organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′,4′-Dimeth­­oxy­bi­phenyl-4-carbo­nitrile

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hljuchuwenyi@163.com

(Received 8 March 2012; accepted 16 March 2012; online 21 March 2012)

The title compound, C15H13NO2, was prepared through a palladium-catalysed Suzuki–Miyaura coupling reaction. The dihedral angle between the biphenyl rings is 40.96 (6)°. The meth­oxy groups are twisted slightly out of the plane of the benzene ring [C—C—C—C torsion angles = −3.61 (18) and 12.6 (2)°]. The packing of the molecules is stabilized by van der Waals inter­actions.

Related literature

For general background to the synthesis and properties of 3′,4′-dimeth­oxy­biphenyl-4-carbonitrile, see: Suzuki (1999[Suzuki, A. (1999). J. Organomet. Chem. 576, 147-168.]); Razler et al. (2009[Razler, T. M., Hsiao, Y., Qian, F., Fu, R., Khan, R. K. & Carl, E. S. (2009). J. Org. Chem. 74, 1381-1384.]); Hou et al. (2011[Hou, Y.-J., Li, X.-M., Chu, W.-Y. & Sun, Z.-Z. (2011). Acta Cryst. E67, o2915.]). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996[Kimpe, N. D., Keppens, M. & Froncg, G. (1996). Chem. Commun. 5, 635-636.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2

  • Mr = 239.26

  • Monoclinic, P 21 /c

  • a = 9.1568 (10) Å

  • b = 7.7541 (8) Å

  • c = 17.6764 (19) Å

  • β = 96.266 (1)°

  • V = 1247.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.32 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.978

  • 8149 measured reflections

  • 2399 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.05

  • 2399 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Considerable interest shows the palladium-catalyzed Suzuki-Miyaura coupling reaction and the biological activity of biphenyl derivatives (Suzuki, 1999; Razler et al., 2009; Kimpe et al., 1996; Hou et al., 2011). We have prepare 3',4'-dimethoxybiphenyl-4 -carbonitrile as a potential antiviral activity compound. In the title compound, Fig. 1, the dihedral angle of the biphenyl moiety is 40.96 (6)°. The methoxy groups are slightly twisted out of the plane of the benzene ring 3.65 (12) & 12.40 (13)° at C10 and C11 position respectively. The crystal structure is stabilized by van der waals interactions.

Related literature top

For general background to the synthesis and properties of 3',4'-dimethoxybiphenyl-4-carbonitrile, see: Suzuki (1999); Razler et al. (2009); Hou et al. (2011). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996).

Experimental top

To a solution of 4-bromobenzonitrile (5 mmol) and 3,4-dimethoxyphenylboronic acid (6 mmol) in 20 ml water and 20 ml methanol was added Pd(OAc)2 (5 mmol) and K2CO3 (10 mmol). After stirring the reaction mixture for 8 h at 318 K. The aqueous phases were extracted with 100 ml ethyl acetate. The organic extracts were washed with 200 ml saturated aqueous sodium chloride, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The resulting crude material was purified via silica gel chromatography (petroleum ether) to afford a translucent solid in a yield of 76%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from methanol at room temperature in a total yield of 36%. Analysis found: C 75.3, H 5.6, N 6.0%; C15H13NO2 requires: C 75.3, H 5.5, N 5.9%. 1H NMR (400 MHz, CDCl3) 7.78 (m, 2H), 7.64 (m, 2H), 7.17 (dd, J = 8.3, 2.1 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H).

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms. C—H distances are in the range 0.93-0.96 Å. Uiso(H) values were constrained to be 1.2Ueq(C) (aromatic H atoms) [1.5Ueq(C) for methyl H atoms].

Structure description top

Considerable interest shows the palladium-catalyzed Suzuki-Miyaura coupling reaction and the biological activity of biphenyl derivatives (Suzuki, 1999; Razler et al., 2009; Kimpe et al., 1996; Hou et al., 2011). We have prepare 3',4'-dimethoxybiphenyl-4 -carbonitrile as a potential antiviral activity compound. In the title compound, Fig. 1, the dihedral angle of the biphenyl moiety is 40.96 (6)°. The methoxy groups are slightly twisted out of the plane of the benzene ring 3.65 (12) & 12.40 (13)° at C10 and C11 position respectively. The crystal structure is stabilized by van der waals interactions.

For general background to the synthesis and properties of 3',4'-dimethoxybiphenyl-4-carbonitrile, see: Suzuki (1999); Razler et al. (2009); Hou et al. (2011). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound I, with displacement ellipsoids drawn at the 50% probability level.
3',4'-Dimethoxybiphenyl-4-carbonitrile top
Crystal data top
C15H13NO2F(000) = 504
Mr = 239.26Dx = 1.274 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2577 reflections
a = 9.1568 (10) Åθ = 2.9–25.8°
b = 7.7541 (8) ŵ = 0.09 mm1
c = 17.6764 (19) ÅT = 295 K
β = 96.266 (1)°Block, colorless
V = 1247.6 (2) Å30.32 × 0.30 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2399 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.973, Tmax = 0.978k = 98
8149 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.052P)2 + 0.1238P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2399 reflectionsΔρmax = 0.15 e Å3
166 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C15H13NO2V = 1247.6 (2) Å3
Mr = 239.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1568 (10) ŵ = 0.09 mm1
b = 7.7541 (8) ÅT = 295 K
c = 17.6764 (19) Å0.32 × 0.30 × 0.26 mm
β = 96.266 (1)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2399 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1839 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.020
8149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
2399 reflectionsΔρmin = 0.12 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.14237 (10)0.09170 (14)0.04364 (6)0.0626 (3)
C80.55897 (13)0.10197 (17)0.16381 (6)0.0431 (3)
C90.51177 (13)0.03577 (17)0.11570 (6)0.0420 (3)
H90.57530.12710.10960.050*
C50.70869 (13)0.10066 (16)0.20533 (7)0.0432 (3)
C100.37226 (13)0.03711 (17)0.07734 (6)0.0425 (3)
O20.31442 (9)0.16798 (13)0.03141 (5)0.0546 (3)
C110.27761 (13)0.10261 (18)0.08472 (7)0.0475 (3)
C130.46307 (14)0.23659 (19)0.17187 (8)0.0526 (4)
H130.49230.32770.20430.063*
C40.82954 (14)0.04428 (19)0.17115 (8)0.0520 (4)
H40.81700.00750.12080.062*
C30.96813 (15)0.04188 (19)0.21075 (9)0.0568 (4)
H31.04830.00550.18690.068*
C120.32371 (15)0.23763 (19)0.13225 (8)0.0554 (4)
H120.26090.33000.13780.066*
C60.73122 (15)0.15651 (19)0.28075 (7)0.0522 (3)
H60.65190.19700.30430.063*
C70.86821 (15)0.1529 (2)0.32089 (8)0.0585 (4)
H70.88090.19000.37120.070*
C20.98743 (15)0.09404 (18)0.28652 (8)0.0552 (4)
C140.40771 (15)0.30952 (19)0.01883 (8)0.0569 (4)
H14A0.49240.26850.00330.085*
H14B0.35520.39040.01520.085*
H14C0.43840.36520.06640.085*
C150.05399 (16)0.2429 (2)0.03800 (10)0.0692 (5)
H15A0.03210.27640.08780.104*
H15B0.03590.21990.00640.104*
H15C0.10610.33430.01600.104*
C11.13159 (18)0.0889 (2)0.32852 (10)0.0703 (5)
N11.24412 (18)0.0863 (2)0.36292 (10)0.1005 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0425 (5)0.0668 (7)0.0749 (7)0.0073 (5)0.0095 (4)0.0125 (5)
C80.0431 (7)0.0452 (8)0.0406 (6)0.0020 (6)0.0025 (5)0.0018 (5)
C90.0407 (7)0.0414 (7)0.0437 (6)0.0013 (5)0.0044 (5)0.0018 (5)
C50.0457 (7)0.0389 (7)0.0440 (7)0.0037 (5)0.0001 (5)0.0005 (5)
C100.0433 (7)0.0435 (7)0.0405 (6)0.0040 (6)0.0042 (5)0.0042 (5)
O20.0467 (5)0.0526 (6)0.0624 (6)0.0005 (4)0.0030 (4)0.0167 (4)
C110.0381 (6)0.0545 (8)0.0489 (7)0.0007 (6)0.0001 (5)0.0031 (6)
C130.0518 (8)0.0512 (9)0.0536 (8)0.0016 (6)0.0002 (6)0.0143 (6)
C40.0487 (8)0.0546 (9)0.0515 (7)0.0009 (6)0.0000 (6)0.0093 (6)
C30.0471 (8)0.0523 (9)0.0700 (9)0.0002 (6)0.0014 (6)0.0052 (7)
C120.0479 (7)0.0523 (9)0.0650 (9)0.0094 (6)0.0022 (6)0.0118 (7)
C60.0526 (7)0.0568 (9)0.0466 (7)0.0028 (7)0.0023 (6)0.0042 (6)
C70.0647 (9)0.0609 (10)0.0467 (7)0.0092 (7)0.0077 (7)0.0009 (6)
C20.0519 (8)0.0429 (8)0.0665 (9)0.0068 (6)0.0128 (7)0.0069 (6)
C140.0606 (8)0.0495 (9)0.0602 (8)0.0003 (7)0.0044 (7)0.0145 (6)
C150.0512 (8)0.0735 (11)0.0792 (10)0.0127 (8)0.0097 (7)0.0050 (8)
C10.0652 (10)0.0561 (10)0.0830 (11)0.0044 (8)0.0216 (9)0.0080 (8)
N10.0749 (10)0.0913 (12)0.1230 (14)0.0034 (9)0.0452 (10)0.0111 (10)
Geometric parameters (Å, º) top
O3—C111.3681 (15)C4—H40.9300
O3—C151.4217 (18)C3—C21.392 (2)
C8—C131.3814 (18)C3—H30.9300
C8—C91.4038 (17)C12—H120.9300
C8—C51.4828 (16)C6—C71.3724 (18)
C9—C101.3794 (16)C6—H60.9300
C9—H90.9300C7—C21.383 (2)
C5—C41.3880 (18)C7—H70.9300
C5—C61.3954 (17)C2—C11.4426 (19)
C10—O21.3695 (15)C14—H14A0.9600
C10—C111.4023 (18)C14—H14B0.9600
O2—C141.4231 (17)C14—H14C0.9600
C11—C121.3795 (19)C15—H15A0.9600
C13—C121.3870 (18)C15—H15B0.9600
C13—H130.9300C15—H15C0.9600
C4—C31.3809 (18)C1—N11.1381 (18)
C11—O3—C15117.49 (11)C11—C12—C13120.43 (12)
C13—C8—C9118.70 (11)C11—C12—H12119.8
C13—C8—C5121.20 (11)C13—C12—H12119.8
C9—C8—C5120.10 (11)C7—C6—C5121.27 (13)
C10—C9—C8120.72 (11)C7—C6—H6119.4
C10—C9—H9119.6C5—C6—H6119.4
C8—C9—H9119.6C6—C7—C2120.02 (12)
C4—C5—C6118.15 (11)C6—C7—H7120.0
C4—C5—C8121.65 (11)C2—C7—H7120.0
C6—C5—C8120.20 (11)C7—C2—C3119.67 (12)
O2—C10—C9125.07 (11)C7—C2—C1120.31 (14)
O2—C10—C11115.12 (11)C3—C2—C1120.01 (14)
C9—C10—C11119.81 (11)O2—C14—H14A109.5
C10—O2—C14117.66 (10)O2—C14—H14B109.5
O3—C11—C12124.69 (12)H14A—C14—H14B109.5
O3—C11—C10115.83 (11)O2—C14—H14C109.5
C12—C11—C10119.46 (11)H14A—C14—H14C109.5
C8—C13—C12120.83 (12)H14B—C14—H14C109.5
C8—C13—H13119.6O3—C15—H15A109.5
C12—C13—H13119.6O3—C15—H15B109.5
C3—C4—C5121.05 (12)H15A—C15—H15B109.5
C3—C4—H4119.5O3—C15—H15C109.5
C5—C4—H4119.5H15A—C15—H15C109.5
C4—C3—C2119.80 (14)H15B—C15—H15C109.5
C4—C3—H3120.1N1—C1—C2178.6 (2)
C2—C3—H3120.1
C13—C8—C9—C100.17 (18)C5—C8—C13—C12179.36 (12)
C5—C8—C9—C10179.33 (11)C6—C5—C4—C30.6 (2)
C13—C8—C5—C4139.90 (14)C8—C5—C4—C3179.25 (12)
C9—C8—C5—C440.61 (18)C5—C4—C3—C21.0 (2)
C13—C8—C5—C640.26 (18)O3—C11—C12—C13179.70 (13)
C9—C8—C5—C6139.23 (13)C10—C11—C12—C130.7 (2)
C8—C9—C10—O2177.57 (11)C8—C13—C12—C110.9 (2)
C8—C9—C10—C111.74 (18)C4—C5—C6—C71.3 (2)
C9—C10—O2—C143.61 (18)C8—C5—C6—C7178.53 (12)
C11—C10—O2—C14177.05 (11)C5—C6—C7—C20.4 (2)
C15—O3—C11—C1212.6 (2)C6—C7—C2—C31.2 (2)
C15—O3—C11—C10168.41 (13)C6—C7—C2—C1179.64 (14)
O2—C10—C11—O31.71 (16)C4—C3—C2—C72.0 (2)
C9—C10—C11—O3178.92 (11)C4—C3—C2—C1178.93 (14)
O2—C10—C11—C12177.36 (12)C7—C2—C1—N10 (7)
C9—C10—C11—C122.01 (19)C3—C2—C1—N1179 (100)
C9—C8—C13—C121.1 (2)

Experimental details

Crystal data
Chemical formulaC15H13NO2
Mr239.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.1568 (10), 7.7541 (8), 17.6764 (19)
β (°) 96.266 (1)
V3)1247.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
8149, 2399, 1839
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.05
No. of reflections2399
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20872030), the Foundation of Heilongjiang Education Committee (No. 12511383) and the Key Laboratory of Chemical Engineering Processes and Technology for High-efficiency Conversion, College of Heilongjiang Province and Heilongjiang University, China, for supporting this study.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, Y.-J., Li, X.-M., Chu, W.-Y. & Sun, Z.-Z. (2011). Acta Cryst. E67, o2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKimpe, N. D., Keppens, M. & Froncg, G. (1996). Chem. Commun. 5, 635–636.  Google Scholar
First citationRazler, T. M., Hsiao, Y., Qian, F., Fu, R., Khan, R. K. & Carl, E. S. (2009). J. Org. Chem. 74, 1381–1384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, A. (1999). J. Organomet. Chem. 576, 147–168.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds