organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Iso­propyl­benzyl­­idene)isonicotinohydrazide monohydrate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 16 February 2012; accepted 29 February 2012; online 10 March 2012)

In the title compound, C16H17N3O·H2O, the isonicotinohydrazide mol­ecule adopts an E conformation about the central C=N double bond. The dihedral angle between the pyridine and the benzene rings is 54.56 (15)°. In the crystal, mol­ecules are connected via N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For details and the biological activity of isoniazide, see: Bloom & Murray (1992[Bloom, B. R. & Murray, C. J. (1992). Science, 21, 1055-1064.]); Loenhout-Rooyackers & Veen (1998[Loenhout-Rooyackers, J. H. & Veen, J. (1998). Neth. J. Med. 53, 7-14.]); Hearn et al. (2009[Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppinsa, R., Davis, J., Joo-On Kang, H., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem. 44, 4169-4178.]); Tripathi et al. (2011[Tripathi, L., Singh, R. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 509-518.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O·H2O

  • Mr = 285.34

  • Orthorhombic, P 21 21 21

  • a = 7.7503 (2) Å

  • b = 11.7894 (3) Å

  • c = 17.2820 (4) Å

  • V = 1579.08 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 296 K

  • 0.89 × 0.19 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.594, Tmax = 0.920

  • 6473 measured reflections

  • 2939 independent reflections

  • 2499 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.145

  • S = 1.04

  • 2939 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N1⋯O1W 0.85 1.90 2.757 (3) 176
O1W—H1W1⋯N1i 0.85 2.03 2.861 (3) 164
O1W—H2W1⋯O1ii 0.84 2.00 2.779 (3) 154
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the last decade, tuberculosis (TB) has reemerged as one of the leading causes of death in the world, reaching nearly three million deaths annually (Bloom & Murray, 1992). Therefore, the search for new drugs for tuberculosis is of the utmost importance. Treatment regimens are based on a long-term and combined chemotherapy. The most used first-choice drug is isoniazid, a bactericidal drug that acts both intracellularly in the macrophages and extracellularly in the necrotic tissue (Loenhout-Rooyackers & Veen, 1998). The derivatives of isoniazid have been found to possess potential tuberculostatic activity (Hearn et al., 2009; Tripathi et al., 2011). Herein, we present the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one N'-(4-isopropylbenzylidene) isonicotinohydrazide molecule and one water molecule (Fig. 1). The molecule adopts an E configuration about the central C7N3 double bond. The dihedral angle between the pyridine (N1/C1–C5) and the benzene (C8–C13) rings is 54.56 (15)°. The hydrazine group is twisted slightly, with a C5-C6-N2-N3 torsion angle of -178.9 (2)°.

In the crystal, the molecules are connected via N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1), forming a three-dimensional networks (Fig. 2).

Related literature top

For details and the biological activity of isoniazide, see: Bloom & Murray (1992); Loenhout-Rooyackers & Veen (1998); Hearn et al. (2009); Tripathi et al. (2011).

Experimental top

The title compound was prepared by the reaction of 4-isopropyl benzaldehyde (0.15 g, 1 mmol) with isoniazid (0.14 g, 1 mmol) in EtOH (25 mL). After stirring for 3 h, at room temperature, the resulting mixture was concentrated. The precipitate was washed with EtOH to afford the title compound. Colourless blocks of the title compound suitable for X-ray structure determination were recrystallized from EtOH by the slow evaporation of the solvent at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.98 Å; O–H = 0.84–0.85 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C, O). A rotating group model was applied to the methyl groups Even though there is sufficient anomalous dispersion to find the absolute configuration as the compound crystallize out in a chiral space group and Cu radiation was used, this was unsuccessful as the crystal is a inversion twin [BASF ratio of 0.8 (4):0.2 (4)].

Structure description top

In the last decade, tuberculosis (TB) has reemerged as one of the leading causes of death in the world, reaching nearly three million deaths annually (Bloom & Murray, 1992). Therefore, the search for new drugs for tuberculosis is of the utmost importance. Treatment regimens are based on a long-term and combined chemotherapy. The most used first-choice drug is isoniazid, a bactericidal drug that acts both intracellularly in the macrophages and extracellularly in the necrotic tissue (Loenhout-Rooyackers & Veen, 1998). The derivatives of isoniazid have been found to possess potential tuberculostatic activity (Hearn et al., 2009; Tripathi et al., 2011). Herein, we present the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one N'-(4-isopropylbenzylidene) isonicotinohydrazide molecule and one water molecule (Fig. 1). The molecule adopts an E configuration about the central C7N3 double bond. The dihedral angle between the pyridine (N1/C1–C5) and the benzene (C8–C13) rings is 54.56 (15)°. The hydrazine group is twisted slightly, with a C5-C6-N2-N3 torsion angle of -178.9 (2)°.

In the crystal, the molecules are connected via N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1), forming a three-dimensional networks (Fig. 2).

For details and the biological activity of isoniazide, see: Bloom & Murray (1992); Loenhout-Rooyackers & Veen (1998); Hearn et al. (2009); Tripathi et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids. Hydrogen bond is shown by dashed line.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.
(E)-N'-(4-Isopropylbenzylidene)isonicotinohydrazide monohydrate top
Crystal data top
C16H17N3O·H2OF(000) = 608
Mr = 285.34Dx = 1.200 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 1751 reflections
a = 7.7503 (2) Åθ = 4.5–65.6°
b = 11.7894 (3) ŵ = 0.65 mm1
c = 17.2820 (4) ÅT = 296 K
V = 1579.08 (7) Å3Block, colourless
Z = 40.89 × 0.19 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2939 independent reflections
Radiation source: fine-focus sealed tube2499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 71.8°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 98
Tmin = 0.594, Tmax = 0.920k = 1310
6473 measured reflectionsl = 2021
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.3351P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.22 e Å3
2939 reflectionsΔρmin = 0.28 e Å3
193 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0045 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881, 1072 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.8 (4)
Crystal data top
C16H17N3O·H2OV = 1579.08 (7) Å3
Mr = 285.34Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.7503 (2) ŵ = 0.65 mm1
b = 11.7894 (3) ÅT = 296 K
c = 17.2820 (4) Å0.89 × 0.19 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2939 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2499 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.920Rint = 0.032
6473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.28 e Å3
2939 reflectionsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881, 1072 Friedel pairs
193 parametersAbsolute structure parameter: 0.8 (4)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1044 (3)0.05606 (15)0.18186 (11)0.0761 (6)
N11.1036 (4)0.1562 (2)0.06565 (14)0.0839 (8)
H1N10.97180.18170.20930.101*
N21.0132 (3)0.11714 (17)0.22203 (11)0.0573 (5)
N31.0056 (3)0.08469 (18)0.29864 (11)0.0578 (5)
C11.1390 (4)0.1925 (2)0.06922 (16)0.0666 (7)
H1A1.17420.24200.10800.080*
C21.1526 (5)0.2221 (3)0.00740 (18)0.0785 (9)
H2A1.19900.29270.01920.094*
C31.0378 (5)0.0560 (3)0.04701 (17)0.0835 (9)
H3A1.00120.00890.08690.100*
C41.0204 (4)0.0177 (2)0.02743 (15)0.0670 (7)
H4A0.97500.05380.03740.080*
C51.0715 (3)0.0872 (2)0.08717 (13)0.0536 (5)
C61.0648 (3)0.0424 (2)0.16813 (14)0.0555 (6)
C70.9297 (3)0.1536 (2)0.34324 (14)0.0571 (6)
H7A0.88110.21850.32170.069*
C80.9143 (3)0.1369 (2)0.42615 (13)0.0515 (5)
C90.9887 (4)0.0448 (2)0.46475 (15)0.0604 (6)
H9A1.04500.01130.43660.072*
C100.9792 (4)0.0366 (2)0.54362 (15)0.0689 (7)
H10A1.02990.02530.56800.083*
C110.8961 (4)0.1178 (2)0.58831 (15)0.0692 (7)
C120.8237 (4)0.2085 (3)0.54993 (16)0.0699 (7)
H12A0.76840.26490.57830.084*
C130.8312 (4)0.2176 (2)0.47065 (15)0.0611 (6)
H13A0.77930.27920.44650.073*
C140.8851 (9)0.1105 (4)0.67642 (19)0.1318 (19)
H14A0.75990.11510.68360.158*
C150.9192 (7)0.0015 (4)0.7099 (2)0.1196 (15)
H15A0.88820.00110.76370.179*
H15B1.03960.01900.70480.179*
H15C0.85210.05760.68320.179*
C160.9387 (9)0.2120 (5)0.7158 (2)0.149 (2)
H16A0.89250.21210.76740.223*
H16B0.89680.27710.68830.223*
H16C1.06240.21450.71810.223*
O1W0.8651 (3)0.32125 (15)0.18150 (11)0.0822 (7)
H1W10.77480.32090.15310.123*
H2W10.88030.37540.21270.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1132 (16)0.0556 (10)0.0594 (10)0.0199 (10)0.0095 (11)0.0108 (9)
N10.114 (2)0.0893 (18)0.0484 (12)0.0015 (16)0.0134 (14)0.0090 (12)
N20.0738 (13)0.0546 (12)0.0436 (10)0.0047 (10)0.0017 (9)0.0057 (8)
N30.0726 (13)0.0566 (12)0.0443 (10)0.0010 (10)0.0025 (9)0.0063 (9)
C10.0849 (17)0.0594 (15)0.0555 (14)0.0062 (13)0.0094 (13)0.0003 (12)
C20.107 (2)0.0670 (18)0.0617 (17)0.0041 (16)0.0213 (16)0.0106 (14)
C30.113 (3)0.086 (2)0.0525 (15)0.0043 (19)0.0001 (16)0.0066 (14)
C40.0819 (18)0.0642 (16)0.0547 (14)0.0060 (14)0.0020 (13)0.0000 (12)
C50.0623 (13)0.0537 (13)0.0448 (11)0.0029 (11)0.0079 (10)0.0043 (10)
C60.0638 (13)0.0541 (14)0.0486 (12)0.0022 (11)0.0030 (11)0.0030 (10)
C70.0697 (14)0.0512 (13)0.0504 (13)0.0021 (12)0.0057 (11)0.0055 (10)
C80.0559 (11)0.0526 (13)0.0462 (11)0.0002 (10)0.0027 (10)0.0009 (9)
C90.0750 (16)0.0530 (13)0.0531 (13)0.0117 (12)0.0005 (12)0.0027 (10)
C100.0871 (19)0.0657 (16)0.0538 (14)0.0139 (14)0.0047 (13)0.0083 (12)
C110.0913 (19)0.0708 (17)0.0455 (13)0.0007 (15)0.0039 (13)0.0005 (12)
C120.0798 (18)0.0674 (16)0.0624 (16)0.0095 (14)0.0115 (13)0.0081 (14)
C130.0659 (15)0.0567 (14)0.0607 (14)0.0118 (12)0.0004 (12)0.0022 (11)
C140.238 (6)0.108 (3)0.0494 (18)0.018 (4)0.006 (3)0.0001 (19)
C150.149 (4)0.149 (4)0.0615 (19)0.022 (3)0.008 (2)0.034 (2)
C160.204 (5)0.180 (5)0.062 (2)0.002 (5)0.027 (3)0.026 (3)
O1W0.1251 (18)0.0586 (11)0.0628 (11)0.0163 (11)0.0286 (12)0.0119 (9)
Geometric parameters (Å, º) top
O1—C61.224 (3)C9—C101.368 (3)
N1—C31.326 (4)C9—H9A0.9300
N1—C21.327 (4)C10—C111.389 (4)
N2—C61.343 (3)C10—H10A0.9300
N2—N31.379 (3)C11—C121.377 (4)
N2—H1N10.8550C11—C141.528 (4)
N3—C71.266 (3)C12—C131.376 (4)
C1—C21.373 (4)C12—H12A0.9300
C1—C51.383 (4)C13—H13A0.9300
C1—H1A0.9300C14—C161.438 (6)
C2—H2A0.9300C14—C151.465 (6)
C3—C41.370 (4)C14—H14A0.9800
C3—H3A0.9300C15—H15A0.9600
C4—C51.376 (4)C15—H15B0.9600
C4—H4A0.9300C15—H15C0.9600
C5—C61.496 (3)C16—H16A0.9600
C7—C81.451 (3)C16—H16B0.9600
C7—H7A0.9300C16—H16C0.9600
C8—C131.382 (3)O1W—H1W10.8541
C8—C91.398 (3)O1W—H2W10.8437
C3—N1—C2116.6 (3)C9—C10—C11122.0 (3)
C6—N2—N3119.78 (19)C9—C10—H10A119.0
C6—N2—H1N1121.2C11—C10—H10A119.0
N3—N2—H1N1118.5C12—C11—C10117.1 (2)
C7—N3—N2115.2 (2)C12—C11—C14120.1 (3)
C2—C1—C5118.3 (3)C10—C11—C14122.7 (3)
C2—C1—H1A120.9C13—C12—C11121.5 (3)
C5—C1—H1A120.9C13—C12—H12A119.2
N1—C2—C1124.1 (3)C11—C12—H12A119.2
N1—C2—H2A117.9C12—C13—C8121.4 (3)
C1—C2—H2A117.9C12—C13—H13A119.3
N1—C3—C4124.0 (3)C8—C13—H13A119.3
N1—C3—H3A118.0C16—C14—C15120.7 (4)
C4—C3—H3A118.0C16—C14—C11114.1 (4)
C3—C4—C5118.7 (3)C15—C14—C11115.8 (3)
C3—C4—H4A120.7C16—C14—H14A100.3
C5—C4—H4A120.7C15—C14—H14A100.3
C4—C5—C1118.4 (2)C11—C14—H14A100.3
C4—C5—C6118.8 (2)C14—C15—H15A109.5
C1—C5—C6122.6 (2)C14—C15—H15B109.5
O1—C6—N2124.2 (2)H15A—C15—H15B109.5
O1—C6—C5120.5 (2)C14—C15—H15C109.5
N2—C6—C5115.3 (2)H15A—C15—H15C109.5
N3—C7—C8123.5 (2)H15B—C15—H15C109.5
N3—C7—H7A118.2C14—C16—H16A109.5
C8—C7—H7A118.2C14—C16—H16B109.5
C13—C8—C9117.4 (2)H16A—C16—H16B109.5
C13—C8—C7119.6 (2)C14—C16—H16C109.5
C9—C8—C7122.9 (2)H16A—C16—H16C109.5
C10—C9—C8120.5 (2)H16B—C16—H16C109.5
C10—C9—H9A119.7H1W1—O1W—H2W1119.0
C8—C9—H9A119.7
C6—N2—N3—C7169.0 (3)N3—C7—C8—C13179.0 (3)
C3—N1—C2—C10.0 (5)N3—C7—C8—C92.7 (4)
C5—C1—C2—N10.6 (5)C13—C8—C9—C100.3 (4)
C2—N1—C3—C40.9 (5)C7—C8—C9—C10176.0 (3)
N1—C3—C4—C51.0 (5)C8—C9—C10—C110.2 (5)
C3—C4—C5—C10.3 (4)C9—C10—C11—C120.4 (5)
C3—C4—C5—C6175.6 (3)C9—C10—C11—C14179.6 (4)
C2—C1—C5—C40.4 (4)C10—C11—C12—C130.8 (5)
C2—C1—C5—C6174.7 (3)C14—C11—C12—C13179.9 (4)
N3—N2—C6—O11.3 (4)C11—C12—C13—C81.1 (5)
N3—N2—C6—C5178.9 (2)C9—C8—C13—C120.8 (4)
C4—C5—C6—O138.5 (4)C7—C8—C13—C12175.7 (3)
C1—C5—C6—O1136.6 (3)C12—C11—C14—C1650.3 (7)
C4—C5—C6—N2141.4 (3)C10—C11—C14—C16128.9 (5)
C1—C5—C6—N243.6 (4)C12—C11—C14—C15162.9 (4)
N2—N3—C7—C8177.5 (2)C10—C11—C14—C1517.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N1···O1W0.851.902.757 (3)176
O1W—H1W1···N1i0.852.032.861 (3)164
O1W—H2W1···O1ii0.842.002.779 (3)154
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17N3O·H2O
Mr285.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.7503 (2), 11.7894 (3), 17.2820 (4)
V3)1579.08 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.89 × 0.19 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.594, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
6473, 2939, 2499
Rint0.032
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.145, 1.04
No. of reflections2939
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28
Absolute structureFlack, H. D. (1983). Acta Cryst. A39, 876–881, 1072 Friedel pairs
Absolute structure parameter0.8 (4)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N1···O1W0.851.902.757 (3)176
O1W—H1W1···N1i0.852.032.861 (3)164
O1W—H2W1···O1ii0.842.002.779 (3)154
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+2, y+1/2, z+1/2.
 

Footnotes

College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MAB, HAA and HAG thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBloom, B. R. & Murray, C. J. (1992). Science, 21, 1055–1064.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHearn, M. J., Cynamon, M. H., Chen, M. F., Coppinsa, R., Davis, J., Joo-On Kang, H., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem. 44, 4169–4178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoenhout-Rooyackers, J. H. & Veen, J. (1998). Neth. J. Med. 53, 7–14.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, L., Singh, R. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 509–518.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds