0012 (3)
C30.0215 (5)0.0202 (4)0.0153 (4)0.0008 (3)0.0068 (3)0.0005 (3)
C40.0254 (5)0.0214 (4)0.0176 (4)0.0040 (4)0.0090 (4)0.0008 (3)
C50.0201 (4)0.0203 (4)0.0180 (4)0.0038 (3)0.0078 (3)0.0005 (3)
C60.0166 (4)0.0176 (4)0.0159 (3)0.0003 (3)0.0076 (3)0.0000 (3)
C70.0157 (4)0.0169 (4)0.0163 (3)0.0006 (3)0.0074 (3)0.0010 (3)
C80.0177 (4)0.0199 (4)0.0168 (4)0.0027 (3)0.0083 (3)0.0015 (3)
C90.0153 (4)0.0161 (4)0.0167 (3)0.0002 (3)0.0061 (3)0.0010 (3)
C100.0157 (4)0.0165 (4)0.0135 (3)0.0008 (3)0.0050 (3)0.0006 (3)
C110.0165 (4)0.0173 (4)0.0182 (4)0.0014 (3)0.0081 (3)0.0002 (3)
C120.0179 (4)0.0164 (4)0.0172 (4)0.0030 (3)0.0066 (3)0.0008 (3)
C130.0194 (4)0.0190 (4)0.0165 (4)0.0009 (3)0.0072 (3)0.0022 (3)
C140.0156 (4)0.0286 (5)0.0261 (4)0.0016 (4)0.0089 (4)0.0089 (4)
C150.0150 (4)0.0241 (4)0.0215 (4)0.0018 (3)0.0058 (3)0.0068 (3)
C160.0276 (5)0.0175 (4)0.0183 (4)0.0010 (4)0.0070 (4)0.0021 (3)
C170.0188 (4)0.0153 (4)0.0185 (4)0.0024 (3)0.0085 (3)0.0005 (3)
C180.0255 (5)0.0211 (4)0.0227 (4)0.0043 (4)0.0079 (4)0.0014 (3)
Geometric parameters (Å, º) top
Cl1—C31.7440 (10)C8—H8A0.9900
O1—C131.3647 (11)C8—H8B0.9900
O1—C161.4314 (12)C9—C101.5171 (12)
O2—C171.2286 (11)C9—H9A1.0000
N1—C71.2957 (12)C10—C111.3913 (13)
N1—N21.3942 (11)C10—C151.3952 (13)
N2—C171.3644 (12)C11—C121.3962 (13)
N2—C91.4738 (12)C11—H11A0.9500
C1—C21.3894 (14)C12—C131.3927 (14)
C1—C61.3994 (14)C12—H12A0.9500
C1—H1A0.9500C13—C141.3990 (14)
C2—C31.3870 (14)C14—C151.3890 (13)
C2—H2A0.9500C14—H14A0.9500
C3—C41.3857 (14)C15—H15A0.9500
C4—C51.3951 (13)C16—H16A0.9800
C4—H4A0.9500C16—H16B0.9800
C5—C61.3998 (13)C16—H16C0.9800
C5—H5A0.9500C17—C181.5017 (14)
C6—C71.4668 (12)C18—H18A0.9800
C7—C81.5102 (13)C18—H18B0.9800
C8—C91.5414 (12)C18—H18C0.9800
C13—O1—C16117.34 (8)C10—C9—H9A110.2
C7—N1—N2107.39 (8)C8—C9—H9A110.2
C17—N2—N1122.80 (8)C11—C10—C15118.56 (8)
C17—N2—C9123.82 (8)C11—C10—C9118.76 (8)
N1—N2—C9113.18 (7)C15—C10—C9122.66 (8)
C2—C1—C6120.58 (9)C10—C11—C12121.53 (9)
C2—C1—H1A119.7C10—C11—H11A119.2
C6—C1—H1A119.7C12—C11—H11A119.2
C3—C2—C1119.10 (9)C13—C12—C11119.24 (8)
C3—C2—H2A120.4C13—C12—H12A120.4
C1—C2—H2A120.4C11—C12—H12A120.4
C4—C3—C2121.69 (9)O1—C13—C12124.47 (9)
C4—C3—Cl1119.14 (7)O1—C13—C14115.73 (9)
C2—C3—Cl1119.17 (8)C12—C13—C14119.79 (9)
C3—C4—C5118.89 (9)C15—C14—C13120.16 (9)
C3—C4—H4A120.6C15—C14—H14A119.9
C5—C4—H4A120.6C13—C14—H14A119.9
C4—C5—C6120.53 (9)C14—C15—C10120.71 (9)
C4—C5—H5A119.7C14—C15—H15A119.6
C6—C5—H5A119.7C10—C15—H15A119.6
C1—C6—C5119.19 (8)O1—C16—H16A109.5
C1—C6—C7121.05 (8)O1—C16—H16B109.5
C5—C6—C7119.77 (8)H16A—C16—H16B109.5
N1—C7—C6121.93 (8)O1—C16—H16C109.5
N1—C7—C8113.87 (8)H16A—C16—H16C109.5
C6—C7—C8124.15 (8)H16B—C16—H16C109.5
C7—C8—C9102.11 (7)O2—C17—N2119.53 (9)
C7—C8—H8A111.3O2—C17—C18123.48 (9)
C9—C8—H8A111.3N2—C17—C18116.99 (8)
C7—C8—H8B111.3C17—C18—H18A109.5
C9—C8—H8B111.3C17—C18—H18B109.5
H8A—C8—H8B109.2H18A—C18—H18B109.5
N2—C9—C10112.23 (8)C17—C18—H18C109.5
N2—C9—C8100.85 (7)H18A—C18—H18C109.5
C10—C9—C8112.84 (7)H18B—C18—H18C109.5
N2—C9—H9A110.2
C7—N1—N2—C17175.94 (8)N1—N2—C9—C815.47 (9)
C7—N1—N2—C99.10 (10)C7—C8—C9—N214.77 (9)
C6—C1—C2—C30.28 (17)C7—C8—C9—C10105.14 (8)
C1—C2—C3—C40.99 (16)N2—C9—C10—C11162.70 (8)
C1—C2—C3—Cl1177.99 (8)C8—C9—C10—C1184.18 (10)
C2—C3—C4—C51.61 (16)N2—C9—C10—C1519.12 (12)
Cl1—C3—C4—C5177.37 (8)C8—C9—C10—C1594.01 (11)
C3—C4—C5—C60.97 (15)C15—C10—C11—C120.32 (14)
C2—C1—C6—C50.89 (16)C9—C10—C11—C12178.58 (8)
C2—C1—C6—C7178.96 (10)C10—C11—C12—C130.32 (14)
C4—C5—C6—C10.25 (15)C16—O1—C13—C121.13 (14)
C4—C5—C6—C7179.59 (9)C16—O1—C13—C14179.58 (9)
N2—N1—C7—C6179.53 (8)C11—C12—C13—O1179.42 (9)
N2—N1—C7—C82.14 (10)C11—C12—C13—C140.16 (14)
C1—C6—C7—N14.38 (14)O1—C13—C14—C15179.34 (9)
C5—C6—C7—N1175.78 (9)C12—C13—C14—C150.01 (16)
C1—C6—C7—C8178.50 (9)C13—C14—C15—C100.02 (16)
C5—C6—C7—C81.34 (14)C11—C10—C15—C140.17 (15)
N1—C7—C8—C911.45 (10)C9—C10—C15—C14178.36 (9)
C6—C7—C8—C9171.22 (8)N1—N2—C17—O2178.73 (8)
C17—N2—C9—C1070.02 (11)C9—N2—C17—O24.31 (14)
N1—N2—C9—C10104.88 (8)N1—N2—C17—C181.89 (13)
C17—N2—C9—C8169.63 (9)C9—N2—C17—C18176.31 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.952.553.4993 (14)174
C16—H16B···O2ii0.982.593.5275 (12)161
C16—H16C···Cg1iii0.982.693.5333 (10)145
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H17ClN2O2
Mr328.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.3473 (4), 9.4418 (4), 19.7840 (7)
β (°) 113.830 (2)
V3)1597.19 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.39 × 0.25 × 0.17
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.908, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
21450, 5715, 4900
Rint0.020
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.08
No. of reflections5715
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.95002.55003.4993 (14)174.00
C16—H16B···O2ii0.98002.59003.5275 (12)161.00
C16—H16C···Cg1iii0.982.693.5333 (10)145
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC for financial assistance through an SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2011). Med. Chem. Res. doi:10.1007/s00044-011-9735-9.  Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds