metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[2-(phenyl­imino­meth­yl)quinoline-N,N′]palladium(II)

aDepartment of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa, and bDepartment of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
*Correspondence e-mail: monani@uwc.ac.za

(Received 17 February 2012; accepted 29 February 2012; online 7 March 2012)

In the title complex, [PdCl2(C16H12N2)], the PdII ion is coordinated by two N atoms [Pd—N 2.039 (2), 2.073 (2) Å] from a bidentate ligand and two chloride anions [Pd—Cl 2.2655 (7), 2.2991 (7) Å] in a distorted square-planar geometry. In the crystal, ππ inter­actions between the six-membered rings of the quinoline fragments [centroid–centroid distances = 3.815 (5), 3.824 (5) Å] link two mol­ecules into centrosymmetric dimers.

Related literature

For the synthesis of quinolyl-imine ligands and their transition metal-based complexes, see: Ardizzoia et al. (2009[Ardizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507-3512.]); Tianpengfei et al. (2011[Tianpengfei, X., Jingjuan, L., Shu, Z., Xiang, H. & Wen-Hua, S. (2011). Catal. Sci. Technol. 1, 462-469.]); Wei et al. (2009[Wei, H., Kai-tai, Y., Nian-Yong, Z. & Dan, Y. (2009). Org. Lett. 11, 5626-5628.]). For related structures, see: Motswainyana et al. (2011[Motswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I. & Darkwa, J. (2011). Polyhedron, 30, 2574-2580.]); Onani & Motswainyana (2011[Onani, M. O. & Motswainyana, W. M. (2011). Acta Cryst. E67, m1392.]); Massa & Dehghampour (2009[Massa, W. & Dehghampour, S. (2009). Inorg. Chem. 362, 2872-2878.]); Keter et al. (2008[Keter, F. K., Kanyanda, S., Lyantagaye, S. S. L., Darkwa, J., Rees, D. J. G. & Meyer, M. (2008). Cancer Chemother. Pharmacol. 63, 127-138.]); Singh et al. (2007[Singh, B. K., Jetley, U. K., Sharma, R. K. & Garg, B. S. (2007). Spectrochim. Acta. 68, 63-73.]); Doherty et al. (2002[Doherty, S., Knight, J. G., Scanlam, T. H., Elsegood, M. R. J. & Clegg, W. (2002). J. Organomet. Chem. 650, 231-248.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C16H12N2)]

  • Mr = 409.58

  • Monoclinic, P 21 /c

  • a = 10.0980 (4) Å

  • b = 15.8936 (6) Å

  • c = 10.0010 (3) Å

  • β = 112.005 (2)°

  • V = 1488.17 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 173 K

  • 0.23 × 0.16 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.710, Tmax = 0.954

  • 49839 measured reflections

  • 3400 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.063

  • S = 1.05

  • 3400 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The transition metal-diimine ligands are well known and have been used extensively as catalyst stabilisers in many reported catalytic processes (Motswainyana et al., 2011; Massa et al., 2009; Tiangpengfei et al., 2011; Ardizzoia et al., 2009). Several of these complexes, besides being heavily utilized in the catalytic field, equally double up as therapeutic agents (Keter et al., 2008; Singh et al., 2007).

The asymmetric unit of the title compound is shown in Fig. 1. In the title compound, the PdII ion is bidentately coordinated to two N atoms of the 2-quinolylbenzylimine ligand and two chloride anions. The complex forms a distorted square planar geometry around the central metal. It is notable that the bond length of the Pd—Cl bond trans to the quinolyl-N atom are similar indicating lack of trans influence. There are two π-π interations between the quinoline ring systems as indicated by the interplanar centroid-centroid distances of 3.815 (5) and 3.824 (5) linking two molecules into a centrosymmetric dimers.

Related literature top

For the synthesis of quinolyl-imine ligands and their transition metal-based complexes, see: Ardizzoia et al. (2009); Tianpengfei et al. (2011); Wei et al. (2009). For related structures, see: Motswainyana et al. (2011); Onani & Motswainyana (2011); Massa & Dehghampour (2009); Keter et al. (2008); Singh et al. (2007); Doherty et al. (2002).

Experimental top

To a suspension of PdCl2(cod) (0.0925 g, 0.324 mmol) in CH2Cl2 (5 ml) was added a solution of (2-quinolylbenzyl)imine (0.0748 g, 0.322 mmol) in CH2Cl2 (10 ml). The yellow solution was stirred under reflux for 4 h, resulting in the formation of yellow precipitate. The precipitate was filtered to obtain a pure yellow solid. Recrystallization from a mixture of a minimum of CH2Cl2 and an excess of C6H14 solution gave single crystals suitable for X-ray diffraction studies. The product yield was 82%.

Refinement top

All hydrogen atoms were placed in idealized positions, and refined as riding, with Uiso = 1.2 Ueq of the parent atoms.

Structure description top

The transition metal-diimine ligands are well known and have been used extensively as catalyst stabilisers in many reported catalytic processes (Motswainyana et al., 2011; Massa et al., 2009; Tiangpengfei et al., 2011; Ardizzoia et al., 2009). Several of these complexes, besides being heavily utilized in the catalytic field, equally double up as therapeutic agents (Keter et al., 2008; Singh et al., 2007).

The asymmetric unit of the title compound is shown in Fig. 1. In the title compound, the PdII ion is bidentately coordinated to two N atoms of the 2-quinolylbenzylimine ligand and two chloride anions. The complex forms a distorted square planar geometry around the central metal. It is notable that the bond length of the Pd—Cl bond trans to the quinolyl-N atom are similar indicating lack of trans influence. There are two π-π interations between the quinoline ring systems as indicated by the interplanar centroid-centroid distances of 3.815 (5) and 3.824 (5) linking two molecules into a centrosymmetric dimers.

For the synthesis of quinolyl-imine ligands and their transition metal-based complexes, see: Ardizzoia et al. (2009); Tianpengfei et al. (2011); Wei et al. (2009). For related structures, see: Motswainyana et al. (2011); Onani & Motswainyana (2011); Massa & Dehghampour (2009); Keter et al. (2008); Singh et al. (2007); Doherty et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atomic numbering and 35% probabilty displacement ellipsoids.
Dichlorido[2-(phenyliminomethyl)quinoline-N,N']palladium(II) top
Crystal data top
[PdCl2(C16H12N2)]F(000) = 808
Mr = 409.58Dx = 1.828 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 49839 reflections
a = 10.0980 (4) Åθ = 3.4–27.5°
b = 15.8936 (6) ŵ = 1.60 mm1
c = 10.0010 (3) ÅT = 173 K
β = 112.005 (2)°Plate, orange
V = 1488.17 (9) Å30.23 × 0.16 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3400 independent reflections
Radiation source: fine-focus sealed tube2575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
1.0° φ scans and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.710, Tmax = 0.954k = 2020
49839 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.1302P]
where P = (Fo2 + 2Fc2)/3
3400 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[PdCl2(C16H12N2)]V = 1488.17 (9) Å3
Mr = 409.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0980 (4) ŵ = 1.60 mm1
b = 15.8936 (6) ÅT = 173 K
c = 10.0010 (3) Å0.23 × 0.16 × 0.03 mm
β = 112.005 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3400 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2575 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.954Rint = 0.086
49839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.05Δρmax = 1.00 e Å3
3400 reflectionsΔρmin = 0.59 e Å3
190 parameters
Special details top

Experimental. 'crystal mounted on a cryoloop'

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.69195 (2)0.038621 (12)0.43401 (2)0.02445 (9)
Cl10.65380 (7)0.18083 (4)0.39731 (8)0.03194 (18)
Cl20.89245 (7)0.06851 (4)0.62746 (8)0.03355 (18)
N10.5127 (2)0.00321 (13)0.2642 (2)0.0243 (5)
N20.6938 (2)0.08478 (13)0.4906 (2)0.0264 (5)
C10.4308 (3)0.03303 (15)0.1353 (3)0.0268 (6)
C20.4815 (3)0.10349 (15)0.0822 (3)0.0289 (6)
H20.57290.12640.13590.035*
C30.3981 (3)0.13838 (16)0.0468 (3)0.0333 (7)
H30.43290.18550.08230.040*
C40.2618 (3)0.10609 (17)0.1284 (3)0.0387 (7)
H40.20450.13260.21620.046*
C50.2123 (3)0.03718 (18)0.0818 (3)0.0374 (8)
H50.12110.01500.13840.045*
C60.2947 (3)0.00179 (17)0.0495 (3)0.0295 (7)
C70.2488 (3)0.07536 (17)0.0973 (3)0.0338 (7)
H70.15660.09770.04460.041*
C80.3373 (3)0.11471 (16)0.2201 (3)0.0307 (7)
H80.31020.16630.25060.037*
C90.4687 (3)0.07709 (16)0.2995 (3)0.0270 (6)
C100.5726 (3)0.11936 (16)0.4231 (3)0.0269 (6)
H100.55070.17240.45360.032*
C110.7958 (3)0.12731 (15)0.6125 (3)0.0251 (6)
C120.7546 (3)0.16047 (15)0.7185 (3)0.0277 (6)
H120.65890.15440.71220.033*
C130.8534 (3)0.20272 (16)0.8341 (3)0.0327 (7)
H130.82640.22400.90900.039*
C140.9911 (3)0.21379 (16)0.8403 (3)0.0361 (7)
H141.05810.24440.91780.043*
C151.0315 (3)0.18044 (17)0.7341 (3)0.0368 (7)
H151.12660.18820.73910.044*
C160.9356 (3)0.13606 (16)0.6209 (3)0.0313 (7)
H160.96470.11170.54940.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02349 (14)0.02256 (14)0.02361 (14)0.00179 (8)0.00458 (10)0.00024 (9)
Cl10.0326 (4)0.0229 (3)0.0349 (4)0.0023 (3)0.0063 (3)0.0004 (3)
Cl20.0274 (4)0.0340 (4)0.0309 (4)0.0049 (3)0.0014 (3)0.0011 (3)
N10.0253 (12)0.0223 (12)0.0220 (13)0.0001 (10)0.0051 (10)0.0013 (10)
N20.0252 (13)0.0244 (12)0.0275 (13)0.0008 (10)0.0075 (11)0.0050 (11)
C10.0287 (16)0.0281 (15)0.0206 (15)0.0077 (12)0.0057 (12)0.0020 (12)
C20.0332 (16)0.0247 (15)0.0274 (16)0.0014 (12)0.0098 (13)0.0038 (13)
C30.0464 (18)0.0257 (15)0.0267 (17)0.0063 (13)0.0125 (15)0.0004 (13)
C40.0468 (19)0.0346 (17)0.0262 (17)0.0126 (14)0.0039 (15)0.0037 (14)
C50.0313 (17)0.0417 (19)0.0287 (18)0.0085 (13)0.0008 (14)0.0035 (14)
C60.0290 (16)0.0280 (16)0.0267 (17)0.0046 (12)0.0049 (13)0.0055 (13)
C70.0272 (16)0.0365 (17)0.0314 (18)0.0032 (13)0.0037 (14)0.0089 (14)
C80.0325 (16)0.0267 (15)0.0311 (17)0.0062 (12)0.0098 (14)0.0066 (13)
C90.0298 (16)0.0273 (15)0.0232 (16)0.0008 (12)0.0092 (13)0.0032 (12)
C100.0320 (16)0.0222 (14)0.0260 (16)0.0007 (12)0.0105 (13)0.0006 (12)
C110.0276 (15)0.0183 (13)0.0250 (16)0.0004 (11)0.0048 (13)0.0029 (12)
C120.0273 (15)0.0244 (14)0.0303 (17)0.0005 (12)0.0093 (13)0.0030 (13)
C130.0423 (18)0.0248 (15)0.0266 (17)0.0021 (13)0.0078 (14)0.0043 (13)
C140.0371 (18)0.0234 (15)0.0330 (19)0.0044 (13)0.0039 (14)0.0020 (13)
C150.0273 (16)0.0316 (16)0.045 (2)0.0008 (13)0.0059 (15)0.0090 (15)
C160.0343 (17)0.0280 (15)0.0309 (18)0.0016 (13)0.0114 (14)0.0025 (13)
Geometric parameters (Å, º) top
Pd1—N22.039 (2)C6—C71.406 (4)
Pd1—N12.073 (2)C7—C81.370 (4)
Pd1—Cl22.2655 (7)C7—H70.9500
Pd1—Cl12.2991 (7)C8—C91.400 (4)
N1—C91.348 (3)C8—H80.9500
N1—C11.371 (3)C9—C101.452 (4)
N2—C101.279 (3)C10—H100.9500
N2—C111.436 (3)C11—C121.380 (4)
C1—C21.415 (3)C11—C161.390 (4)
C1—C61.431 (4)C12—C131.385 (4)
C2—C31.366 (4)C12—H120.9500
C2—H20.9500C13—C141.380 (4)
C3—C41.407 (4)C13—H130.9500
C3—H30.9500C14—C151.379 (4)
C4—C51.357 (4)C14—H140.9500
C4—H40.9500C15—C161.377 (4)
C5—C61.407 (4)C15—H150.9500
C5—H50.9500C16—H160.9500
N2—Pd1—N180.41 (8)C8—C7—C6119.8 (3)
N2—Pd1—Cl293.00 (6)C8—C7—H7120.1
N1—Pd1—Cl2173.36 (6)C6—C7—H7120.1
N2—Pd1—Cl1166.73 (6)C7—C8—C9118.4 (3)
N1—Pd1—Cl198.16 (6)C7—C8—H8120.8
Cl2—Pd1—Cl188.45 (3)C9—C8—H8120.8
C9—N1—C1118.1 (2)N1—C9—C8124.0 (2)
C9—N1—Pd1109.69 (16)N1—C9—C10115.0 (2)
C1—N1—Pd1132.02 (17)C8—C9—C10120.9 (2)
C10—N2—C11119.0 (2)N2—C10—C9119.6 (2)
C10—N2—Pd1111.05 (17)N2—C10—H10120.2
C11—N2—Pd1128.13 (16)C9—C10—H10120.2
N1—C1—C2120.7 (2)C12—C11—C16120.5 (2)
N1—C1—C6120.5 (2)C12—C11—N2120.4 (2)
C2—C1—C6118.8 (2)C16—C11—N2119.2 (2)
C3—C2—C1119.6 (3)C11—C12—C13119.8 (2)
C3—C2—H2120.2C11—C12—H12120.1
C1—C2—H2120.2C13—C12—H12120.1
C2—C3—C4121.4 (3)C14—C13—C12119.9 (3)
C2—C3—H3119.3C14—C13—H13120.1
C4—C3—H3119.3C12—C13—H13120.1
C5—C4—C3120.1 (3)C15—C14—C13120.0 (3)
C5—C4—H4120.0C15—C14—H14120.0
C3—C4—H4120.0C13—C14—H14120.0
C4—C5—C6120.7 (3)C16—C15—C14120.7 (3)
C4—C5—H5119.7C16—C15—H15119.6
C6—C5—H5119.7C14—C15—H15119.6
C7—C6—C5121.9 (2)C15—C16—C11119.1 (3)
C7—C6—C1118.9 (2)C15—C16—H16120.5
C5—C6—C1119.3 (3)C11—C16—H16120.5
N2—Pd1—N1—C917.70 (17)C2—C1—C6—C53.0 (4)
Cl2—Pd1—N1—C924.5 (6)C5—C6—C7—C8174.9 (3)
Cl1—Pd1—N1—C9148.95 (16)C1—C6—C7—C83.5 (4)
N2—Pd1—N1—C1168.0 (2)C6—C7—C8—C93.9 (4)
Cl2—Pd1—N1—C1161.1 (4)C1—N1—C9—C87.0 (4)
Cl1—Pd1—N1—C125.4 (2)Pd1—N1—C9—C8168.3 (2)
N1—Pd1—N2—C1017.17 (18)C1—N1—C9—C10169.1 (2)
Cl2—Pd1—N2—C10163.62 (18)Pd1—N1—C9—C1015.7 (3)
Cl1—Pd1—N2—C1067.7 (4)C7—C8—C9—N11.5 (4)
N1—Pd1—N2—C11178.4 (2)C7—C8—C9—C10174.4 (2)
Cl2—Pd1—N2—C110.8 (2)C11—N2—C10—C9179.8 (2)
Cl1—Pd1—N2—C1196.8 (3)Pd1—N2—C10—C914.1 (3)
C9—N1—C1—C2170.4 (2)N1—C9—C10—N21.4 (4)
Pd1—N1—C1—C215.6 (4)C8—C9—C10—N2177.6 (2)
C9—N1—C1—C67.1 (4)C10—N2—C11—C1247.7 (3)
Pd1—N1—C1—C6166.84 (18)Pd1—N2—C11—C12115.7 (2)
N1—C1—C2—C3179.8 (2)C10—N2—C11—C16131.1 (3)
C6—C1—C2—C32.2 (4)Pd1—N2—C11—C1665.5 (3)
C1—C2—C3—C40.4 (4)C16—C11—C12—C130.0 (4)
C2—C3—C4—C52.2 (4)N2—C11—C12—C13178.8 (2)
C3—C4—C5—C61.3 (4)C11—C12—C13—C142.1 (4)
C4—C5—C6—C7177.2 (3)C12—C13—C14—C152.2 (4)
C4—C5—C6—C11.3 (4)C13—C14—C15—C160.1 (4)
N1—C1—C6—C72.1 (4)C14—C15—C16—C111.9 (4)
C2—C1—C6—C7175.5 (2)C12—C11—C16—C151.9 (4)
N1—C1—C6—C5179.4 (2)N2—C11—C16—C15176.8 (2)

Experimental details

Crystal data
Chemical formula[PdCl2(C16H12N2)]
Mr409.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.0980 (4), 15.8936 (6), 10.0010 (3)
β (°) 112.005 (2)
V3)1488.17 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.23 × 0.16 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.710, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
49839, 3400, 2575
Rint0.086
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.063, 1.05
No. of reflections3400
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.59

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

 

Acknowledgements

Financial support from the NRF (Thuthuka) and University of the Western Cape Senate Research is greatly acknow­ledged. We also thank Professor Roger A. Lalancette for resolving the symmetry-related geometries.

References

First citationArdizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507–3512.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoherty, S., Knight, J. G., Scanlam, T. H., Elsegood, M. R. J. & Clegg, W. (2002). J. Organomet. Chem. 650, 231–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationKeter, F. K., Kanyanda, S., Lyantagaye, S. S. L., Darkwa, J., Rees, D. J. G. & Meyer, M. (2008). Cancer Chemother. Pharmacol. 63, 127–138.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMassa, W. & Dehghampour, S. (2009). Inorg. Chem. 362, 2872–2878.  CAS Google Scholar
First citationMotswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I. & Darkwa, J. (2011). Polyhedron, 30, 2574–2580.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnani, M. O. & Motswainyana, W. M. (2011). Acta Cryst. E67, m1392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, B. K., Jetley, U. K., Sharma, R. K. & Garg, B. S. (2007). Spectrochim. Acta. 68, 63–73.  CrossRef Google Scholar
First citationTianpengfei, X., Jingjuan, L., Shu, Z., Xiang, H. & Wen-Hua, S. (2011). Catal. Sci. Technol. 1, 462–469.  Google Scholar
First citationWei, H., Kai-tai, Y., Nian-Yong, Z. & Dan, Y. (2009). Org. Lett. 11, 5626–5628.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds