organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-{2-(4-Chloro­phen­yl)-1-[2-(4-chloro­phen­yl)-1-(3,4,5-trimeth­­oxy­phen­yl)eth­­oxy]eth­yl}-1,2,3-trimeth­­oxy­benzene

aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu Province 730070, People's Republic of China
*Correspondence e-mail: fuying@iccas.ac.cn

(Received 2 January 2012; accepted 27 February 2012; online 10 March 2012)

The title compound, C34H36Cl2O7, is a by-product from the reaction of 4-chloro­benzyl­zinc chloride with 3,4,5-trimeth­oxy­benzaldehyde. In each of the two 1,2-diphenyl­ethyl moieties, the two benzene rings are arranged in a trans conformation and make Car—C—C—Car torsion angles of 163.64 (19) and 174.43 (18)°. The crystal structure is stabilized by van der Waals inter­actions only.

Related literature

For the synthesis and reaction of organozinc reagents, see: Rappoport & Marek (2007[Rappoport, Z. & Marek, I. (2007). In The Chemistry of Organozinc Compounds: R-Zn. Chichester: John Wiley & Sons Ltd.]); Knochel & Jones (1999[Knochel, P. & Jones, P. (1999). In Organozinc Reagents, a Practical Approach. Oxford University Press.]); Erdik (1996[Erdik, E. (1996). In Organozinc Reagents in Organic Synthesis. New York: CRC Press.]); Knochel (2005[Knochel, P. (2005). In Functionalized Organometallics. Weinheim: Wiley-VCH.]). For the synthesis of diphenyl­ethyl ether, see: Lenselink & Johan van Manen (2001[Lenselink, W. & Johan van Manen, A. P. (2001). US Patent No. 6319889]). For the structure of anisole, see: Seip & Seip (1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]).

[Scheme 1]

Experimental

Crystal data
  • C34H36Cl2O7

  • Mr = 627.53

  • Monoclinic, P 21 /n

  • a = 13.3326 (8) Å

  • b = 13.5487 (8) Å

  • c = 18.1703 (11) Å

  • β = 100.036 (3)°

  • V = 3232.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.38 × 0.35 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.921

  • 16506 measured reflections

  • 5707 independent reflections

  • 3682 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.05

  • 5707 reflections

  • 395 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reaction of organometallic reagents with aldehydes gave many by-products owing to the basicity of organometallic reagents and acidity of their metallic salts. The title compound, Fig. 1, C34H36Cl2O7, was isolated as a by-product of 4-chlorobenzylzinc chloride with 3,4,5-trimethoxybenzaldehyde in less than five percent. All four aromatic rings of (I) are planar, with a maximum deviation of 0.022 (2) Å for atom C13 and C27 from the least-squares plane defined by atoms C9–C14 and C26—C31 respectivey. The mean Caryl–O bond [1.370 Å] is slightly larger than a normal C–O single-bond distance for anosole (1.357 Å, Seip & Seip, 1973), implying the steric hindrance of the ortho neighbouring three methoxy groups in one phenyl ring slacked down the conjugations between the methoxy groups and the aromatic ring. In each of the two 1,2-diphenyl ethane moiety, the two phenyl rings are arranged in a trans conformation as the dihedral angle of C4—C7—C8—C9 and C21—C24—C25—C26 was found to be 174.43 (18)° and 163.64 (19) ° respectively. In the crystal structure, there are no classic hydrogen bonds and no significant intermolecular ππ interactions between the molecules.

Related literature top

For the synthesis and reaction of organozinc reagents, see: Rappoport & Marek (2007); Knochel & Jones (1999); Erdik (1996); Knochel (2005). For the synthesis of diphenylethyl ether, see: Lenselink & Johan van Manen (2001). For the structure of anisole, see: Seip & Seip (1973).

Experimental top

Under the nitrogen atmosphere, 3,4,5-trimethoxybenzaldehyde (0.37 g, 1.89 mmol) and trimethylsilyl chloride(0.48 ml, 3.78 mmol) in THF (10 ml) was added a solution of p-Chlorobenzyl zinc chloride reagents (1.0 M, 2.5 ml) cooled with ice-water bath. The reaction was stirred for 12 h at room temperature, then quenched with 10 ml of 1.0 M HCl. After the usual work up, the title compound was isolated in 5% yield as white solid, mp: 156–158 oC. IR (KBr), v (cm-1): 2926, 1593, 1500, 1460, 1421, 1350, 1325, 1233, 1180, 1128, 1079, 1010; 1H NMR (400 MHz, CDCl3) δ (p.p.m.): 2.71 (dd, J = 13.6, 3.5 Hz, 2H, CH2), 2.91 (dd, J = 13.6, 3.5 Hz, 2H, CH2), 3.62 (s, 12H, OCH3), 3.83 (s, 6H, OCH3), 4.15 (dd, J = 9.1, 3.6 Hz, 2H, CH), 6.09 (s, 4H, ArH), 7.12 (d, J = 8.4 Hz, 4H, ArH), 7.25 (d, J = 8.8 Hz, 4H, ArH); 13C NMR (100 MHz, CDCl3): 153.16, 137.29, 137.08, 137.05, 132.07, 131.36, 127.99, 103.25, 79.07, 60.81, 55.81, 44.57; ESI-MS m/z (M + NH4+): 644.2243.

Refinement top

All H atoms were geometrically positioned and refined using a riding model with C—H = 0.93 Å, Uiso(H) = 1.2 Ueq(C) for aromatic atoms, C—H = 0.98 Å, Uiso(H) = 1.2 Ueq(C) for CH atoms, C—H = 0.97 Å, Uiso(H) = 1.2 Ueq(C) for CH2 atoms and C—H = 0.96 Å, Uiso(H) = 1.5 Ueq(C) for CH3 atoms.

Structure description top

The reaction of organometallic reagents with aldehydes gave many by-products owing to the basicity of organometallic reagents and acidity of their metallic salts. The title compound, Fig. 1, C34H36Cl2O7, was isolated as a by-product of 4-chlorobenzylzinc chloride with 3,4,5-trimethoxybenzaldehyde in less than five percent. All four aromatic rings of (I) are planar, with a maximum deviation of 0.022 (2) Å for atom C13 and C27 from the least-squares plane defined by atoms C9–C14 and C26—C31 respectivey. The mean Caryl–O bond [1.370 Å] is slightly larger than a normal C–O single-bond distance for anosole (1.357 Å, Seip & Seip, 1973), implying the steric hindrance of the ortho neighbouring three methoxy groups in one phenyl ring slacked down the conjugations between the methoxy groups and the aromatic ring. In each of the two 1,2-diphenyl ethane moiety, the two phenyl rings are arranged in a trans conformation as the dihedral angle of C4—C7—C8—C9 and C21—C24—C25—C26 was found to be 174.43 (18)° and 163.64 (19) ° respectively. In the crystal structure, there are no classic hydrogen bonds and no significant intermolecular ππ interactions between the molecules.

For the synthesis and reaction of organozinc reagents, see: Rappoport & Marek (2007); Knochel & Jones (1999); Erdik (1996); Knochel (2005). For the synthesis of diphenylethyl ether, see: Lenselink & Johan van Manen (2001). For the structure of anisole, see: Seip & Seip (1973).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
5-{2-(4-Chlorophenyl)-1-[2-(4-chlorophenyl)-1-(3,4,5- trimethoxyphenyl)ethoxy]ethyl}-1,2,3-trimethoxybenzene top
Crystal data top
C34H36Cl2O7F(000) = 1320
Mr = 627.53Dx = 1.290 Mg m3
Monoclinic, P21/nMelting point: 429 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.3326 (8) ÅCell parameters from 3179 reflections
b = 13.5487 (8) Åθ = 2.3–21.4°
c = 18.1703 (11) ŵ = 0.25 mm1
β = 100.036 (3)°T = 296 K
V = 3232.0 (3) Å3Block, colourless
Z = 40.38 × 0.35 × 0.34 mm
Data collection top
Bruker APEXII CCD
diffractometer
5707 independent reflections
Radiation source: fine-focus sealed tube3682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.912, Tmax = 0.921k = 1616
16506 measured reflectionsl = 1921
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.3898P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5707 reflectionsΔρmax = 0.20 e Å3
395 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (5)
Crystal data top
C34H36Cl2O7V = 3232.0 (3) Å3
Mr = 627.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3326 (8) ŵ = 0.25 mm1
b = 13.5487 (8) ÅT = 296 K
c = 18.1703 (11) Å0.38 × 0.35 × 0.34 mm
β = 100.036 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
5707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3682 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.921Rint = 0.036
16506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
5707 reflectionsΔρmin = 0.27 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58651 (18)0.79978 (18)0.07380 (12)0.0542 (6)
C20.64191 (19)0.7228 (2)0.10839 (14)0.0687 (7)
H20.70930.71360.10280.082*
C30.59641 (19)0.65910 (19)0.15159 (14)0.0643 (7)
H30.63410.60710.17570.077*
C40.49592 (17)0.67065 (16)0.15990 (12)0.0491 (6)
C50.44157 (17)0.74770 (17)0.12206 (12)0.0534 (6)
H50.37340.75610.12570.064*
C60.48656 (18)0.81213 (18)0.07916 (12)0.0549 (6)
H60.44910.86360.05400.066*
C70.44753 (19)0.60401 (17)0.21008 (12)0.0554 (6)
H7A0.48200.54070.21360.067*
H7B0.37700.59290.18740.067*
C80.45094 (16)0.64477 (15)0.28885 (11)0.0441 (5)
H80.52160.66030.31080.053*
C90.41014 (16)0.56853 (15)0.33698 (11)0.0422 (5)
C100.30679 (16)0.56178 (15)0.33682 (11)0.0449 (5)
H100.26240.60780.31080.054*
C110.26946 (15)0.48582 (15)0.37567 (12)0.0430 (5)
C120.33501 (16)0.41591 (14)0.41364 (12)0.0438 (5)
C130.43857 (16)0.42317 (15)0.41310 (12)0.0439 (5)
C140.47611 (16)0.50010 (15)0.37584 (12)0.0458 (5)
H140.54590.50590.37690.055*
C150.60334 (17)0.35426 (18)0.45263 (14)0.0632 (7)
H15A0.61780.35430.40270.095*
H15B0.63540.29820.47930.095*
H15C0.62920.41380.47770.095*
C160.2916 (2)0.34587 (19)0.52286 (14)0.0718 (8)
H16A0.35930.35270.55080.108*
H16B0.26010.28850.53980.108*
H16C0.25240.40330.53010.108*
C170.09810 (17)0.54094 (18)0.34035 (14)0.0642 (7)
H17A0.11700.60670.35690.096*
H17B0.03120.52640.35020.096*
H17C0.09820.53590.28770.096*
C180.00522 (19)0.77869 (19)0.31385 (18)0.0693 (7)
C190.0580 (2)0.8121 (2)0.38014 (16)0.0723 (8)
H190.02680.81590.42200.087*
C200.15810 (19)0.84040 (19)0.38457 (14)0.0638 (7)
H200.19390.86350.42980.077*
C210.20640 (17)0.83515 (15)0.32347 (13)0.0499 (6)
C220.1507 (2)0.80016 (17)0.25690 (13)0.0594 (6)
H220.18170.79530.21500.071*
C230.0503 (2)0.77252 (19)0.25182 (15)0.0691 (7)
H230.01350.74990.20670.083*
C240.31432 (17)0.87007 (16)0.32892 (14)0.0574 (6)
H24A0.32680.92040.36740.069*
H24B0.32090.90120.28190.069*
C250.39760 (16)0.79170 (15)0.34644 (12)0.0450 (5)
H250.38240.74950.38690.054*
C260.49995 (16)0.84196 (14)0.37206 (12)0.0436 (5)
C270.52939 (17)0.85910 (15)0.44770 (12)0.0489 (6)
H270.49070.83390.48130.059*
C280.61632 (17)0.91369 (15)0.47393 (12)0.0474 (6)
C290.67365 (16)0.95157 (15)0.42418 (13)0.0487 (6)
C300.64530 (17)0.93266 (17)0.34829 (13)0.0512 (6)
C310.55848 (17)0.87795 (16)0.32219 (12)0.0503 (6)
H310.53970.86550.27130.060*
C320.6009 (2)0.88780 (18)0.60143 (13)0.0688 (7)
H32A0.53330.91420.59670.103*
H32B0.63760.90100.65070.103*
H32C0.59730.81780.59320.103*
C330.8490 (2)0.9565 (2)0.47062 (18)0.0942 (10)
H33A0.84010.90820.50760.141*
H33B0.90271.00100.49090.141*
H33C0.86630.92390.42760.141*
C340.6939 (2)0.9476 (2)0.22823 (14)0.0849 (9)
H34A0.69280.87710.22270.127*
H34B0.74820.97460.20610.127*
H34C0.63010.97440.20370.127*
Cl10.64340 (6)0.88568 (6)0.02261 (4)0.0871 (3)
Cl20.12145 (6)0.74137 (8)0.30797 (7)0.1272 (4)
O10.39285 (10)0.73366 (10)0.28040 (7)0.0437 (4)
O20.16884 (11)0.47272 (11)0.37913 (9)0.0572 (4)
O30.29618 (11)0.33562 (10)0.44572 (9)0.0547 (4)
O40.49673 (11)0.34905 (11)0.44998 (9)0.0583 (4)
O50.65201 (12)0.93281 (12)0.54773 (8)0.0618 (4)
O60.75737 (12)1.01001 (12)0.44949 (9)0.0613 (4)
O70.70919 (13)0.97192 (13)0.30468 (9)0.0732 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0542 (15)0.0664 (16)0.0440 (14)0.0002 (12)0.0146 (11)0.0012 (12)
C20.0510 (15)0.090 (2)0.0694 (18)0.0160 (14)0.0234 (13)0.0124 (16)
C30.0636 (17)0.0661 (17)0.0662 (17)0.0237 (13)0.0196 (13)0.0127 (14)
C40.0578 (15)0.0469 (13)0.0434 (13)0.0038 (11)0.0113 (11)0.0050 (11)
C50.0444 (13)0.0629 (16)0.0539 (15)0.0078 (12)0.0110 (11)0.0012 (12)
C60.0586 (15)0.0573 (15)0.0495 (14)0.0104 (12)0.0113 (12)0.0056 (12)
C70.0700 (16)0.0436 (13)0.0540 (14)0.0026 (11)0.0147 (12)0.0045 (11)
C80.0464 (12)0.0372 (12)0.0476 (13)0.0048 (10)0.0050 (10)0.0000 (10)
C90.0484 (13)0.0340 (12)0.0430 (12)0.0074 (10)0.0043 (10)0.0030 (10)
C100.0500 (14)0.0339 (12)0.0487 (13)0.0029 (10)0.0026 (10)0.0014 (10)
C110.0404 (12)0.0355 (12)0.0530 (14)0.0065 (10)0.0074 (10)0.0074 (10)
C120.0509 (13)0.0296 (11)0.0502 (13)0.0090 (10)0.0067 (11)0.0001 (10)
C130.0482 (13)0.0323 (11)0.0490 (13)0.0030 (10)0.0021 (10)0.0005 (10)
C140.0429 (12)0.0406 (12)0.0529 (14)0.0065 (10)0.0053 (10)0.0001 (11)
C150.0488 (14)0.0591 (16)0.0793 (18)0.0039 (12)0.0040 (13)0.0126 (14)
C160.0837 (19)0.0633 (17)0.0715 (19)0.0082 (14)0.0221 (15)0.0152 (14)
C170.0507 (14)0.0664 (17)0.0731 (18)0.0049 (13)0.0037 (13)0.0028 (14)
C180.0493 (15)0.0597 (17)0.096 (2)0.0093 (12)0.0044 (16)0.0031 (16)
C190.0670 (18)0.0773 (19)0.077 (2)0.0128 (15)0.0239 (15)0.0019 (16)
C200.0624 (17)0.0695 (17)0.0575 (16)0.0079 (13)0.0050 (13)0.0139 (13)
C210.0559 (14)0.0367 (12)0.0557 (15)0.0049 (11)0.0060 (12)0.0006 (11)
C220.0726 (18)0.0544 (15)0.0496 (15)0.0030 (13)0.0061 (13)0.0017 (12)
C230.0664 (18)0.0681 (18)0.0639 (18)0.0009 (14)0.0134 (14)0.0007 (14)
C240.0633 (16)0.0393 (13)0.0685 (16)0.0038 (11)0.0080 (12)0.0051 (12)
C250.0564 (14)0.0355 (12)0.0427 (13)0.0089 (10)0.0080 (10)0.0005 (10)
C260.0531 (13)0.0327 (11)0.0433 (13)0.0051 (10)0.0034 (10)0.0005 (10)
C270.0622 (15)0.0404 (13)0.0442 (14)0.0090 (11)0.0098 (11)0.0012 (10)
C280.0628 (15)0.0357 (12)0.0407 (13)0.0040 (11)0.0009 (11)0.0045 (10)
C290.0509 (14)0.0396 (13)0.0535 (15)0.0105 (10)0.0030 (11)0.0046 (11)
C300.0548 (14)0.0477 (14)0.0522 (15)0.0105 (11)0.0121 (11)0.0010 (11)
C310.0604 (15)0.0488 (14)0.0405 (13)0.0106 (12)0.0054 (11)0.0014 (11)
C320.107 (2)0.0524 (15)0.0450 (15)0.0135 (14)0.0090 (14)0.0014 (12)
C330.0593 (18)0.092 (2)0.123 (3)0.0005 (16)0.0083 (17)0.014 (2)
C340.079 (2)0.125 (3)0.0535 (18)0.0234 (18)0.0178 (14)0.0025 (17)
Cl10.0836 (5)0.1034 (6)0.0790 (5)0.0143 (4)0.0275 (4)0.0218 (4)
Cl20.0560 (5)0.1255 (8)0.1971 (11)0.0035 (5)0.0139 (6)0.0086 (7)
O10.0557 (9)0.0342 (8)0.0393 (8)0.0030 (7)0.0033 (7)0.0004 (6)
O20.0449 (9)0.0475 (9)0.0795 (12)0.0018 (7)0.0112 (8)0.0082 (8)
O30.0594 (10)0.0386 (9)0.0657 (11)0.0121 (7)0.0099 (8)0.0064 (8)
O40.0500 (9)0.0445 (9)0.0783 (11)0.0003 (7)0.0051 (8)0.0197 (8)
O50.0810 (12)0.0581 (10)0.0434 (10)0.0171 (9)0.0028 (8)0.0069 (8)
O60.0544 (10)0.0563 (10)0.0697 (11)0.0166 (8)0.0012 (8)0.0085 (9)
O70.0747 (12)0.0884 (13)0.0591 (11)0.0345 (10)0.0185 (9)0.0040 (10)
Geometric parameters (Å, º) top
C1—C61.363 (3)C18—C191.362 (4)
C1—C21.366 (3)C18—C231.369 (4)
C1—Cl11.744 (2)C18—Cl21.748 (3)
C2—C31.377 (3)C19—C201.377 (3)
C2—H20.9300C19—H190.9300
C3—C41.383 (3)C20—C211.379 (3)
C3—H30.9300C20—H200.9300
C4—C51.383 (3)C21—C221.388 (3)
C4—C71.506 (3)C21—C241.501 (3)
C5—C61.376 (3)C22—C231.378 (3)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—H230.9300
C7—C81.527 (3)C24—C251.529 (3)
C7—H7A0.9700C24—H24A0.9700
C7—H7B0.9700C24—H24B0.9700
C8—O11.426 (2)C25—O11.427 (2)
C8—C91.514 (3)C25—C261.524 (3)
C8—H80.9800C25—H250.9800
C9—C101.380 (3)C26—C271.382 (3)
C9—C141.384 (3)C26—C311.384 (3)
C10—C111.388 (3)C27—C281.387 (3)
C10—H100.9300C27—H270.9300
C11—O21.366 (2)C28—O51.367 (2)
C11—C121.388 (3)C28—C291.380 (3)
C12—O31.377 (2)C29—O61.380 (2)
C12—C131.386 (3)C29—C301.389 (3)
C13—O41.370 (2)C30—O71.368 (3)
C13—C141.383 (3)C30—C311.387 (3)
C14—H140.9300C31—H310.9300
C15—O41.416 (3)C32—O51.421 (3)
C15—H15A0.9600C32—H32A0.9600
C15—H15B0.9600C32—H32B0.9600
C15—H15C0.9600C32—H32C0.9600
C16—O31.420 (3)C33—O61.415 (3)
C16—H16A0.9600C33—H33A0.9600
C16—H16B0.9600C33—H33B0.9600
C16—H16C0.9600C33—H33C0.9600
C17—O21.417 (3)C34—O71.408 (3)
C17—H17A0.9600C34—H34A0.9600
C17—H17B0.9600C34—H34B0.9600
C17—H17C0.9600C34—H34C0.9600
C6—C1—C2121.2 (2)C18—C19—H19120.3
C6—C1—Cl1118.53 (19)C20—C19—H19120.3
C2—C1—Cl1120.29 (19)C19—C20—C21121.5 (2)
C1—C2—C3119.0 (2)C19—C20—H20119.3
C1—C2—H2120.5C21—C20—H20119.3
C3—C2—H2120.5C20—C21—C22117.7 (2)
C2—C3—C4121.5 (2)C20—C21—C24120.5 (2)
C2—C3—H3119.2C22—C21—C24121.7 (2)
C4—C3—H3119.2C23—C22—C21121.1 (2)
C3—C4—C5117.7 (2)C23—C22—H22119.4
C3—C4—C7121.6 (2)C21—C22—H22119.4
C5—C4—C7120.7 (2)C18—C23—C22119.3 (2)
C6—C5—C4121.2 (2)C18—C23—H23120.4
C6—C5—H5119.4C22—C23—H23120.4
C4—C5—H5119.4C21—C24—C25116.59 (18)
C1—C6—C5119.4 (2)C21—C24—H24A108.1
C1—C6—H6120.3C25—C24—H24A108.1
C5—C6—H6120.3C21—C24—H24B108.1
C4—C7—C8113.87 (18)C25—C24—H24B108.1
C4—C7—H7A108.8H24A—C24—H24B107.3
C8—C7—H7A108.8O1—C25—C26114.17 (16)
C4—C7—H7B108.8O1—C25—C24106.46 (17)
C8—C7—H7B108.8C26—C25—C24109.42 (17)
H7A—C7—H7B107.7O1—C25—H25108.9
O1—C8—C9113.29 (16)C26—C25—H25108.9
O1—C8—C7106.12 (17)C24—C25—H25108.9
C9—C8—C7109.84 (16)C27—C26—C31119.83 (19)
O1—C8—H8109.2C27—C26—C25117.59 (18)
C9—C8—H8109.2C31—C26—C25122.33 (19)
C7—C8—H8109.2C26—C27—C28120.5 (2)
C10—C9—C14120.14 (19)C26—C27—H27119.8
C10—C9—C8120.19 (18)C28—C27—H27119.8
C14—C9—C8119.42 (19)O5—C28—C29115.72 (19)
C9—C10—C11119.61 (19)O5—C28—C27124.4 (2)
C9—C10—H10120.2C29—C28—C27119.9 (2)
C11—C10—H10120.2O6—C29—C28120.2 (2)
O2—C11—C12115.27 (18)O6—C29—C30120.1 (2)
O2—C11—C10124.19 (19)C28—C29—C30119.71 (19)
C12—C11—C10120.54 (19)O7—C30—C31125.2 (2)
O3—C12—C13120.50 (19)O7—C30—C29114.47 (19)
O3—C12—C11119.92 (18)C31—C30—C29120.3 (2)
C13—C12—C11119.33 (18)C26—C31—C30119.8 (2)
O4—C13—C14124.71 (19)C26—C31—H31120.1
O4—C13—C12115.09 (18)C30—C31—H31120.1
C14—C13—C12120.18 (19)O5—C32—H32A109.5
C13—C14—C9120.2 (2)O5—C32—H32B109.5
C13—C14—H14119.9H32A—C32—H32B109.5
C9—C14—H14119.9O5—C32—H32C109.5
O4—C15—H15A109.5H32A—C32—H32C109.5
O4—C15—H15B109.5H32B—C32—H32C109.5
H15A—C15—H15B109.5O6—C33—H33A109.5
O4—C15—H15C109.5O6—C33—H33B109.5
H15A—C15—H15C109.5H33A—C33—H33B109.5
H15B—C15—H15C109.5O6—C33—H33C109.5
O3—C16—H16A109.5H33A—C33—H33C109.5
O3—C16—H16B109.5H33B—C33—H33C109.5
H16A—C16—H16B109.5O7—C34—H34A109.5
O3—C16—H16C109.5O7—C34—H34B109.5
H16A—C16—H16C109.5H34A—C34—H34B109.5
H16B—C16—H16C109.5O7—C34—H34C109.5
O2—C17—H17A109.5H34A—C34—H34C109.5
O2—C17—H17B109.5H34B—C34—H34C109.5
H17A—C17—H17B109.5C8—O1—C25115.55 (15)
O2—C17—H17C109.5C11—O2—C17117.80 (17)
H17A—C17—H17C109.5C12—O3—C16115.11 (17)
H17B—C17—H17C109.5C13—O4—C15117.35 (17)
C19—C18—C23121.0 (2)C28—O5—C32117.74 (18)
C19—C18—Cl2119.7 (2)C29—O6—C33113.95 (19)
C23—C18—Cl2119.3 (2)C30—O7—C34118.84 (19)
C18—C19—C20119.4 (2)
C6—C1—C2—C32.4 (4)Cl2—C18—C23—C22178.75 (19)
Cl1—C1—C2—C3176.7 (2)C21—C22—C23—C180.8 (4)
C1—C2—C3—C40.8 (4)C20—C21—C24—C2594.9 (3)
C2—C3—C4—C51.2 (4)C22—C21—C24—C2587.6 (3)
C2—C3—C4—C7177.0 (2)C21—C24—C25—O172.5 (2)
C3—C4—C5—C61.6 (3)C21—C24—C25—C26163.64 (19)
C7—C4—C5—C6176.6 (2)O1—C25—C26—C27150.37 (18)
C2—C1—C6—C52.0 (4)C24—C25—C26—C2790.4 (2)
Cl1—C1—C6—C5177.09 (18)O1—C25—C26—C3135.4 (3)
C4—C5—C6—C10.1 (3)C24—C25—C26—C3183.7 (2)
C3—C4—C7—C894.4 (3)C31—C26—C27—C281.2 (3)
C5—C4—C7—C883.7 (3)C25—C26—C27—C28173.18 (19)
C4—C7—C8—O162.8 (2)C26—C27—C28—O5178.8 (2)
C4—C7—C8—C9174.43 (18)C26—C27—C28—C290.3 (3)
O1—C8—C9—C1032.9 (3)O5—C28—C29—O64.0 (3)
C7—C8—C9—C1085.5 (2)C27—C28—C29—O6176.81 (19)
O1—C8—C9—C14152.82 (18)O5—C28—C29—C30177.58 (19)
C7—C8—C9—C1488.7 (2)C27—C28—C29—C301.6 (3)
C14—C9—C10—C110.2 (3)O6—C29—C30—O73.1 (3)
C8—C9—C10—C11174.02 (18)C28—C29—C30—O7178.5 (2)
C9—C10—C11—O2179.88 (18)O6—C29—C30—C31176.9 (2)
C9—C10—C11—C121.0 (3)C28—C29—C30—C311.5 (3)
O2—C11—C12—O35.6 (3)C27—C26—C31—C301.3 (3)
C10—C11—C12—O3173.60 (18)C25—C26—C31—C30172.8 (2)
O2—C11—C12—C13179.88 (18)O7—C30—C31—C26179.9 (2)
C10—C11—C12—C130.7 (3)C29—C30—C31—C260.1 (3)
O3—C12—C13—O43.7 (3)C9—C8—O1—C2567.9 (2)
C11—C12—C13—O4177.92 (19)C7—C8—O1—C25171.55 (16)
O3—C12—C13—C14175.05 (19)C26—C25—O1—C870.6 (2)
C11—C12—C13—C140.8 (3)C24—C25—O1—C8168.52 (16)
O4—C13—C14—C9176.62 (19)C12—C11—O2—C17178.98 (19)
C12—C13—C14—C92.0 (3)C10—C11—O2—C170.2 (3)
C10—C9—C14—C131.7 (3)C13—C12—O3—C1689.9 (2)
C8—C9—C14—C13172.58 (19)C11—C12—O3—C1695.9 (2)
C23—C18—C19—C200.2 (4)C14—C13—O4—C152.8 (3)
Cl2—C18—C19—C20179.3 (2)C12—C13—O4—C15178.53 (19)
C18—C19—C20—C210.3 (4)C29—C28—O5—C32174.4 (2)
C19—C20—C21—C220.1 (4)C27—C28—O5—C324.8 (3)
C19—C20—C21—C24177.6 (2)C28—C29—O6—C3388.4 (3)
C20—C21—C22—C230.6 (3)C30—C29—O6—C3393.2 (3)
C24—C21—C22—C23177.0 (2)C31—C30—O7—C347.2 (4)
C19—C18—C23—C220.4 (4)C29—C30—O7—C34172.8 (2)

Experimental details

Crystal data
Chemical formulaC34H36Cl2O7
Mr627.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.3326 (8), 13.5487 (8), 18.1703 (11)
β (°) 100.036 (3)
V3)3232.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.38 × 0.35 × 0.34
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.912, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
16506, 5707, 3682
Rint0.036
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.05
No. of reflections5707
No. of parameters395
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 20962017) and the Natural Science Foundation of Gansu Province, China (No. 1107RJZA263)

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErdik, E. (1996). In Organozinc Reagents in Organic Synthesis. New York: CRC Press.  Google Scholar
First citationKnochel, P. (2005). In Functionalized Organometallics. Weinheim: Wiley-VCH.  Google Scholar
First citationKnochel, P. & Jones, P. (1999). In Organozinc Reagents, a Practical Approach. Oxford University Press.  Google Scholar
First citationLenselink, W. & Johan van Manen, A. P. (2001). US Patent No. 6319889  Google Scholar
First citationRappoport, Z. & Marek, I. (2007). In The Chemistry of Organozinc Compounds: R-Zn. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds