organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Dihy­dr­oxy-6,6′-bis­­(hy­dr­oxy­meth­yl)-2,2′-(pentane-1,1-di­yl)di-4H-pyran-4-one

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China, and bSchool of Food Science and Biotechnology, Zhejiang GongShang University, Hangzhou, Zhejiang 310012, People's Republic of China
*Correspondence e-mail: taozhou@zjgsu.edu.cn

(Received 28 February 2012; accepted 8 March 2012; online 14 March 2012)

In the title mol­ecule, C17H20O8, the two pyran rings form a dihedral angle of 61.2 (2)°. The two hy­droxy­methyl groups are each disordered over two sets of sites in a 0.764 (3):0.236 (3) ratio. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ac plane.

Related literature

For the biological properties of kojic acid, see: Kobayashi et al. (1995[Kobayashi, Y., Kayahara, H., Tadasa, K., Nakamura, T. & Hiroshi, T. (1995). Biosci. Biotech. Biochem. 59, 1745-1746.]). For related structures, see: Nurchi et al. (2010[Nurchi, V. M., Crisponi, G., Lachowicz, J. I., Murgia, S., Pivetta, T., Remelli, M., Rescigno, A., Niclos-Gutierrez, J., Gonzalez-Perez, J. M., Dominguez-Martin, A., Castineiras, A. & Szewczuk, K. (2010). J. Inorg. Biochem. 104, 560-569.]); Kakkar & Singh (2011[Kakkar, R. & Singh, C. (2011). Int. J. Quantum Chem. 111, 4318-4329.]); Lokaj et al. (1991[Lokaj, J., Kožíšek, J., Koreň, B., Uher, M. & Vrábel, V. (1991). Acta Cryst. C47, 193-194.]). For the preparation of the title compound, see: Barham & Nathan Reed (1938[Barham, H. N. & Nathan Reed, G. (1938). J. Am. Chem. Soc. 60, 1541-1545.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20O8

  • Mr = 352.33

  • Triclinic, [P \overline 1]

  • a = 6.4234 (3) Å

  • b = 9.2394 (4) Å

  • c = 15.8494 (7) Å

  • α = 79.993 (1)°

  • β = 86.689 (2)°

  • γ = 66.622 (1)°

  • V = 850.22 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.49 × 0.47 × 0.33 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR.Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.938, Tmax = 0.965

  • 8442 measured reflections

  • 3840 independent reflections

  • 2907 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.00

  • 3840 reflections

  • 251 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.96 2.7275 (15) 155
O3—H3⋯O2 0.82 2.32 2.7440 (15) 113
O5—H5⋯O6ii 0.82 2.00 2.7488 (16) 151
O5—H5⋯O6 0.82 2.32 2.7436 (16) 113
O4A—H4A⋯O2iii 0.82 2.07 2.839 (2) 157
O8A—H8A⋯O6iii 0.82 2.15 2.894 (2) 152
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Kojic acid possesses appreciable inhibitory activity against tyrosinase, a key enzyme in the biosynthesis of melanin, due to its ability to chelate copper in the active site of this enzyme. Thus kojic acid inhibits the production of melanin pigment, consequently being used in cosmetic. Therefore, in an attempt to seek potent tyrosinase inhibitors, the derivatives of kojic acid have been widely investigated (Kobayashi et al., 1995).There were little attentation to crystal structure of kojic and derivatives.The similar crystal structure of Kojic acid have been reported on 5-hydroxy-2-(hydroxymenthyl) -4H-pyran-one (Lokaj et al., 1991; Kakkar et al., 2011) and 6,6'-methylenebis (5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one) (Nurchi et al., 2010). Herein, we report the crystal structure of the title compound (I).

In (I) (Fig. 1), two pyranone rings are planar forming the dihedral angle of 61.2 (2)°. Hydroxyl groups are almost coplanar with their linked pyranone rings forming the torsion angles O2—C3—C4—O3 of -0.10° and O6—C10—C9—O5 of 1.24°.

Intermolecular hydrogen bonds O3—H3···O2i and O5—H5···O6ii (Table 1) link molecules into zigzag chains along the c axis. Further, intermolecular hydrogen bonds O4A—H4···O2iii and O8A—H8A···O6iii (Table 1) link all of the components of the structure into layers parallel to ac plane.

Related literature top

For the biological properties of kojic acid, see: Kobayashi et al. (1995). For related structures, see: Nurchi et al. (2010); Kakkar & Singh (2011); Lokaj et al. (1991). For the preparation of the title compound, see: Barham & Nathan Reed (1938).

Experimental top

To a solution of 5-hydroxy-(2-hydroxymethyl)-4H-pyran-4-one (kojic acid) (1.42 g, 10 mmol), sodium carbonate (1.06 g, 10 mmol) in water (10 ml) and methanol (10 ml) was added pentanal (10 mmol) at 343k with stirring. The stirring was continued for 3 h at that temperature. After removal of about half volume of the solvent, the soltion was neutrilized to pH=1 with concentrated hydrochloride. The crude product was obtained by filtration as an off-white solid (1.32, 75%), which was recrystallized from dichloromethane solution, giving colorless crystals of the title compound suitable for X-ray diffraction. 1H NMR (400 MHz DMSO) / d 0.84 (t, J = 6.8 Hz, 3H), 1.21 (m, 4H), 1.29 (2, m), 1.92 (m, 2H), 4.28 (s, 4H), 4.68 (t, J = 8.0 Hz, 1H), 5.62 (s, 2H), 6.28 (s, 2H), 9.03 (s, 2H).

Refinement top

H atoms were placed in calculated positions with O—H = 0.82 and C—H = 0.93–0.98 Å, and included in the refinement in riding model, with Uiso(H)= 1.2 - 1.5 Ueq(carrier atom). Atoms O4 and O8 of hydroxyl groups were treated as disordered over two positions - A and B, respectively - with the occupancies refined to 0.764 (3) and 0.236 (3), respectively.

Structure description top

Kojic acid possesses appreciable inhibitory activity against tyrosinase, a key enzyme in the biosynthesis of melanin, due to its ability to chelate copper in the active site of this enzyme. Thus kojic acid inhibits the production of melanin pigment, consequently being used in cosmetic. Therefore, in an attempt to seek potent tyrosinase inhibitors, the derivatives of kojic acid have been widely investigated (Kobayashi et al., 1995).There were little attentation to crystal structure of kojic and derivatives.The similar crystal structure of Kojic acid have been reported on 5-hydroxy-2-(hydroxymenthyl) -4H-pyran-one (Lokaj et al., 1991; Kakkar et al., 2011) and 6,6'-methylenebis (5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one) (Nurchi et al., 2010). Herein, we report the crystal structure of the title compound (I).

In (I) (Fig. 1), two pyranone rings are planar forming the dihedral angle of 61.2 (2)°. Hydroxyl groups are almost coplanar with their linked pyranone rings forming the torsion angles O2—C3—C4—O3 of -0.10° and O6—C10—C9—O5 of 1.24°.

Intermolecular hydrogen bonds O3—H3···O2i and O5—H5···O6ii (Table 1) link molecules into zigzag chains along the c axis. Further, intermolecular hydrogen bonds O4A—H4···O2iii and O8A—H8A···O6iii (Table 1) link all of the components of the structure into layers parallel to ac plane.

For the biological properties of kojic acid, see: Kobayashi et al. (1995). For related structures, see: Nurchi et al. (2010); Kakkar & Singh (2011); Lokaj et al. (1991). For the preparation of the title compound, see: Barham & Nathan Reed (1938).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at 50% probability level. Only major components of the disordered groups are shown.
[Figure 2] Fig. 2. A portion of the crystal packing of (I) with hydrogen bonds shown by dashed lines [symmetry codes: (i) -x, 1 - y, -z; (ii) -x, 1 - y, 1 - z; (iii) 1 + x, y, z]. H atoms not involved in hydrogen bonding have been omitted for clarity.
3,3'-Dihydroxy-6,6'-bis(hydroxymethyl)-2,2'-(pentane-1,1-diyl)di- 4H-pyran-4-one top
Crystal data top
C17H20O8Z = 2
Mr = 352.33F(000) = 372
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4234 (3) ÅCell parameters from 6451 reflections
b = 9.2394 (4) Åθ = 3.3–27.4°
c = 15.8494 (7) ŵ = 0.11 mm1
α = 79.993 (1)°T = 296 K
β = 86.689 (2)°Chunk, yellow
γ = 66.622 (1)°0.49 × 0.47 × 0.33 mm
V = 850.22 (7) Å3
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3840 independent reflections
Radiation source: rotating anode2907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1110
Tmin = 0.938, Tmax = 0.965l = 2020
8442 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.2871P]
where P = (Fo2 + 2Fc2)/3
3840 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H20O8γ = 66.622 (1)°
Mr = 352.33V = 850.22 (7) Å3
Triclinic, P1Z = 2
a = 6.4234 (3) ÅMo Kα radiation
b = 9.2394 (4) ŵ = 0.11 mm1
c = 15.8494 (7) ÅT = 296 K
α = 79.993 (1)°0.49 × 0.47 × 0.33 mm
β = 86.689 (2)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3840 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2907 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.965Rint = 0.017
8442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0436 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
3840 reflectionsΔρmin = 0.30 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.70599 (16)0.37814 (12)0.33797 (6)0.0343 (2)
O20.24351 (19)0.37234 (15)0.52086 (7)0.0489 (3)
O30.10419 (18)0.56659 (15)0.36549 (7)0.0499 (3)
H30.03030.56170.40910.075*
O50.10800 (19)0.56285 (16)0.11434 (8)0.0534 (3)
H50.03660.55940.07400.080*
O60.2475 (2)0.35803 (17)0.00299 (8)0.0562 (3)
O70.70230 (17)0.35409 (12)0.16422 (6)0.0381 (3)
O4A1.1115 (3)0.1209 (2)0.50117 (12)0.0591 (5)0.764 (3)
H4A1.13800.18830.52090.089*0.764 (3)
O8A1.1284 (3)0.0846 (2)0.04825 (13)0.0635 (6)0.764 (3)
H8A1.15800.15430.01690.095*0.764 (3)
O4B1.0634 (8)0.0558 (6)0.3693 (3)0.0474 (14)0.236 (3)
H4B1.01610.00840.39680.071*0.236 (3)
O8B1.061 (2)0.0030 (16)0.0999 (9)0.153 (5)0.236 (3)
H8B1.03230.00710.04900.230*0.236 (3)
C10.7734 (2)0.28416 (17)0.41491 (9)0.0348 (3)
C20.6275 (3)0.27937 (18)0.47792 (9)0.0375 (3)
H20.68110.21350.53010.045*
C30.3903 (2)0.37414 (17)0.46608 (9)0.0347 (3)
C40.3252 (2)0.47378 (17)0.38243 (9)0.0329 (3)
C50.4816 (2)0.47156 (16)0.32159 (8)0.0302 (3)
C61.0238 (3)0.1844 (2)0.41614 (11)0.0474 (4)
H6A1.05250.09710.38480.057*0.764 (3)
H6B1.10220.24940.38730.057*0.764 (3)
H6C1.10340.24660.38770.057*0.236 (3)
H6D1.07880.14610.47550.057*0.236 (3)
C70.4372 (2)0.56545 (17)0.23201 (8)0.0331 (3)
H70.27590.63620.22790.040*
C80.4808 (2)0.45696 (17)0.16640 (8)0.0332 (3)
C90.3266 (3)0.46005 (18)0.11099 (9)0.0363 (3)
C100.3925 (3)0.35414 (19)0.04794 (9)0.0400 (3)
C110.6259 (3)0.24898 (19)0.04981 (10)0.0437 (4)
H110.67900.17800.01090.052*
C120.7702 (3)0.25138 (18)0.10724 (10)0.0407 (4)
C131.0161 (3)0.1441 (2)0.12089 (14)0.0593 (5)
H13A1.09330.20270.14160.071*0.764 (3)
H13B1.02850.05440.16540.071*0.764 (3)
H13C1.11330.18950.08830.071*0.236 (3)
H13D1.05870.12150.18120.071*0.236 (3)
C140.5730 (3)0.67220 (18)0.21157 (9)0.0396 (3)
H14A0.73360.60510.21780.047*
H14B0.54440.72440.15230.047*
C150.5152 (3)0.79877 (19)0.26837 (10)0.0421 (4)
H15A0.55010.74690.32750.050*
H15B0.35370.86380.26400.050*
C160.6444 (4)0.9060 (2)0.24434 (13)0.0565 (5)
H16A0.80570.84080.25040.068*
H16B0.61360.95420.18450.068*
C170.5856 (5)1.0365 (3)0.29752 (16)0.0846 (8)
H17A0.43091.10970.28630.127*
H17B0.68391.09270.28300.127*
H17C0.60460.99060.35720.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0301 (5)0.0425 (6)0.0298 (5)0.0143 (4)0.0034 (4)0.0054 (4)
O20.0423 (6)0.0612 (7)0.0361 (6)0.0176 (6)0.0120 (5)0.0004 (5)
O30.0323 (6)0.0651 (8)0.0361 (6)0.0075 (5)0.0071 (4)0.0030 (5)
O50.0355 (6)0.0775 (9)0.0462 (7)0.0136 (6)0.0004 (5)0.0285 (6)
O60.0540 (7)0.0746 (9)0.0452 (7)0.0240 (6)0.0054 (5)0.0247 (6)
O70.0378 (6)0.0412 (6)0.0340 (5)0.0127 (5)0.0010 (4)0.0101 (4)
O4A0.0509 (10)0.0545 (10)0.0667 (11)0.0207 (8)0.0180 (8)0.0091 (8)
O8A0.0518 (10)0.0561 (11)0.0838 (14)0.0127 (9)0.0167 (9)0.0404 (10)
O4B0.038 (3)0.037 (3)0.062 (3)0.008 (2)0.009 (2)0.014 (2)
O8B0.153 (5)0.153 (5)0.154 (5)0.060 (2)0.0009 (10)0.0263 (13)
C10.0354 (7)0.0357 (7)0.0338 (7)0.0140 (6)0.0016 (6)0.0066 (6)
C20.0399 (8)0.0384 (8)0.0306 (7)0.0136 (6)0.0006 (6)0.0007 (6)
C30.0393 (8)0.0364 (7)0.0302 (7)0.0170 (6)0.0054 (6)0.0066 (6)
C40.0318 (7)0.0363 (7)0.0301 (7)0.0130 (6)0.0024 (5)0.0058 (6)
C50.0312 (7)0.0334 (7)0.0282 (6)0.0141 (6)0.0012 (5)0.0071 (5)
C60.0351 (8)0.0514 (9)0.0512 (9)0.0134 (7)0.0007 (7)0.0052 (8)
C70.0350 (7)0.0381 (7)0.0256 (6)0.0136 (6)0.0025 (5)0.0064 (5)
C80.0349 (7)0.0377 (7)0.0274 (6)0.0157 (6)0.0044 (5)0.0046 (6)
C90.0369 (8)0.0450 (8)0.0283 (7)0.0179 (7)0.0036 (6)0.0067 (6)
C100.0471 (9)0.0484 (9)0.0293 (7)0.0235 (7)0.0023 (6)0.0082 (6)
C110.0541 (10)0.0420 (8)0.0358 (8)0.0171 (7)0.0047 (7)0.0140 (7)
C120.0460 (9)0.0372 (8)0.0362 (8)0.0134 (7)0.0047 (6)0.0077 (6)
C130.0489 (10)0.0527 (10)0.0658 (12)0.0064 (8)0.0031 (9)0.0169 (9)
C140.0500 (9)0.0420 (8)0.0309 (7)0.0233 (7)0.0081 (6)0.0063 (6)
C150.0520 (9)0.0409 (8)0.0358 (8)0.0207 (7)0.0033 (7)0.0075 (6)
C160.0716 (12)0.0488 (10)0.0576 (11)0.0329 (9)0.0096 (9)0.0106 (8)
C170.129 (2)0.0774 (15)0.0786 (15)0.0695 (16)0.0189 (15)0.0289 (12)
Geometric parameters (Å, º) top
O1—C11.3502 (17)C6—H6B0.9700
O1—C51.3669 (16)C6—H6C0.9553
O2—C31.2474 (17)C6—H6D0.9795
O3—C41.3492 (17)C7—C81.5069 (19)
O3—H30.8200C7—C141.542 (2)
O5—C91.3518 (18)C7—H70.9800
O5—H50.8200C8—C91.350 (2)
O6—C101.2531 (19)C9—C101.448 (2)
O7—C121.3529 (18)C10—C111.426 (2)
O7—C81.3641 (17)C11—C121.345 (2)
O4A—C61.424 (2)C11—H110.9300
O4A—H4A0.8200C12—C131.499 (2)
O4A—H6D0.4491C13—H13A0.9700
O8A—C131.399 (3)C13—H13B0.9700
O8A—H8A0.8200C13—H13C0.9635
O8A—H13C1.2178C13—H13D0.9733
O4B—C61.439 (5)C14—C151.516 (2)
O4B—H4B0.8200C14—H14A0.9700
O8B—C131.369 (13)C14—H14B0.9700
O8B—H8B0.8200C15—C161.517 (2)
C1—C21.337 (2)C15—H15A0.9700
C1—C61.503 (2)C15—H15B0.9700
C2—C31.428 (2)C16—C171.504 (3)
C2—H20.9300C16—H16A0.9700
C3—C41.4541 (19)C16—H16B0.9700
C4—C51.3484 (19)C17—H17A0.9600
C5—C71.5073 (19)C17—H17B0.9600
C6—H6A0.9700C17—H17C0.9600
C1—O1—C5120.29 (11)O6—C10—C11124.42 (15)
C4—O3—H3109.5O6—C10—C9120.11 (15)
C9—O5—H5109.5C11—C10—C9115.47 (13)
C12—O7—C8120.36 (12)C12—C11—C10120.66 (14)
C6—O4A—H4A109.5C12—C11—H11119.7
H4A—O4A—H6D104.7C10—C11—H11119.7
C13—O8A—H8A109.5C11—C12—O7121.98 (14)
H8A—O8A—H13C70.3C11—C12—C13127.48 (15)
C6—O4B—H4B109.5O7—C12—C13110.50 (14)
C13—O8B—H8B109.5O8B—C13—O8A52.8 (6)
C2—C1—O1122.32 (13)O8B—C13—C12111.3 (6)
C2—C1—C6126.71 (14)O8A—C13—C12115.07 (17)
O1—C1—C6110.89 (13)O8B—C13—H13A140.2
C1—C2—C3120.82 (13)O8A—C13—H13A108.5
C1—C2—H2119.6C12—C13—H13A108.5
C3—C2—H2119.6O8B—C13—H13B59.8
O2—C3—C2124.45 (13)O8A—C13—H13B108.5
O2—C3—C4120.46 (13)C12—C13—H13B108.5
C2—C3—C4115.07 (12)H13A—C13—H13B107.5
O3—C4—C5120.03 (12)O8B—C13—H13C108.9
O3—C4—C3119.06 (12)O8A—C13—H13C58.6
C5—C4—C3120.89 (13)C12—C13—H13C112.0
C4—C5—O1120.60 (12)H13A—C13—H13C53.5
C4—C5—C7126.41 (13)H13B—C13—H13C139.0
O1—C5—C7112.99 (11)O8B—C13—H13D104.3
O4A—C6—O4B109.7 (3)O8A—C13—H13D133.4
O4A—C6—C1111.96 (15)C12—C13—H13D111.1
O4B—C6—C1108.5 (2)H13A—C13—H13D60.5
O4A—C6—H6A109.2H13B—C13—H13D48.6
C1—C6—H6A109.2H13C—C13—H13D108.8
O4A—C6—H6B109.2C15—C14—C7113.65 (12)
O4B—C6—H6B108.1C15—C14—H14A108.8
C1—C6—H6B109.2C7—C14—H14A108.8
H6A—C6—H6B107.9C15—C14—H14B108.8
O4A—C6—H6C109.0C7—C14—H14B108.8
O4B—C6—H6C107.4H14A—C14—H14B107.7
C1—C6—H6C110.2C14—C15—C16112.37 (14)
H6A—C6—H6C107.1C14—C15—H15A109.1
O4B—C6—H6D112.6C16—C15—H15A109.1
C1—C6—H6D109.6C14—C15—H15B109.1
H6A—C6—H6D112.1C16—C15—H15B109.1
H6B—C6—H6D108.8H15A—C15—H15B107.9
H6C—C6—H6D108.6C17—C16—C15113.87 (17)
C5—C7—C8111.20 (12)C17—C16—H16A108.8
C5—C7—C14112.71 (12)C15—C16—H16A108.8
C8—C7—C14110.77 (11)C17—C16—H16B108.8
C5—C7—H7107.3C15—C16—H16B108.8
C8—C7—H7107.3H16A—C16—H16B107.7
C14—C7—H7107.3C16—C17—H17A109.5
C9—C8—O7120.75 (13)C16—C17—H17B109.5
C9—C8—C7126.05 (13)H17A—C17—H17B109.5
O7—C8—C7113.13 (12)C16—C17—H17C109.5
C8—C9—O5119.76 (13)H17A—C17—H17C109.5
C8—C9—C10120.76 (14)H17B—C17—H17C109.5
O5—C9—C10119.48 (13)
C5—O1—C1—C20.8 (2)C5—C7—C8—C9118.54 (16)
C5—O1—C1—C6176.06 (12)C14—C7—C8—C9115.30 (16)
O1—C1—C2—C30.4 (2)C5—C7—C8—O764.36 (15)
C6—C1—C2—C3175.94 (14)C14—C7—C8—O761.80 (15)
C1—C2—C3—O2177.73 (16)O7—C8—C9—O5179.93 (13)
C1—C2—C3—C40.6 (2)C7—C8—C9—O53.2 (2)
O2—C3—C4—O31.3 (2)O7—C8—C9—C100.1 (2)
C2—C3—C4—O3179.63 (13)C7—C8—C9—C10176.96 (13)
O2—C3—C4—C5177.25 (14)C8—C9—C10—O6179.85 (15)
C2—C3—C4—C51.1 (2)O5—C9—C10—O60.0 (2)
O3—C4—C5—O1179.94 (13)C8—C9—C10—C110.5 (2)
C3—C4—C5—O11.5 (2)O5—C9—C10—C11179.41 (14)
O3—C4—C5—C70.1 (2)O6—C10—C11—C12179.32 (16)
C3—C4—C5—C7178.57 (13)C9—C10—C11—C120.0 (2)
C1—O1—C5—C41.4 (2)C10—C11—C12—O71.1 (2)
C1—O1—C5—C7178.71 (12)C10—C11—C12—C13176.58 (17)
C2—C1—C6—O4A20.6 (2)C8—O7—C12—C111.7 (2)
O1—C1—C6—O4A162.71 (14)C8—O7—C12—C13176.37 (14)
C2—C1—C6—O4B100.7 (3)C11—C12—C13—O8B29.2 (7)
O1—C1—C6—O4B76.1 (3)O7—C12—C13—O8B148.7 (7)
C4—C5—C7—C8111.66 (16)C11—C12—C13—O8A28.5 (3)
O1—C5—C7—C868.45 (15)O7—C12—C13—O8A153.56 (17)
C4—C5—C7—C14123.26 (16)C5—C7—C14—C1561.92 (17)
O1—C5—C7—C1456.62 (16)C8—C7—C14—C15172.77 (13)
C12—O7—C8—C91.1 (2)C7—C14—C15—C16177.67 (14)
C12—O7—C8—C7178.40 (12)C14—C15—C16—C17178.09 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.962.7275 (15)155
O3—H3···O20.822.322.7440 (15)113
O5—H5···O6ii0.822.002.7488 (16)151
O5—H5···O60.822.322.7436 (16)113
O4A—H4A···O2iii0.822.072.839 (2)157
O8A—H8A···O6iii0.822.152.894 (2)152
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H20O8
Mr352.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.4234 (3), 9.2394 (4), 15.8494 (7)
α, β, γ (°)79.993 (1), 86.689 (2), 66.622 (1)
V3)850.22 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.49 × 0.47 × 0.33
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.938, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8442, 3840, 2907
Rint0.017
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.00
No. of reflections3840
No. of parameters251
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia,1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.962.7275 (15)155
O3—H3···O20.822.322.7440 (15)113
O5—H5···O6ii0.822.002.7488 (16)151
O5—H5···O60.822.322.7436 (16)113
O4A—H4A···O2iii0.822.072.839 (2)157
O8A—H8A···O6iii0.822.152.894 (2)152
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

The work was supported financially by the National Natural Science Foundation of China (grant No. 20972138) and the Qianjiang Scholars Fund, Zhejiang Province (grant No. 2010R10051).

References

First citationBarham, H. N. & Nathan Reed, G. (1938). J. Am. Chem. Soc. 60, 1541–1545.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR.Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKakkar, R. & Singh, C. (2011). Int. J. Quantum Chem. 111, 4318–4329.  Web of Science CrossRef CAS Google Scholar
First citationKobayashi, Y., Kayahara, H., Tadasa, K., Nakamura, T. & Hiroshi, T. (1995). Biosci. Biotech. Biochem. 59, 1745–1746.  CrossRef CAS Google Scholar
First citationLokaj, J., Kožíšek, J., Koreň, B., Uher, M. & Vrábel, V. (1991). Acta Cryst. C47, 193–194.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNurchi, V. M., Crisponi, G., Lachowicz, J. I., Murgia, S., Pivetta, T., Remelli, M., Rescigno, A., Niclos-Gutierrez, J., Gonzalez-Perez, J. M., Dominguez-Martin, A., Castineiras, A. & Szewczuk, K. (2010). J. Inorg. Biochem. 104, 560–569.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds