organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Methyl­phenyl­sulfon­yl)-1,3-di­thiolo[4,5-c]pyrrole-2-thione

aKey Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 28 February 2012; accepted 5 March 2012; online 14 March 2012)

The asymmetric unit of the title compound, C12H9NO2S4, contains one half-mol­ecule with the N, two S amd four C atoms lying on a mirror plane. The mol­ecule exhibits a V-shaped conformation, with a dihedral angle of 87.00 (7)° between the benzene and dithiol­opyrrole rings. The methyl group was treated as rotationally disordered between two orientations in a 1:1 ratio. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into chains in [010].

Related literature

For background to the applications and synthesis of pyrrolo-annulated tetra­thia­fulvalenes, see: Becher et al. (2004[Becher, J., Nielsen, K. & Jeppesen, J. O. (2004). J. Phys. IV Fr. 114, 445-448.]); Hou et al. (2010[Hou, R. B., Su, C., Kang, Y. H., Gu, L. Y. & Yin, B. Z. (2010). Sens. Lett. 8, 309-313.]). For a related structure, see: Hou et al. (2009[Hou, R.-B., Li, B., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o1710.]). For details of the synthesis, see: Jeppesen et al.(2000[Jeppesen, J. O., Takimiya, K., Jensen, F., Brimert, T., Nielsen, K., Thorup, N. & Becher, J. (2000). J. Org. Chem. 65, 5794-5805.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO2S4

  • Mr = 327.44

  • Monoclinic, C 2/m

  • a = 15.687 (10) Å

  • b = 10.485 (9) Å

  • c = 8.255 (4) Å

  • β = 96.19 (3)°

  • V = 1349.9 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 290 K

  • 0.46 × 0.43 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.740, Tmax = 0.770

  • 6671 measured reflections

  • 1633 independent reflections

  • 1467 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.094

  • S = 1.19

  • 1633 reflections

  • 99 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.33 3.243 (3) 166
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002[Rigaku/MSC & Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrrolo-annulated tetrathiafulvalenes, an important class of electron-donors, are versatile building blocks in supramolecular and materials chemistry (Becher et al., 2004). As a key precursor to the pyrrolo-annulated tetrathiafulvalenes, 5-Tosyl-5H-[1,3]dithiolo[4,5-c]pyrrole-2-thione, has attracted great attention (Hou et al., 2010). In this paper, we report the crystal structure of the title compound (I).

The asymmetric unit of (I) contains a half of the molecule situated on a mirror plane (Fig. 1). All bond lengths and angles are in the normal ranges and comparable with the reported ones (Hou et al. 2009). Atom N1 has a flattened pyramidal environment with the sum of bond angles of 356.9 (2) °. The benzene ring and dithiolopyrrole ring form a dihedral angle of 87.00 (7) °. In the crystal, the intermolecular C—H···O hydrogen bonds link the molecules into chains along b direction.

Related literature top

For background to the applications and synthesis of pyrrolo-annulated tetrathiafulvalenes, see: Becher et al. (2004); Hou et al. (2010). For a related structure, see: Hou et al. (2009). For details of the synthesis, see: Jeppesen et al.(2000).

Experimental top

The title compound was prepared according to the literature (Jeppesen et al., 2000). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.93 and 0.96 Å) and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). The methyl group was treated as rotationally disordered between two orientations in a ratio 1:1.

Structure description top

Pyrrolo-annulated tetrathiafulvalenes, an important class of electron-donors, are versatile building blocks in supramolecular and materials chemistry (Becher et al., 2004). As a key precursor to the pyrrolo-annulated tetrathiafulvalenes, 5-Tosyl-5H-[1,3]dithiolo[4,5-c]pyrrole-2-thione, has attracted great attention (Hou et al., 2010). In this paper, we report the crystal structure of the title compound (I).

The asymmetric unit of (I) contains a half of the molecule situated on a mirror plane (Fig. 1). All bond lengths and angles are in the normal ranges and comparable with the reported ones (Hou et al. 2009). Atom N1 has a flattened pyramidal environment with the sum of bond angles of 356.9 (2) °. The benzene ring and dithiolopyrrole ring form a dihedral angle of 87.00 (7) °. In the crystal, the intermolecular C—H···O hydrogen bonds link the molecules into chains along b direction.

For background to the applications and synthesis of pyrrolo-annulated tetrathiafulvalenes, see: Becher et al. (2004); Hou et al. (2010). For a related structure, see: Hou et al. (2009). For details of the synthesis, see: Jeppesen et al.(2000).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering. Displacement ellipsoids are drawn at the 30% probalility level [symmetry code (A): x, -y, z].
5-(4-Methylphenylsulfonyl)-1,3-dithiolo[4,5-c]pyrrole-2-thione top
Crystal data top
C12H9NO2S4F(000) = 672
Mr = 327.44Dx = 1.611 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 6182 reflections
a = 15.687 (10) Åθ = 3.3–27.5°
b = 10.485 (9) ŵ = 0.70 mm1
c = 8.255 (4) ÅT = 290 K
β = 96.19 (3)°Block, yellow
V = 1349.9 (16) Å30.46 × 0.43 × 0.40 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1633 independent reflections
Radiation source: fine-focus sealed tube1467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2016
Tmin = 0.740, Tmax = 0.770k = 1313
6671 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.053P)2 + 0.4647P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.012
1633 reflectionsΔρmax = 0.31 e Å3
99 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0106 (12)
Crystal data top
C12H9NO2S4V = 1349.9 (16) Å3
Mr = 327.44Z = 4
Monoclinic, C2/mMo Kα radiation
a = 15.687 (10) ŵ = 0.70 mm1
b = 10.485 (9) ÅT = 290 K
c = 8.255 (4) Å0.46 × 0.43 × 0.40 mm
β = 96.19 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1633 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1467 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.770Rint = 0.020
6671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.19Δρmax = 0.31 e Å3
1633 reflectionsΔρmin = 0.31 e Å3
99 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.40151 (14)0.00000.3618 (3)0.0381 (5)
C20.33159 (9)0.06779 (14)0.61983 (17)0.0328 (3)
C30.29981 (10)0.10896 (15)0.75702 (18)0.0360 (3)
H30.29180.19310.78750.043*
C40.11420 (15)0.00000.8848 (2)0.0352 (4)
C50.07509 (12)0.11519 (17)0.8411 (2)0.0451 (4)
H50.10130.19190.87360.054*
C60.00330 (12)0.1139 (2)0.7486 (2)0.0509 (4)
H60.02980.19080.71790.061*
C70.04379 (16)0.00000.7000 (3)0.0472 (6)
C80.12828 (19)0.00000.5964 (3)0.0635 (8)
H8A0.12100.03440.49100.095*0.50
H8B0.14950.08580.58460.095*0.50
H8C0.16850.05140.64730.095*0.50
N10.28154 (13)0.00000.8431 (2)0.0356 (4)
O10.23189 (8)0.11804 (11)1.07477 (13)0.0442 (3)
S10.21652 (4)0.00000.99190 (6)0.03409 (18)
S20.37336 (3)0.14002 (4)0.45643 (5)0.04288 (17)
S30.45063 (5)0.00000.19690 (8)0.0555 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0321 (10)0.0470 (13)0.0348 (10)0.0000.0025 (8)0.000
C20.0351 (7)0.0290 (8)0.0338 (7)0.0026 (6)0.0018 (5)0.0010 (6)
C30.0459 (9)0.0255 (7)0.0369 (8)0.0028 (6)0.0061 (6)0.0007 (6)
C40.0448 (12)0.0348 (11)0.0273 (9)0.0000.0094 (8)0.000
C50.0565 (10)0.0380 (9)0.0412 (9)0.0012 (7)0.0069 (7)0.0031 (7)
C60.0521 (10)0.0540 (11)0.0472 (10)0.0090 (8)0.0080 (8)0.0093 (8)
C70.0445 (13)0.0660 (16)0.0329 (11)0.0000.0123 (9)0.000
C80.0496 (16)0.095 (2)0.0456 (14)0.0000.0063 (11)0.000
N10.0482 (11)0.0259 (9)0.0334 (9)0.0000.0073 (7)0.000
O10.0641 (8)0.0342 (6)0.0340 (6)0.0022 (5)0.0046 (5)0.0071 (4)
S10.0498 (3)0.0270 (3)0.0257 (3)0.0000.0050 (2)0.000
S20.0525 (3)0.0367 (3)0.0409 (3)0.00501 (17)0.01189 (18)0.00431 (15)
S30.0545 (4)0.0717 (5)0.0429 (4)0.0000.0168 (3)0.000
Geometric parameters (Å, º) top
C1—S31.635 (2)C5—H50.9300
C1—S21.7423 (17)C6—C71.391 (3)
C1—S2i1.7423 (17)C6—H60.9300
C2—C31.356 (2)C7—C6i1.391 (3)
C2—C2i1.422 (3)C7—C81.498 (4)
C2—S21.7359 (16)C8—H8A0.9600
C3—N11.391 (2)C8—H8B0.9600
C3—H30.9300C8—H8C0.9600
C4—C5i1.385 (2)N1—C3i1.391 (2)
C4—C51.385 (2)N1—S11.679 (2)
C4—S11.747 (3)O1—S11.4221 (14)
C5—C61.376 (3)S1—O1i1.4221 (14)
S3—C1—S2122.58 (7)C6—C7—C8120.86 (12)
S3—C1—S2i122.58 (7)C6i—C7—C8120.86 (12)
S2—C1—S2i114.85 (14)C7—C8—H8A109.5
C3—C2—C2i108.56 (9)C7—C8—H8B109.5
C3—C2—S2135.53 (13)H8A—C8—H8B109.5
C2i—C2—S2115.87 (6)C7—C8—H8C109.5
C2—C3—N1106.24 (15)H8A—C8—H8C109.5
C2—C3—H3126.9H8B—C8—H8C109.5
N1—C3—H3126.9C3—N1—C3i110.37 (18)
C5i—C4—C5121.4 (2)C3—N1—S1123.26 (10)
C5i—C4—S1119.27 (11)C3i—N1—S1123.26 (10)
C5—C4—S1119.27 (11)O1—S1—O1i120.99 (11)
C6—C5—C4118.71 (18)O1—S1—N1105.49 (7)
C6—C5—H5120.6O1i—S1—N1105.49 (7)
C4—C5—H5120.6O1—S1—C4110.02 (7)
C5—C6—C7121.42 (19)O1i—S1—C4110.02 (7)
C5—C6—H6119.3N1—S1—C4103.14 (10)
C7—C6—H6119.3C2—S2—C196.66 (9)
C6—C7—C6i118.3 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.932.333.243 (3)166
Symmetry code: (ii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC12H9NO2S4
Mr327.44
Crystal system, space groupMonoclinic, C2/m
Temperature (K)290
a, b, c (Å)15.687 (10), 10.485 (9), 8.255 (4)
β (°) 96.19 (3)
V3)1349.9 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.46 × 0.43 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.740, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
6671, 1633, 1467
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.094, 1.19
No. of reflections1633
No. of parameters99
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.333.243 (3)166.0
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 21062022) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin Universty.

References

First citationBecher, J., Nielsen, K. & Jeppesen, J. O. (2004). J. Phys. IV Fr. 114, 445–448.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R.-B., Li, B., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, R. B., Su, C., Kang, Y. H., Gu, L. Y. & Yin, B. Z. (2010). Sens. Lett. 8, 309–313.  Web of Science CrossRef Google Scholar
First citationJeppesen, J. O., Takimiya, K., Jensen, F., Brimert, T., Nielsen, K., Thorup, N. & Becher, J. (2000). J. Org. Chem. 65, 5794–5805.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds