organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bipyrid­yl–4,4′-(hy­dr­oxy­methyl­ene)di­benzoic acid (1/1)

aFaculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn

(Received 19 March 2012; accepted 20 March 2012; online 24 March 2012)

In the title 1:1 co-crystal, C10H8N2·C15H12O5, strong inter­molecular O—H⋯N hydrogen bonds link alternating mol­ecules of 4,4′-(hy­droxy­methyl­ene)dibenzoic acid and 4,4′-bipyridyl into zigzag chains in [501]. The crystal packing also exhibits ππ inter­actions between the 4,4′-bipyridyl rings of neighbouring chains [centroid–centroid distance = 3.608 (3) Å] and weak C—H⋯O hydrogen bonds.

Related literature

For background to supra­molecular crystal engineering, see: Simon & Bassoul (2000[Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering. Berlin: Wiley-VCH.]). For aromatic carb­oxy­lic acids as supra­molecular synthons, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.]). For studies of bent arenedicarboxyl­ate ligands, see: Koichi et al. (2011[Koichi, K., Eriko, S. & Takuji, H. (2011). Chem. Eur. J. 17, 11527-11534.]); Xu et al. (2011[Xu, L.-P., Zhao, W.-N. & Han, L. (2011). Acta Cryst. E67, o1971.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C15H12O5

  • Mr = 428.43

  • Monoclinic, P 21 /n

  • a = 8.0528 (16) Å

  • b = 11.683 (2) Å

  • c = 21.922 (4) Å

  • β = 96.66 (3)°

  • V = 2048.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.31 × 0.14 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.988

  • 16322 measured reflections

  • 3800 independent reflections

  • 1903 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.210

  • S = 0.99

  • 3800 reflections

  • 298 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.84 (5) 1.82 (5) 2.660 (5) 173 (5)
O4—H1⋯N1ii 0.87 (6) 1.76 (6) 2.605 (5) 166 (5)
C19—H19A⋯O3iii 0.93 2.40 3.321 (5) 171
C17—H17A⋯O1iv 0.93 2.57 3.212 (5) 126
C8—H8A⋯O3iv 0.98 2.51 3.376 (6) 148
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) -x+1, -y, -z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Supramolecular crystal engineering has attracted growing interest over the past few decades because of their importance in biological system and molecular recognition (Simon et al., 2000). Aromatic carboxylic acid is one of the most important supramolecular synthons to construct novel organic networks by hydrogen bonds and ππ interactions (Desiraju, 1995). Recently, interest has been devoted to the assembly of extended solids from the long and bent arenedicarboxylate ligands (Koichi et al., 2011; Xu et al., 2011). We have employed 4,4'-(hydroxymethylene)dibenzoic acid as an excellent candidate for the construction of targeted supramolecular structures. A new organic cocrystal compound, C15H12O5.C10H8N2, has been synthesized by reacting 4,4'-(hydroxymethylene)dibenzoic acid and 4,4'-bipyridyl under hydrothermal conditions, and its crystal structure is reported here.

The asymmetric unit of the title compound consists of one 4,4'-(hydroxymethylene)dibenzoic acid and one 4,4'-bipyridyl molecule (Figure 1). The dihedral angle formed by two pyridine rings in 4,4'-bipyridyl is 24.74 (1)° , and the dihedral angle between the two benzene rings in bent 4,4'-(hydroxymethylene)dibenzoic acid ligand is 85.95 (3)° . In the1:1 cocrystal, strong intermolecular O—H···N hydrogen bonds link the alternating molecules of 4,4'-(hydroxymethylene)dibenzoic acid and 4,4'-bipyridyl into zigzag chains in [501], as shown in Figure 2. Furthermore, the crystal packing exhibits also ππ interactions between the rings of 4,4'-bipyridyl from the neighbouring chains [centroid–centroid distance of 3.608 (3) Å] and weak C—H···O hydrogen bonds.

Related literature top

For background to supramolecular crystal engineering, see: Simon & Bassoul (2000). For aromatic carboxylic acid as a supramolecular synthon, see: Desiraju (1995). For studies of bent arenedicarboxylate ligands, see: Koichi et al. (2011); Xu et al. (2011).

Experimental top

A mixture of 4,4'-(hydroxymethylene)dibenzoic acid (26.4 mg, 0.1 mmol) and 4,4'-bipyridyl (15.1 mg, 0.1 mmol) in H2O (8 ml) was sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 447 K for 3 d. Colorless single crystals of the title compound was obtained after cooling the solution to room temperature. Block-shaped crystals were collected and washed with distilled water. The yield was approximately 70% based on 4,4'-(hydroxymethylene)dibenzoic acid.

Refinement top

H atoms attached to O2 and O4 were located in difference maps and refined isotropically. C-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms at distances of C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Structure description top

Supramolecular crystal engineering has attracted growing interest over the past few decades because of their importance in biological system and molecular recognition (Simon et al., 2000). Aromatic carboxylic acid is one of the most important supramolecular synthons to construct novel organic networks by hydrogen bonds and ππ interactions (Desiraju, 1995). Recently, interest has been devoted to the assembly of extended solids from the long and bent arenedicarboxylate ligands (Koichi et al., 2011; Xu et al., 2011). We have employed 4,4'-(hydroxymethylene)dibenzoic acid as an excellent candidate for the construction of targeted supramolecular structures. A new organic cocrystal compound, C15H12O5.C10H8N2, has been synthesized by reacting 4,4'-(hydroxymethylene)dibenzoic acid and 4,4'-bipyridyl under hydrothermal conditions, and its crystal structure is reported here.

The asymmetric unit of the title compound consists of one 4,4'-(hydroxymethylene)dibenzoic acid and one 4,4'-bipyridyl molecule (Figure 1). The dihedral angle formed by two pyridine rings in 4,4'-bipyridyl is 24.74 (1)° , and the dihedral angle between the two benzene rings in bent 4,4'-(hydroxymethylene)dibenzoic acid ligand is 85.95 (3)° . In the1:1 cocrystal, strong intermolecular O—H···N hydrogen bonds link the alternating molecules of 4,4'-(hydroxymethylene)dibenzoic acid and 4,4'-bipyridyl into zigzag chains in [501], as shown in Figure 2. Furthermore, the crystal packing exhibits also ππ interactions between the rings of 4,4'-bipyridyl from the neighbouring chains [centroid–centroid distance of 3.608 (3) Å] and weak C—H···O hydrogen bonds.

For background to supramolecular crystal engineering, see: Simon & Bassoul (2000). For aromatic carboxylic acid as a supramolecular synthon, see: Desiraju (1995). For studies of bent arenedicarboxylate ligands, see: Koichi et al. (2011); Xu et al. (2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A content of asymmetric unit of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing showing O—H···N hydrogen bonds as dashed lines.
4,4'-Bipyridyl–4,4'-(hydroxymethylene)dibenzoic acid (1/1) top
Crystal data top
C10H8N2·C15H12O5F(000) = 896
Mr = 428.43Dx = 1.389 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2687 reflections
a = 8.0528 (16) Åθ = 3.1–25.5°
b = 11.683 (2) ŵ = 0.10 mm1
c = 21.922 (4) ÅT = 298 K
β = 96.66 (3)°Block, colourless
V = 2048.6 (7) Å30.31 × 0.14 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3800 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.984, Tmax = 0.988l = 2624
16322 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.210 w = 1/[σ2(Fo2) + (0.0824P)2 + 1.4919P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3800 reflectionsΔρmax = 0.68 e Å3
298 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (18)
Crystal data top
C10H8N2·C15H12O5V = 2048.6 (7) Å3
Mr = 428.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0528 (16) ŵ = 0.10 mm1
b = 11.683 (2) ÅT = 298 K
c = 21.922 (4) Å0.31 × 0.14 × 0.12 mm
β = 96.66 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3800 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1903 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.988Rint = 0.089
16322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.68 e Å3
3800 reflectionsΔρmin = 0.28 e Å3
298 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.7007 (4)0.0589 (3)0.44854 (15)0.0828 (10)
O21.8293 (4)0.0048 (3)0.36999 (15)0.0844 (11)
O30.6425 (4)0.0831 (3)0.12982 (16)0.0831 (10)
O40.5017 (4)0.0793 (3)0.11948 (17)0.0863 (12)
O51.1910 (4)0.3660 (3)0.2676 (2)0.1155 (15)
H5A1.10980.40450.25420.173*
N10.2656 (4)0.0472 (3)0.06295 (16)0.0628 (10)
N20.4192 (4)0.3635 (3)0.08219 (19)0.0694 (10)
C11.7018 (5)0.0067 (4)0.4015 (2)0.0610 (11)
C21.5595 (5)0.0650 (4)0.37421 (18)0.0557 (11)
C31.5610 (5)0.1201 (4)0.31932 (19)0.0686 (13)
H3A1.65460.11390.29840.082*
C41.4188 (5)0.0754 (4)0.40432 (19)0.0633 (12)
H4A1.41420.03850.44170.076*
C51.4258 (5)0.1850 (5)0.2941 (2)0.0780 (15)
H5B1.43020.22200.25680.094*
C61.2844 (5)0.1406 (4)0.3790 (2)0.0668 (12)
H6A1.19080.14750.39990.080*
C71.2865 (5)0.1952 (4)0.3238 (2)0.0653 (12)
C81.1347 (5)0.2650 (4)0.2987 (2)0.0784 (15)
H8A1.07680.29040.33320.094*
C91.0110 (4)0.1983 (4)0.25372 (18)0.0586 (11)
C101.0175 (5)0.0821 (4)0.24747 (19)0.0660 (12)
H10A1.10540.04150.26860.079*
C110.8944 (5)0.0235 (4)0.20995 (19)0.0613 (11)
H11A0.90000.05570.20640.074*
C120.7646 (4)0.0829 (4)0.17821 (17)0.0526 (10)
C130.7589 (5)0.1998 (4)0.18338 (18)0.0608 (11)
H13A0.67230.24040.16140.073*
C140.8806 (5)0.2575 (4)0.22089 (19)0.0618 (11)
H14A0.87520.33680.22420.074*
C150.6312 (5)0.0179 (4)0.1404 (2)0.0616 (11)
C160.2813 (5)0.1129 (4)0.0146 (2)0.0671 (12)
H16A0.38490.11540.00030.081*
C170.1537 (5)0.1778 (4)0.01501 (19)0.0594 (11)
H17A0.17120.22200.04890.071*
C180.0024 (4)0.1760 (3)0.00674 (18)0.0515 (10)
C190.0182 (5)0.1095 (3)0.05812 (18)0.0578 (11)
H19A0.11910.10700.07480.069*
C200.1179 (5)0.0466 (4)0.0844 (2)0.0641 (12)
H20A0.10510.00200.11870.077*
C210.1463 (5)0.2406 (3)0.02397 (18)0.0526 (10)
C220.1556 (5)0.2692 (4)0.0859 (2)0.0649 (12)
H22A0.07110.24780.10910.078*
C230.2930 (5)0.3303 (4)0.1123 (2)0.0725 (13)
H23A0.29730.34920.15360.087*
C240.4097 (5)0.3339 (4)0.0235 (2)0.0679 (13)
H24A0.49700.35550.00170.082*
C250.2790 (5)0.2731 (4)0.0073 (2)0.0631 (12)
H25A0.27980.25420.04840.076*
H21.915 (6)0.042 (5)0.385 (2)0.100 (19)*
H10.436 (7)0.031 (5)0.099 (2)0.11 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.084 (2)0.091 (3)0.071 (2)0.0073 (18)0.0029 (17)0.0258 (19)
O20.061 (2)0.109 (3)0.082 (2)0.023 (2)0.0036 (18)0.026 (2)
O30.0630 (19)0.078 (3)0.105 (3)0.0035 (17)0.0046 (17)0.008 (2)
O40.062 (2)0.083 (3)0.106 (3)0.0024 (18)0.0254 (19)0.017 (2)
O50.089 (3)0.090 (3)0.156 (4)0.001 (2)0.033 (2)0.012 (3)
N10.053 (2)0.064 (2)0.068 (2)0.0002 (17)0.0067 (18)0.0012 (19)
N20.054 (2)0.068 (3)0.083 (3)0.0012 (18)0.007 (2)0.005 (2)
C10.057 (3)0.068 (3)0.057 (3)0.005 (2)0.002 (2)0.001 (2)
C20.051 (2)0.064 (3)0.051 (2)0.0029 (19)0.0005 (19)0.000 (2)
C30.053 (2)0.095 (4)0.058 (3)0.014 (2)0.009 (2)0.012 (3)
C40.066 (3)0.073 (3)0.050 (2)0.013 (2)0.007 (2)0.004 (2)
C50.064 (3)0.109 (4)0.060 (3)0.015 (3)0.002 (2)0.015 (3)
C60.047 (2)0.085 (3)0.070 (3)0.001 (2)0.010 (2)0.020 (3)
C70.052 (2)0.079 (3)0.063 (3)0.002 (2)0.007 (2)0.015 (2)
C80.063 (3)0.074 (4)0.094 (4)0.007 (2)0.011 (3)0.014 (3)
C90.045 (2)0.071 (3)0.059 (2)0.002 (2)0.0015 (19)0.012 (2)
C100.051 (2)0.077 (3)0.065 (3)0.010 (2)0.011 (2)0.007 (2)
C110.058 (2)0.059 (3)0.064 (3)0.005 (2)0.000 (2)0.002 (2)
C120.044 (2)0.064 (3)0.049 (2)0.0003 (19)0.0033 (17)0.001 (2)
C130.048 (2)0.074 (3)0.058 (2)0.006 (2)0.0040 (19)0.000 (2)
C140.056 (2)0.061 (3)0.066 (3)0.003 (2)0.001 (2)0.003 (2)
C150.055 (3)0.064 (3)0.065 (3)0.001 (2)0.001 (2)0.001 (2)
C160.047 (2)0.068 (3)0.086 (3)0.001 (2)0.005 (2)0.002 (3)
C170.054 (2)0.061 (3)0.062 (3)0.003 (2)0.001 (2)0.002 (2)
C180.048 (2)0.051 (3)0.053 (2)0.0009 (18)0.0034 (18)0.005 (2)
C190.053 (2)0.059 (3)0.059 (3)0.003 (2)0.001 (2)0.002 (2)
C200.063 (3)0.066 (3)0.060 (3)0.003 (2)0.005 (2)0.003 (2)
C210.049 (2)0.051 (3)0.055 (2)0.0005 (18)0.0044 (19)0.0004 (19)
C220.056 (2)0.065 (3)0.071 (3)0.000 (2)0.006 (2)0.004 (2)
C230.066 (3)0.076 (3)0.071 (3)0.006 (2)0.012 (2)0.009 (3)
C240.052 (2)0.070 (3)0.080 (3)0.003 (2)0.002 (2)0.004 (3)
C250.057 (2)0.069 (3)0.062 (3)0.003 (2)0.000 (2)0.003 (2)
Geometric parameters (Å, º) top
O1—C11.199 (5)C9—C141.387 (5)
O2—C11.302 (5)C10—C111.392 (5)
O2—H20.84 (5)C10—H10A0.9300
O3—C151.208 (5)C11—C121.375 (5)
O4—C151.304 (5)C11—H11A0.9300
O4—H10.87 (6)C12—C131.371 (6)
O5—C81.460 (6)C12—C151.487 (6)
O5—H5A0.8200C13—C141.380 (5)
N1—C161.327 (5)C13—H13A0.9300
N1—C201.329 (5)C14—H14A0.9300
N2—C241.325 (6)C16—C171.377 (5)
N2—C231.332 (6)C16—H16A0.9300
C1—C21.488 (6)C17—C181.395 (5)
C2—C31.365 (5)C17—H17A0.9300
C2—C41.381 (6)C18—C191.386 (5)
C3—C51.388 (6)C18—C211.478 (5)
C3—H3A0.9300C19—C201.387 (5)
C4—C61.386 (6)C19—H19A0.9300
C4—H4A0.9300C20—H20A0.9300
C5—C71.365 (6)C21—C251.387 (6)
C5—H5B0.9300C21—C221.391 (5)
C6—C71.370 (6)C22—C231.385 (6)
C6—H6A0.9300C22—H22A0.9300
C7—C81.518 (6)C23—H23A0.9300
C8—C91.531 (6)C24—C251.379 (6)
C8—H8A0.9800C24—H24A0.9300
C9—C101.367 (6)C25—H25A0.9300
C1—O2—H2116 (4)C13—C12—C15121.7 (4)
C15—O4—H1104 (4)C11—C12—C15118.8 (4)
C8—O5—H5A109.5C12—C13—C14120.5 (4)
C16—N1—C20117.2 (4)C12—C13—H13A119.7
C24—N2—C23116.3 (4)C14—C13—H13A119.7
O1—C1—O2123.3 (4)C13—C14—C9120.5 (4)
O1—C1—C2123.3 (4)C13—C14—H14A119.7
O2—C1—C2113.3 (4)C9—C14—H14A119.7
C3—C2—C4118.1 (4)O3—C15—O4123.0 (4)
C3—C2—C1122.3 (4)O3—C15—C12122.7 (4)
C4—C2—C1119.6 (4)O4—C15—C12114.3 (4)
C2—C3—C5121.4 (4)N1—C16—C17124.0 (4)
C2—C3—H3A119.3N1—C16—H16A118.0
C5—C3—H3A119.3C17—C16—H16A118.0
C2—C4—C6120.2 (4)C16—C17—C18118.9 (4)
C2—C4—H4A119.9C16—C17—H17A120.5
C6—C4—H4A119.9C18—C17—H17A120.5
C7—C5—C3120.6 (4)C19—C18—C17117.2 (4)
C7—C5—H5B119.7C19—C18—C21121.0 (4)
C3—C5—H5B119.7C17—C18—C21121.8 (4)
C7—C6—C4121.4 (4)C18—C19—C20119.5 (4)
C7—C6—H6A119.3C18—C19—H19A120.3
C4—C6—H6A119.3C20—C19—H19A120.3
C5—C7—C6118.3 (4)N1—C20—C19123.1 (4)
C5—C7—C8123.1 (5)N1—C20—H20A118.4
C6—C7—C8118.5 (4)C19—C20—H20A118.4
O5—C8—C7108.8 (4)C25—C21—C22117.3 (4)
O5—C8—C9108.9 (4)C25—C21—C18121.6 (4)
C7—C8—C9113.3 (4)C22—C21—C18121.2 (4)
O5—C8—H8A108.6C23—C22—C21118.8 (4)
C7—C8—H8A108.6C23—C22—H22A120.6
C9—C8—H8A108.6C21—C22—H22A120.6
C10—C9—C14118.6 (4)N2—C23—C22124.1 (5)
C10—C9—C8122.7 (4)N2—C23—H23A117.9
C14—C9—C8118.5 (4)C22—C23—H23A117.9
C9—C10—C11121.0 (4)N2—C24—C25124.3 (4)
C9—C10—H10A119.5N2—C24—H24A117.8
C11—C10—H10A119.5C25—C24—H24A117.8
C12—C11—C10119.9 (4)C24—C25—C21119.2 (4)
C12—C11—H11A120.1C24—C25—H25A120.4
C10—C11—H11A120.1C21—C25—H25A120.4
C13—C12—C11119.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.84 (5)1.82 (5)2.660 (5)173 (5)
O4—H1···N1ii0.87 (6)1.76 (6)2.605 (5)166 (5)
C19—H19A···O3iii0.932.403.321 (5)171
C17—H17A···O1iv0.932.573.212 (5)126
C8—H8A···O3iv0.982.513.376 (6)148
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2·C15H12O5
Mr428.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.0528 (16), 11.683 (2), 21.922 (4)
β (°) 96.66 (3)
V3)2048.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.14 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.984, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
16322, 3800, 1903
Rint0.089
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.210, 0.99
No. of reflections3800
No. of parameters298
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.28

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.84 (5)1.82 (5)2.660 (5)173 (5)
O4—H1···N1ii0.87 (6)1.76 (6)2.605 (5)166 (5)
C19—H19A···O3iii0.932.403.321 (5)171.4
C17—H17A···O1iv0.932.573.212 (5)126.4
C8—H8A···O3iv0.982.513.376 (6)147.5
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21071087) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKoichi, K., Eriko, S. & Takuji, H. (2011). Chem. Eur. J. 17, 11527–11534.  Web of Science PubMed Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering. Berlin: Wiley-VCH.  Google Scholar
First citationXu, L.-P., Zhao, W.-N. & Han, L. (2011). Acta Cryst. E67, o1971.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds