organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Z)-(n-Butyl­amino)(phenyl)methyl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aEast China University of Science and Technology, College of Chemistry and Molecular Engineering, Mei Long Road 130, Shanghai 200237, People's Republic of China
*Correspondence e-mail: wanghaiwen@ecust.edu.cn

(Received 21 February 2012; accepted 1 March 2012; online 7 March 2012)

The title compound, C21H23N3O, exists in an enamine–keto form with the amino group involved in an intra­molecular N—H⋯O hydrogen bond. The dihedral angle between the phenyl rings is 73.59 (6)°. The five-membered ring is nearly planar, the largest deviation being 0.0004 (7) Å, and makes dihedral angles of 4.81 (6) and 69.81 (5)° wth the phenyl rings. In the crystal, pairs of weak C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers.

Related literature

For applications of Schiff bases derived from 4-acyl­pyrazolo­nes, see: Bernardino et al. (2006[Bernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80-87.]); Zhang et al. (2008[Zhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.]). For related structures, see: Zhang et al. (2007[Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.]); Chi et al. (2010[Chi, X., Xiao, J., Yin, Y. & Xia, M. (2010). Acta Cryst. E66, o249.]); Zhen & Han (2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360-o4361.]); Wang (2010[Wang, H.-W. (2010). Acta Cryst. E66, o1534.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N3O

  • Mr = 333.42

  • Monoclinic, P 21 /n

  • a = 9.5215 (9) Å

  • b = 14.7867 (14) Å

  • c = 12.8055 (12) Å

  • β = 100.645 (2)°

  • V = 1771.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.28 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • 16506 measured reflections

  • 4368 independent reflections

  • 3362 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.01

  • 4368 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.921 (16) 1.873 (16) 2.6704 (14) 143.5 (14)
C13—H13⋯O1i 0.93 2.39 3.3175 (15) 172
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff bases derived from 4-acylpyrazolones have attracted much attention due to their applications in pharmaceutical and agrochemical fields (e.g. Bernardino et al., 2006; Zhang et al., 2008). In order to expand this field, we now report the synthesis and structure of the title compound, (I) (Fig. 1).

In (I), the Schiff base molecule adopts an E geometry with respect to the C=N bond (Fig. 1). All bond lengths and angles are comparable with those found in the related compounds (Chi et al., 2010; Wang et al., 2010; Zhen et al., 2005; Zhang et al.., 2007). The dihedral angle between the two phenyl rings is 73.59 (6)°. The five-membered ring of the title compound is nearly planar, with the largest deviation being 0.0004 (7)%A for atom N1. The dihedral angles between this mean plane and two benzene rings are 4.81 (6)° and 69.81 (5)%. Weak intermolecular C—H···O interactions (Table 1) link the molecules into centrosymmetric dimers.

Related literature top

For applications of Schiff bases derived from 4-acylpyrazolones, see: Bernardino et al. (2006); Zhang et al. (2008). For related structures, see: Zhang et al. (2007); Chi et al. (2010); Zhen & Han (2005); Wang (2010).

Experimental top

A mixture of a 10 ml HPMBP (2 mmol, 0.5566 g) anhydrous ethanol solution, and a 0.2 ml n-butylamine (2 mmol, 0.1463 g) solution was refluxed for ca 8 h, with addition of a few drops of glacial acetic acid as a catalyst. The ethanol was removed by evaporation and the resulting green precipitate formed was filtered off, washed with cold anhydrous ethanol and dried in air. Yellow block single crystals suitable for analysis were obtained by slow evaporation of a solution in anhydrous ethanol at room temperature for a few days.

Refinement top

The H3A atom bonded to N3 was located in a difference map and isotropically refined. C-bound H atoms were placed in calculated positions, with C—H = 0.93-0.97 Å, and refined as riding, with Uiso(H)=1.2-1.5 Ueq (C).

Structure description top

The Schiff bases derived from 4-acylpyrazolones have attracted much attention due to their applications in pharmaceutical and agrochemical fields (e.g. Bernardino et al., 2006; Zhang et al., 2008). In order to expand this field, we now report the synthesis and structure of the title compound, (I) (Fig. 1).

In (I), the Schiff base molecule adopts an E geometry with respect to the C=N bond (Fig. 1). All bond lengths and angles are comparable with those found in the related compounds (Chi et al., 2010; Wang et al., 2010; Zhen et al., 2005; Zhang et al.., 2007). The dihedral angle between the two phenyl rings is 73.59 (6)°. The five-membered ring of the title compound is nearly planar, with the largest deviation being 0.0004 (7)%A for atom N1. The dihedral angles between this mean plane and two benzene rings are 4.81 (6)° and 69.81 (5)%. Weak intermolecular C—H···O interactions (Table 1) link the molecules into centrosymmetric dimers.

For applications of Schiff bases derived from 4-acylpyrazolones, see: Bernardino et al. (2006); Zhang et al. (2008). For related structures, see: Zhang et al. (2007); Chi et al. (2010); Zhen & Han (2005); Wang (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Dashed line denotes hydrogen bond.
4-[(Z)-(n-Butylamino)(phenyl)methylidene]-3-methyl- 1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C21H23N3OF(000) = 712.0
Mr = 333.42Dx = 1.250 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3753 reflections
a = 9.5215 (9) Åθ = 2.6–28.1°
b = 14.7867 (14) ŵ = 0.08 mm1
c = 12.8055 (12) ÅT = 296 K
β = 100.645 (2)°Block, yellow
V = 1771.9 (3) Å30.28 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3362 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 28.3°, θmin = 2.6°
phi and ω scansh = 1212
16506 measured reflectionsk = 1919
4368 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.4177P]
where P = (Fo2 + 2Fc2)/3
4368 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H23N3OV = 1771.9 (3) Å3
Mr = 333.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5215 (9) ŵ = 0.08 mm1
b = 14.7867 (14) ÅT = 296 K
c = 12.8055 (12) Å0.28 × 0.20 × 0.16 mm
β = 100.645 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3362 reflections with I > 2σ(I)
16506 measured reflectionsRint = 0.035
4368 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
4368 reflectionsΔρmin = 0.20 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21783 (12)0.26068 (9)0.88837 (9)0.0167 (2)
C20.10538 (13)0.21696 (9)0.92399 (9)0.0204 (3)
H20.10130.15410.92550.024*
C30.00037 (13)0.26856 (9)0.95714 (10)0.0218 (3)
H30.07420.23970.98240.026*
C40.00239 (13)0.36198 (9)0.95320 (9)0.0218 (3)
H40.06990.39570.97440.026*
C50.11413 (13)0.40483 (9)0.91726 (10)0.0220 (3)
H50.11660.46760.91440.026*
C60.22209 (13)0.35488 (9)0.88561 (9)0.0193 (3)
H60.29730.38420.86260.023*
C70.35303 (12)0.11883 (8)0.85902 (9)0.0158 (2)
C80.48777 (12)0.10785 (8)0.82441 (9)0.0159 (2)
C90.53156 (12)0.19778 (8)0.80232 (9)0.0168 (2)
C100.66208 (13)0.22991 (9)0.76371 (10)0.0217 (3)
H10A0.65530.21360.69040.033*
H10B0.74530.20230.80520.033*
H10C0.66930.29450.77080.033*
C110.55372 (12)0.02287 (8)0.82705 (9)0.0152 (2)
C120.69661 (12)0.00963 (8)0.79819 (9)0.0153 (2)
C130.81099 (13)0.01709 (9)0.87666 (9)0.0185 (3)
H130.79700.02790.94560.022*
C140.94570 (13)0.02752 (9)0.85151 (10)0.0221 (3)
H141.02230.04460.90380.027*
C150.96628 (13)0.01252 (9)0.74855 (10)0.0228 (3)
H151.05670.01950.73190.027*
C160.85241 (14)0.01285 (9)0.67051 (10)0.0212 (3)
H160.86630.02210.60130.025*
C170.71793 (13)0.02451 (8)0.69496 (9)0.0179 (2)
H170.64190.04230.64250.021*
C180.53117 (13)0.14295 (8)0.85933 (9)0.0177 (2)
H18A0.62040.15190.90880.021*
H18B0.54560.16000.78890.021*
C190.41494 (13)0.20109 (8)0.89147 (9)0.0172 (2)
H19A0.40430.18520.96310.021*
H19B0.32500.18860.84440.021*
C200.44787 (13)0.30125 (9)0.88723 (10)0.0197 (3)
H20A0.54010.31320.93160.024*
H20B0.45400.31770.81490.024*
C210.33508 (15)0.35963 (9)0.92449 (11)0.0262 (3)
H21A0.33170.34560.99720.039*
H21B0.35890.42230.91880.039*
H21C0.24350.34780.88100.039*
H3A0.4031 (17)0.0341 (11)0.8798 (12)0.030 (4)*
N10.32840 (10)0.21097 (7)0.85512 (8)0.0172 (2)
N20.43854 (10)0.25859 (7)0.82022 (8)0.0182 (2)
N30.48854 (11)0.04789 (7)0.85966 (8)0.0172 (2)
O10.27412 (9)0.06007 (6)0.88848 (7)0.0195 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0156 (5)0.0187 (6)0.0152 (5)0.0023 (5)0.0014 (4)0.0004 (4)
C20.0197 (6)0.0187 (6)0.0231 (6)0.0020 (5)0.0050 (5)0.0022 (5)
C30.0188 (6)0.0255 (7)0.0219 (6)0.0013 (5)0.0058 (5)0.0014 (5)
C40.0203 (6)0.0251 (7)0.0204 (6)0.0061 (5)0.0048 (5)0.0026 (5)
C50.0249 (6)0.0175 (7)0.0234 (6)0.0020 (5)0.0042 (5)0.0032 (5)
C60.0189 (6)0.0180 (6)0.0209 (6)0.0008 (5)0.0034 (4)0.0002 (5)
C70.0163 (5)0.0158 (6)0.0149 (5)0.0001 (5)0.0019 (4)0.0002 (4)
C80.0150 (5)0.0171 (6)0.0157 (5)0.0013 (4)0.0034 (4)0.0005 (4)
C90.0165 (5)0.0171 (6)0.0167 (5)0.0003 (5)0.0026 (4)0.0004 (4)
C100.0200 (6)0.0174 (6)0.0293 (6)0.0020 (5)0.0088 (5)0.0009 (5)
C110.0156 (5)0.0171 (6)0.0128 (5)0.0014 (5)0.0019 (4)0.0000 (4)
C120.0154 (5)0.0129 (6)0.0184 (5)0.0009 (4)0.0050 (4)0.0011 (4)
C130.0184 (6)0.0186 (6)0.0188 (5)0.0011 (5)0.0042 (4)0.0005 (5)
C140.0162 (6)0.0213 (7)0.0282 (6)0.0001 (5)0.0024 (5)0.0004 (5)
C150.0170 (6)0.0209 (7)0.0333 (7)0.0030 (5)0.0116 (5)0.0056 (5)
C160.0261 (6)0.0189 (6)0.0208 (6)0.0054 (5)0.0106 (5)0.0040 (5)
C170.0197 (6)0.0159 (6)0.0183 (5)0.0023 (5)0.0038 (4)0.0010 (5)
C180.0181 (5)0.0142 (6)0.0216 (5)0.0010 (5)0.0055 (4)0.0006 (5)
C190.0181 (5)0.0159 (6)0.0182 (5)0.0007 (5)0.0051 (4)0.0012 (4)
C200.0218 (6)0.0153 (6)0.0224 (6)0.0006 (5)0.0047 (5)0.0012 (5)
C210.0324 (7)0.0190 (7)0.0283 (6)0.0056 (6)0.0087 (5)0.0008 (5)
N10.0159 (5)0.0149 (5)0.0218 (5)0.0002 (4)0.0064 (4)0.0020 (4)
N20.0164 (5)0.0168 (5)0.0226 (5)0.0020 (4)0.0068 (4)0.0016 (4)
N30.0165 (5)0.0142 (5)0.0224 (5)0.0007 (4)0.0073 (4)0.0009 (4)
O10.0180 (4)0.0168 (5)0.0252 (4)0.0018 (3)0.0082 (3)0.0018 (3)
Geometric parameters (Å, º) top
C1—C61.3942 (18)C12—C131.3956 (16)
C1—C21.3975 (17)C13—C141.3876 (17)
C1—N11.4125 (15)C13—H130.9300
C2—C31.3906 (18)C14—C151.3861 (18)
C2—H20.9300C14—H140.9300
C3—C41.3827 (19)C15—C161.3838 (18)
C3—H30.9300C15—H150.9300
C4—C51.3879 (19)C16—C171.3840 (17)
C4—H40.9300C16—H160.9300
C5—C61.3858 (18)C17—H170.9300
C5—H50.9300C18—N31.4633 (16)
C6—H60.9300C18—C191.5171 (16)
C7—O11.2516 (15)C18—H18A0.9700
C7—N11.3819 (16)C18—H18B0.9700
C7—C81.4418 (16)C19—C201.5169 (17)
C8—C111.4023 (17)C19—H19A0.9700
C8—C91.4373 (17)C19—H19B0.9700
C9—N21.3117 (16)C20—C211.5218 (18)
C9—C101.4971 (16)C20—H20A0.9700
C10—H10A0.9600C20—H20B0.9700
C10—H10B0.9600C21—H21A0.9600
C10—H10C0.9600C21—H21B0.9600
C11—N31.3230 (15)C21—H21C0.9600
C11—C121.4872 (16)N1—N21.4030 (14)
C12—C171.3914 (16)N3—H3A0.921 (16)
C6—C1—C2119.87 (11)C15—C14—H14119.9
C6—C1—N1119.04 (11)C13—C14—H14119.9
C2—C1—N1121.09 (11)C16—C15—C14120.05 (11)
C3—C2—C1119.18 (13)C16—C15—H15120.0
C3—C2—H2120.4C14—C15—H15120.0
C1—C2—H2120.4C15—C16—C17120.31 (11)
C4—C3—C2121.15 (12)C15—C16—H16119.8
C4—C3—H3119.4C17—C16—H16119.8
C2—C3—H3119.4C16—C17—C12119.91 (11)
C3—C4—C5119.28 (12)C16—C17—H17120.0
C3—C4—H4120.4C12—C17—H17120.0
C5—C4—H4120.4N3—C18—C19109.09 (10)
C6—C5—C4120.60 (13)N3—C18—H18A109.9
C6—C5—H5119.7C19—C18—H18A109.9
C4—C5—H5119.7N3—C18—H18B109.9
C5—C6—C1119.90 (12)C19—C18—H18B109.9
C5—C6—H6120.0H18A—C18—H18B108.3
C1—C6—H6120.0C20—C19—C18112.19 (10)
O1—C7—N1126.02 (11)C20—C19—H19A109.2
O1—C7—C8129.22 (12)C18—C19—H19A109.2
N1—C7—C8104.75 (10)C20—C19—H19B109.2
C11—C8—C9133.54 (11)C18—C19—H19B109.2
C11—C8—C7120.89 (11)H19A—C19—H19B107.9
C9—C8—C7105.26 (10)C19—C20—C21112.34 (11)
N2—C9—C8111.72 (11)C19—C20—H20A109.1
N2—C9—C10117.95 (11)C21—C20—H20A109.1
C8—C9—C10130.33 (11)C19—C20—H20B109.1
C9—C10—H10A109.5C21—C20—H20B109.1
C9—C10—H10B109.5H20A—C20—H20B107.9
H10A—C10—H10B109.5C20—C21—H21A109.5
C9—C10—H10C109.5C20—C21—H21B109.5
H10A—C10—H10C109.5H21A—C21—H21B109.5
H10B—C10—H10C109.5C20—C21—H21C109.5
N3—C11—C8118.83 (11)H21A—C21—H21C109.5
N3—C11—C12118.58 (11)H21B—C21—H21C109.5
C8—C11—C12122.56 (11)C7—N1—N2111.99 (9)
C17—C12—C13119.83 (11)C7—N1—C1129.28 (10)
C17—C12—C11121.06 (10)N2—N1—C1118.52 (10)
C13—C12—C11119.10 (10)C9—N2—N1106.27 (10)
C14—C13—C12119.75 (11)C11—N3—C18127.75 (10)
C14—C13—H13120.1C11—N3—H3A113.8 (10)
C12—C13—H13120.1C18—N3—H3A118.3 (10)
C15—C14—C13120.14 (11)
C6—C1—C2—C30.55 (16)C11—C12—C13—C14178.40 (11)
N1—C1—C2—C3179.27 (10)C12—C13—C14—C150.77 (19)
C1—C2—C3—C41.43 (17)C13—C14—C15—C160.0 (2)
C2—C3—C4—C51.14 (18)C14—C15—C16—C170.8 (2)
C3—C4—C5—C60.03 (18)C15—C16—C17—C120.76 (19)
C4—C5—C6—C10.89 (17)C13—C12—C17—C160.06 (18)
C2—C1—C6—C50.60 (17)C11—C12—C17—C16179.14 (11)
N1—C1—C6—C5179.59 (10)N3—C18—C19—C20176.92 (9)
O1—C7—C8—C114.43 (18)C18—C19—C20—C21177.25 (10)
N1—C7—C8—C11174.38 (10)O1—C7—N1—N2178.95 (10)
O1—C7—C8—C9178.92 (11)C8—C7—N1—N20.09 (12)
N1—C7—C8—C90.11 (11)O1—C7—N1—C14.41 (19)
C11—C8—C9—N2173.37 (12)C8—C7—N1—C1174.45 (10)
C7—C8—C9—N20.10 (13)C6—C1—N1—C7174.10 (11)
C11—C8—C9—C106.6 (2)C2—C1—N1—C75.72 (17)
C7—C8—C9—C10179.93 (11)C6—C1—N1—N20.14 (15)
C9—C8—C11—N3174.20 (12)C2—C1—N1—N2179.96 (10)
C7—C8—C11—N31.54 (16)C8—C9—N2—N10.04 (12)
C9—C8—C11—C123.62 (19)C10—C9—N2—N1179.98 (9)
C7—C8—C11—C12176.27 (10)C7—N1—N2—C90.03 (12)
N3—C11—C12—C17116.65 (13)C1—N1—N2—C9175.16 (9)
C8—C11—C12—C1765.53 (16)C8—C11—N3—C18173.83 (11)
N3—C11—C12—C1364.14 (15)C12—C11—N3—C188.27 (17)
C8—C11—C12—C13113.67 (13)C19—C18—N3—C11173.20 (11)
C17—C12—C13—C140.82 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.921 (16)1.873 (16)2.6704 (14)143.5 (14)
C13—H13···O1i0.932.393.3175 (15)172
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC21H23N3O
Mr333.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.5215 (9), 14.7867 (14), 12.8055 (12)
β (°) 100.645 (2)
V3)1771.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16506, 4368, 3362
Rint0.035
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.01
No. of reflections4368
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.921 (16)1.873 (16)2.6704 (14)143.5 (14)
C13—H13···O1i0.932.393.3175 (15)172
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

This work was supported by the College of Chemistry and Mol­ecular Engineering, East China University of Science and Technology.

References

First citationBernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, X., Xiao, J., Yin, Y. & Xia, M. (2010). Acta Cryst. E66, o249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-W. (2010). Acta Cryst. E66, o1534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360–o4361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds