organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(Naphthalen-2-yl­imino)­meth­yl]-4-(tri­fluoro­meth­­oxy)phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, bDepartment of Chemistry, Art and Science Faculty, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dHoward University, College of Arts & Sciences, Department of Chemistry, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: merve.pekdemir@oposta.omu.edu.tr

(Received 16 February 2012; accepted 2 March 2012; online 10 March 2012)

In the title compound, C18H12F3NO2, the planes of the benzene ring and the naphthalene system form a dihedral angle of 47.21 (3)°. The hy­droxy group is involved in an intra­molecular O—H⋯N hydrogen bond. In the crystal, weak C—H⋯O and C—H⋯F inter­actions link the mol­ecules related by translations along the c and a axes, respectively, into sheets.

Related literature

For background to photochromic and thermochromic characteristics and tautomerism of Schiff bases, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). For related structures, see: Gül et al. (2007[Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.]); Yüce et al. (2004[Yüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o718-o719.]). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12F3NO2

  • Mr = 331.29

  • Monoclinic, P 21 /c

  • a = 17.0813 (10) Å

  • b = 14.1248 (8) Å

  • c = 6.1900 (5) Å

  • β = 99.669 (6)°

  • V = 1472.25 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 123 K

  • 0.50 × 0.40 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini-R diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.941, Tmax = 0.978

  • 15270 measured reflections

  • 2892 independent reflections

  • 2497 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.130

  • S = 1.09

  • 2892 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.90 (3) 1.77 (3) 2.5904 (18) 150 (2)
C10—H10⋯O1i 0.93 2.57 3.473 (2) 165
C5—H5⋯F2ii 0.93 2.57 3.487 (2) 170
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are two characteristic properties of Schiff bases, viz. photochromism and thermochromism (Cohen et al., 1964). These properties result from proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). There are two types of intramolecular hydrogen bonds in Schiff bases, which may be stabilized in keto-amine (N—H···O hydrogen bond) or phenol-imine (N···H—O hydrogen bond) tautomeric forms (Hadjoudis et al., 1987). Herewith we present the title compound (I), which exhibits the phenol-imine tautomeric form (Fig. 1).

In (I), the C1—N1 bond length of 1.417 (2) Å agrees with the matching distance in 1-{4-[2-hydroxy-benzylidene)amino]phenyl}ethanone [1.4138 (17) Å; Yüce et al., 2004]. The N1C11 bond length of 1.284 (2) Å is typical of a double bond, like to the matching bond length in (E)-2-[(3-trifluoromenthylphenylimino)methyl]-4-methylphenol [1.280 (2) Å; Gül et al., 2007]. The O1—C17 distance of 1.349 (2) Å is similar to the worth of 1.352 (3) Å in (E)-2-[(3-trifluoromenthylphenylimino)methyl]-4-methylphenol (Gül et al., 2007). Fig.1 additionally shows a strong intramolecular hyrogen bond (O1—H1···N1) can be defined as an S(6) motif (Bernstein et al., 1995). The O1—N1 distance of 2.590 (2) Å is comparable to those observed for same hydrogen bonds in 1-{4-[(2-hydroxy-benzylidene)amino]phenyl}ethanone [2.594 (2) Å; Yüce et al., 2004].

The molecules are linked into sheets by a combination of C—H···O and C—H···F interactions (Table 1). The atom C10 in the reference molecule at (x, y, z) acts as a hydrogen-bond donor, via H10, to atom O1 in the molecule at (x, y, z + 1), so forming a C(8) chain running parallel to the [001] direction. Similarly, atom C5 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H5, to atom F2 in the molecule at (x + 1, y, z), so forming a C(14) chain running parallel to the [100] direction. The combination of the C(8) and C(14) chains generates a chain edge-fused R55(36) rings running parallel to the ac plane (Fig.2)

Related literature top

For background to photochromic and thermochromic characteristics and tautomerism of Schiff bases, see: Cohen et al. (1964); Hadjoudis et al. (1987). For related structures, see: Gül et al. (2007); Yüce et al. (2004). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

The title compound, (I), was prepared by reflux a mixture of a solution containing 2-hydroxy-5-(trifluoromethoxy)benzaldehyde (0.045 g 0.23 mmol) in 20 ml e thanol and a solution containing 2-Naphthyamine (0.033 g 0.23 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 hunder reflux. The crystals of (I) suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 68; m.p.369–371 K).

Refinement top

The H1 atom was located in a difference map, and isotropically refined with restraint of O—H=0.82 (2) Å. All other H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Structure description top

There are two characteristic properties of Schiff bases, viz. photochromism and thermochromism (Cohen et al., 1964). These properties result from proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). There are two types of intramolecular hydrogen bonds in Schiff bases, which may be stabilized in keto-amine (N—H···O hydrogen bond) or phenol-imine (N···H—O hydrogen bond) tautomeric forms (Hadjoudis et al., 1987). Herewith we present the title compound (I), which exhibits the phenol-imine tautomeric form (Fig. 1).

In (I), the C1—N1 bond length of 1.417 (2) Å agrees with the matching distance in 1-{4-[2-hydroxy-benzylidene)amino]phenyl}ethanone [1.4138 (17) Å; Yüce et al., 2004]. The N1C11 bond length of 1.284 (2) Å is typical of a double bond, like to the matching bond length in (E)-2-[(3-trifluoromenthylphenylimino)methyl]-4-methylphenol [1.280 (2) Å; Gül et al., 2007]. The O1—C17 distance of 1.349 (2) Å is similar to the worth of 1.352 (3) Å in (E)-2-[(3-trifluoromenthylphenylimino)methyl]-4-methylphenol (Gül et al., 2007). Fig.1 additionally shows a strong intramolecular hyrogen bond (O1—H1···N1) can be defined as an S(6) motif (Bernstein et al., 1995). The O1—N1 distance of 2.590 (2) Å is comparable to those observed for same hydrogen bonds in 1-{4-[(2-hydroxy-benzylidene)amino]phenyl}ethanone [2.594 (2) Å; Yüce et al., 2004].

The molecules are linked into sheets by a combination of C—H···O and C—H···F interactions (Table 1). The atom C10 in the reference molecule at (x, y, z) acts as a hydrogen-bond donor, via H10, to atom O1 in the molecule at (x, y, z + 1), so forming a C(8) chain running parallel to the [001] direction. Similarly, atom C5 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H5, to atom F2 in the molecule at (x + 1, y, z), so forming a C(14) chain running parallel to the [100] direction. The combination of the C(8) and C(14) chains generates a chain edge-fused R55(36) rings running parallel to the ac plane (Fig.2)

For background to photochromic and thermochromic characteristics and tautomerism of Schiff bases, see: Cohen et al. (1964); Hadjoudis et al. (1987). For related structures, see: Gül et al. (2007); Yüce et al. (2004). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability. Dashed line denotes hydrogen bond.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen bonds as dashed lines.
2-[(E)-(Naphthalen-2-ylimino)methyl]-4-(trifluoromethoxy)phenol top
Crystal data top
C18H12F3NO2F(000) = 680
Mr = 331.29Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5076 reflections
a = 17.0813 (10) Åθ = 3.1–34.9°
b = 14.1248 (8) ŵ = 0.12 mm1
c = 6.1900 (5) ÅT = 123 K
β = 99.669 (6)°Plate, yellow
V = 1472.25 (17) Å30.50 × 0.40 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-R
diffractometer
2892 independent reflections
Radiation source: Enhance (Mo) X-ray Source2497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.5081 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 2021
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007) based on Clark & Reid (1995)
k = 1717
Tmin = 0.941, Tmax = 0.978l = 76
15270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.062P)2 + 0.5277P]
where P = (Fo2 + 2Fc2)/3
2892 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H12F3NO2V = 1472.25 (17) Å3
Mr = 331.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.0813 (10) ŵ = 0.12 mm1
b = 14.1248 (8) ÅT = 123 K
c = 6.1900 (5) Å0.50 × 0.40 × 0.18 mm
β = 99.669 (6)°
Data collection top
Oxford Diffraction Gemini-R
diffractometer
2892 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007) based on Clark & Reid (1995)
2497 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.978Rint = 0.050
15270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.31 e Å3
2892 reflectionsΔρmin = 0.22 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52707 (9)0.88417 (11)0.3403 (3)0.0225 (4)
C20.59465 (10)0.90836 (11)0.2604 (3)0.0225 (3)
H20.59030.93380.12030.027*
C30.67071 (9)0.89512 (10)0.3876 (3)0.0222 (3)
C40.74184 (10)0.91509 (11)0.3061 (3)0.0268 (4)
H40.73900.94130.16720.032*
C50.81420 (10)0.89635 (12)0.4287 (3)0.0313 (4)
H50.86010.91030.37290.038*
C60.82014 (11)0.85608 (12)0.6391 (3)0.0320 (4)
H60.86980.84240.72010.038*
C70.75296 (10)0.83705 (11)0.7244 (3)0.0275 (4)
H70.75730.81140.86420.033*
C80.67680 (10)0.85604 (11)0.6021 (3)0.0232 (4)
C90.60574 (10)0.83457 (11)0.6822 (3)0.0246 (4)
H90.60890.81100.82370.029*
C100.53290 (10)0.84767 (11)0.5564 (3)0.0244 (4)
H100.48710.83270.61210.029*
C110.38798 (10)0.90319 (11)0.2662 (3)0.0241 (4)
H110.38940.92150.41120.029*
C120.31186 (10)0.89349 (11)0.1221 (3)0.0236 (4)
C130.24206 (10)0.92206 (11)0.1940 (3)0.0246 (4)
H130.24430.94750.33340.030*
C140.17025 (10)0.91238 (11)0.0580 (3)0.0265 (4)
C150.16428 (10)0.87238 (12)0.1487 (3)0.0285 (4)
H150.11500.86610.23810.034*
C160.23260 (10)0.84183 (12)0.2206 (3)0.0279 (4)
H160.22900.81300.35700.034*
C170.30663 (10)0.85398 (11)0.0901 (3)0.0248 (4)
C180.05121 (10)0.89134 (14)0.1960 (3)0.0335 (4)
F10.08590 (7)0.83013 (9)0.3436 (2)0.0551 (4)
F20.00045 (7)0.94076 (10)0.2849 (2)0.0537 (4)
F30.01029 (7)0.84060 (11)0.0357 (2)0.0614 (4)
N10.45326 (8)0.88684 (9)0.1961 (2)0.0241 (3)
O10.37203 (7)0.82747 (9)0.1701 (2)0.0301 (3)
O20.10202 (7)0.95092 (8)0.1277 (2)0.0328 (3)
H10.4140 (16)0.8422 (18)0.067 (5)0.066 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0276 (8)0.0185 (8)0.0218 (8)0.0017 (6)0.0051 (7)0.0016 (6)
C20.0325 (9)0.0176 (7)0.0184 (8)0.0003 (6)0.0072 (7)0.0002 (6)
C30.0282 (8)0.0162 (7)0.0228 (8)0.0003 (6)0.0060 (7)0.0030 (6)
C40.0327 (9)0.0225 (8)0.0268 (9)0.0017 (7)0.0095 (7)0.0011 (7)
C50.0279 (9)0.0273 (9)0.0402 (10)0.0031 (7)0.0102 (8)0.0038 (8)
C60.0299 (9)0.0266 (9)0.0370 (10)0.0026 (7)0.0018 (8)0.0041 (8)
C70.0349 (9)0.0205 (8)0.0256 (9)0.0014 (6)0.0013 (7)0.0025 (6)
C80.0317 (9)0.0158 (7)0.0220 (8)0.0005 (6)0.0043 (7)0.0026 (6)
C90.0345 (9)0.0215 (8)0.0185 (8)0.0009 (6)0.0070 (7)0.0011 (6)
C100.0282 (8)0.0223 (8)0.0253 (9)0.0004 (6)0.0118 (7)0.0016 (6)
C110.0304 (9)0.0207 (8)0.0222 (8)0.0005 (6)0.0069 (7)0.0012 (6)
C120.0292 (8)0.0191 (8)0.0231 (8)0.0001 (6)0.0063 (7)0.0026 (6)
C130.0323 (9)0.0191 (8)0.0235 (8)0.0006 (6)0.0076 (7)0.0003 (6)
C140.0277 (8)0.0224 (8)0.0303 (9)0.0020 (6)0.0080 (7)0.0031 (7)
C150.0291 (9)0.0270 (8)0.0282 (9)0.0026 (7)0.0014 (7)0.0036 (7)
C160.0350 (9)0.0264 (8)0.0221 (8)0.0016 (7)0.0041 (7)0.0003 (7)
C170.0303 (9)0.0213 (8)0.0245 (9)0.0010 (6)0.0092 (7)0.0010 (6)
C180.0257 (9)0.0413 (11)0.0330 (10)0.0012 (7)0.0035 (8)0.0022 (8)
F10.0503 (7)0.0630 (8)0.0554 (8)0.0110 (6)0.0188 (6)0.0264 (6)
F20.0386 (7)0.0587 (8)0.0701 (9)0.0065 (5)0.0274 (6)0.0067 (6)
F30.0440 (7)0.0829 (10)0.0581 (8)0.0267 (7)0.0108 (6)0.0259 (7)
N10.0275 (7)0.0215 (7)0.0236 (7)0.0009 (5)0.0052 (6)0.0006 (5)
O10.0299 (7)0.0375 (7)0.0244 (6)0.0001 (5)0.0085 (5)0.0058 (5)
O20.0283 (6)0.0289 (7)0.0428 (8)0.0036 (5)0.0103 (5)0.0008 (5)
Geometric parameters (Å, º) top
C1—C21.373 (2)C11—N11.284 (2)
C1—N11.417 (2)C11—C121.454 (2)
C1—C101.421 (2)C11—H110.9300
C2—C31.414 (2)C12—C131.400 (2)
C2—H20.9300C12—C171.416 (2)
C3—C41.420 (2)C13—C141.373 (2)
C3—C81.425 (2)C13—H130.9300
C4—C51.363 (2)C14—C151.387 (2)
C4—H40.9300C14—O21.4176 (19)
C5—C61.409 (3)C15—C161.386 (2)
C5—H50.9300C15—H150.9300
C6—C71.368 (3)C16—C171.392 (2)
C6—H60.9300C16—H160.9300
C7—C81.416 (2)C17—O11.349 (2)
C7—H70.9300C18—F21.316 (2)
C8—C91.419 (2)C18—F11.324 (2)
C9—C101.365 (2)C18—F31.324 (2)
C9—H90.9300C18—O21.328 (2)
C10—H100.9300O1—H10.90 (3)
C2—C1—N1118.63 (14)N1—C11—C12120.90 (15)
C2—C1—C10119.94 (15)N1—C11—H11119.5
N1—C1—C10121.10 (14)C12—C11—H11119.5
C1—C2—C3121.05 (15)C13—C12—C17118.92 (15)
C1—C2—H2119.5C13—C12—C11119.96 (15)
C3—C2—H2119.5C17—C12—C11121.11 (15)
C2—C3—C4122.47 (15)C14—C13—C12119.83 (15)
C2—C3—C8119.10 (14)C14—C13—H13120.1
C4—C3—C8118.35 (15)C12—C13—H13120.1
C5—C4—C3120.90 (16)C13—C14—C15121.73 (15)
C5—C4—H4119.6C13—C14—O2118.08 (15)
C3—C4—H4119.6C15—C14—O2120.04 (15)
C4—C5—C6120.71 (16)C16—C15—C14119.18 (16)
C4—C5—H5119.6C16—C15—H15120.4
C6—C5—H5119.6C14—C15—H15120.4
C7—C6—C5120.07 (16)C15—C16—C17120.49 (16)
C7—C6—H6120.0C15—C16—H16119.8
C5—C6—H6120.0C17—C16—H16119.8
C6—C7—C8120.76 (16)O1—C17—C16118.72 (15)
C6—C7—H7119.6O1—C17—C12121.51 (15)
C8—C7—H7119.6C16—C17—C12119.77 (15)
C7—C8—C9122.39 (15)F2—C18—F1108.15 (15)
C7—C8—C3119.20 (15)F2—C18—F3107.09 (14)
C9—C8—C3118.38 (15)F1—C18—F3106.41 (17)
C10—C9—C8121.55 (15)F2—C18—O2108.49 (16)
C10—C9—H9119.2F1—C18—O2113.14 (14)
C8—C9—H9119.2F3—C18—O2113.28 (15)
C9—C10—C1119.93 (15)C11—N1—C1121.55 (14)
C9—C10—H10120.0C17—O1—H1106.7 (17)
C1—C10—H10120.0C18—O2—C14117.93 (13)
N1—C1—C2—C3171.57 (13)C17—C12—C13—C140.7 (2)
C10—C1—C2—C31.8 (2)C11—C12—C13—C14179.68 (14)
C1—C2—C3—C4176.90 (14)C12—C13—C14—C151.8 (2)
C1—C2—C3—C80.0 (2)C12—C13—C14—O2173.65 (14)
C2—C3—C4—C5176.17 (15)C13—C14—C15—C160.4 (2)
C8—C3—C4—C50.8 (2)O2—C14—C15—C16174.97 (14)
C3—C4—C5—C60.4 (3)C14—C15—C16—C172.1 (2)
C4—C5—C6—C71.3 (3)C15—C16—C17—O1176.85 (14)
C5—C6—C7—C81.0 (3)C15—C16—C17—C123.2 (2)
C6—C7—C8—C9178.00 (15)C13—C12—C17—O1178.27 (14)
C6—C7—C8—C30.2 (2)C11—C12—C17—O12.7 (2)
C2—C3—C8—C7175.98 (14)C13—C12—C17—C161.8 (2)
C4—C3—C8—C71.1 (2)C11—C12—C17—C16177.22 (14)
C2—C3—C8—C91.9 (2)C12—C11—N1—C1171.85 (13)
C4—C3—C8—C9178.95 (14)C2—C1—N1—C11151.42 (15)
C7—C8—C9—C10175.68 (15)C10—C1—N1—C1135.3 (2)
C3—C8—C9—C102.1 (2)F2—C18—O2—C14170.19 (14)
C8—C9—C10—C10.4 (2)F1—C18—O2—C1450.2 (2)
C2—C1—C10—C91.6 (2)F3—C18—O2—C1471.0 (2)
N1—C1—C10—C9171.60 (14)C13—C14—O2—C18105.77 (18)
N1—C11—C12—C13172.63 (14)C15—C14—O2—C1878.7 (2)
N1—C11—C12—C178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.90 (3)1.77 (3)2.5904 (18)150 (2)
C10—H10···O1i0.932.573.473 (2)165
C5—H5···F2ii0.932.573.487 (2)170
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H12F3NO2
Mr331.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)17.0813 (10), 14.1248 (8), 6.1900 (5)
β (°) 99.669 (6)
V3)1472.25 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.40 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini-R
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2007) based on Clark & Reid (1995)
Tmin, Tmax0.941, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15270, 2892, 2497
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.09
No. of reflections2892
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.90 (3)1.77 (3)2.5904 (18)150 (2)
C10—H10···O1i0.932.573.473 (2)165.4
C5—H5···F2ii0.932.573.487 (2)170.1
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o718–o719.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds