organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(3-Nitro­phen­yl)-1-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 February 2012; accepted 28 February 2012; online 7 March 2012)

In the title compound, C20H20N2O3, the piperidine ring adopts a chair conformation and its mean plane forms dihedral angles of 19.63 (9) and 19.44 (9)°, respectively, with the benzene and the nitro-substituted benzene ring. The benzene and nitro-substituted benzene rings are almost coplanar and make a dihedral angle of 4.78 (8)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into two-dimensional networks parallel to the ab plane. The crystal packing is further stabilized by ππ inter­actions [maximum centroid–centroid distance = 3.7807 (12) Å].

Related literature

For related structures and background to chalcones, see: Fun et al. (2011a[Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248-o1249.],b[Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372-o1373.],c[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011c). Acta Cryst. E67, o1313-o1314.],d[Fun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3058-o3059.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O3

  • Mr = 336.38

  • Orthorhombic, P b c a

  • a = 7.4268 (12) Å

  • b = 11.3884 (18) Å

  • c = 39.447 (6) Å

  • V = 3336.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.22 × 0.11 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.990

  • 20847 measured reflections

  • 4870 independent reflections

  • 3174 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.154

  • S = 1.04

  • 4870 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O3i 0.93 2.55 3.441 (2) 161
C16—H16A⋯O1ii 0.93 2.45 3.358 (2) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of chalcones (Fun et al., 2011a,b,c,d), the crystal structure of the title compound is reported here.

In the title compound (Fig. 1), the piperidine ring (N1/C1–C5) adopts a chair conformation [puckering parameters Q = 0.551 (2) Å, θ = 1.6 (2)° and φ = 233 (7)° (Cremer & Pople, 1975)] and form dihedral angles of 19.63 (9) and 19.44 (9)°, respectively with the benzene (C6–C11) and nitro-substituted benzene (C15–C20) ring. The essentially planar benzene [maximum deviation = 0.007 (1) Å at atoms C9 and C10] and nitro-substituted benzene ring [maximum deviation = 0.008 (2) Å at atom C17] are coplanar with each other, forming a dihedral angle of 4.78 (8)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a,b,c,d).

In the crystal packing, the molecules are linked by intermolecular C—H···O hydrogen bonds into two-dimensional networks parallel to ab plane. The crystal packing is further stabilized by ππ interactions with Cg2···Cg3 = 3.7807 (12) and 3.7043 (12) Å (symmetry code = 1-X,1-Y,-Z and 2-X,1-Y,-Z, respectively), where Cg2 and Cg3 are the centroids of C6–C11 and C15–C20 rings respectively.

Related literature top

For related structures and background to chalcones, see: Fun et al. (2011a,b,c,d). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For reference bond lengths, see: Allen et al. (1987).

Experimental top

To a mixture of 4-piperidinoacetophenone (2.03 g, 0.01 mol) and 3-nitrobenzaldehyde (1.51 g, 0.01 mol) in ethanol (50 ml), 10 ml of 10% sodium hydroxide solution was added and stirred at 5–10 °C for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from mixture of acetone and toluene solvent by slow evaporation method (M.P.: 365–369 K).

Refinement top

All H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

In continuation of our work on synthesis of chalcones (Fun et al., 2011a,b,c,d), the crystal structure of the title compound is reported here.

In the title compound (Fig. 1), the piperidine ring (N1/C1–C5) adopts a chair conformation [puckering parameters Q = 0.551 (2) Å, θ = 1.6 (2)° and φ = 233 (7)° (Cremer & Pople, 1975)] and form dihedral angles of 19.63 (9) and 19.44 (9)°, respectively with the benzene (C6–C11) and nitro-substituted benzene (C15–C20) ring. The essentially planar benzene [maximum deviation = 0.007 (1) Å at atoms C9 and C10] and nitro-substituted benzene ring [maximum deviation = 0.008 (2) Å at atom C17] are coplanar with each other, forming a dihedral angle of 4.78 (8)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a,b,c,d).

In the crystal packing, the molecules are linked by intermolecular C—H···O hydrogen bonds into two-dimensional networks parallel to ab plane. The crystal packing is further stabilized by ππ interactions with Cg2···Cg3 = 3.7807 (12) and 3.7043 (12) Å (symmetry code = 1-X,1-Y,-Z and 2-X,1-Y,-Z, respectively), where Cg2 and Cg3 are the centroids of C6–C11 and C15–C20 rings respectively.

For related structures and background to chalcones, see: Fun et al. (2011a,b,c,d). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
(2E)-3-(3-Nitrophenyl)-1-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one top
Crystal data top
C20H20N2O3F(000) = 1424
Mr = 336.38Dx = 1.339 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2665 reflections
a = 7.4268 (12) Åθ = 3.1–29.6°
b = 11.3884 (18) ŵ = 0.09 mm1
c = 39.447 (6) ÅT = 100 K
V = 3336.4 (9) Å3Block, orange
Z = 80.30 × 0.22 × 0.11 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4870 independent reflections
Radiation source: fine-focus sealed tube3174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 109
Tmin = 0.973, Tmax = 0.990k = 1616
20847 measured reflectionsl = 5547
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0603P)2 + 1.4691P]
where P = (Fo2 + 2Fc2)/3
4870 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H20N2O3V = 3336.4 (9) Å3
Mr = 336.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4268 (12) ŵ = 0.09 mm1
b = 11.3884 (18) ÅT = 100 K
c = 39.447 (6) Å0.30 × 0.22 × 0.11 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4870 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3174 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.990Rint = 0.062
20847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
4870 reflectionsΔρmin = 0.23 e Å3
226 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6504 (2)0.26696 (11)0.01933 (3)0.0378 (4)
O20.9010 (2)0.54808 (13)0.17630 (4)0.0448 (4)
O30.8344 (2)0.37615 (12)0.15668 (3)0.0388 (4)
N10.5842 (2)0.49503 (12)0.16639 (4)0.0282 (4)
N20.8685 (2)0.48100 (13)0.15277 (4)0.0297 (4)
C10.6185 (3)0.40300 (17)0.19185 (5)0.0370 (5)
H1A0.57380.32850.18340.044*
H1B0.74730.39540.19530.044*
C20.5292 (3)0.43002 (18)0.22548 (5)0.0403 (5)
H2A0.56380.37100.24200.048*
H2B0.39950.42660.22280.048*
C30.5819 (3)0.55016 (19)0.23851 (5)0.0372 (5)
H3A0.51380.56810.25880.045*
H3B0.70890.55070.24430.045*
C40.5445 (3)0.64214 (17)0.21165 (5)0.0352 (5)
H4A0.41570.64780.20800.042*
H4B0.58700.71790.21950.042*
C50.6370 (3)0.61159 (16)0.17848 (5)0.0333 (5)
H5A0.76640.61380.18170.040*
H5B0.60590.66980.16150.040*
C60.6084 (2)0.46749 (14)0.13234 (4)0.0234 (4)
C70.5554 (3)0.35640 (14)0.11964 (5)0.0260 (4)
H7A0.50740.30080.13440.031*
C80.5738 (3)0.32971 (14)0.08587 (4)0.0242 (4)
H8A0.53810.25600.07830.029*
C90.6450 (2)0.41027 (13)0.06242 (4)0.0215 (4)
C100.6947 (2)0.52043 (13)0.07476 (4)0.0211 (3)
H10A0.73990.57630.05980.025*
C110.6784 (2)0.54852 (14)0.10881 (4)0.0229 (4)
H11A0.71440.62230.11630.027*
C120.6717 (3)0.37118 (14)0.02707 (4)0.0249 (4)
C130.7283 (3)0.45833 (14)0.00107 (4)0.0241 (4)
H13A0.73550.53750.00670.029*
C140.7688 (3)0.42367 (14)0.03032 (4)0.0243 (4)
H14A0.76050.34370.03480.029*
C150.8250 (2)0.49959 (13)0.05843 (4)0.0213 (3)
C160.8867 (2)0.61466 (14)0.05323 (5)0.0236 (4)
H16A0.89170.64490.03130.028*
C170.9403 (3)0.68375 (14)0.08030 (5)0.0272 (4)
H17A0.98260.75940.07630.033*
C180.9318 (3)0.64173 (14)0.11314 (5)0.0266 (4)
H18A0.96520.68870.13140.032*
C190.8721 (2)0.52768 (15)0.11814 (4)0.0236 (4)
C200.8195 (2)0.45610 (14)0.09165 (4)0.0221 (4)
H20A0.78090.37980.09580.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0575 (11)0.0194 (6)0.0366 (7)0.0105 (6)0.0024 (7)0.0006 (5)
O20.0530 (11)0.0507 (9)0.0308 (7)0.0046 (8)0.0067 (7)0.0089 (6)
O30.0516 (10)0.0305 (7)0.0342 (7)0.0097 (7)0.0058 (7)0.0024 (6)
N10.0357 (10)0.0217 (7)0.0273 (7)0.0073 (7)0.0075 (7)0.0091 (6)
N20.0293 (9)0.0296 (8)0.0301 (8)0.0053 (7)0.0011 (7)0.0036 (6)
C10.0449 (14)0.0328 (10)0.0334 (10)0.0072 (9)0.0069 (9)0.0158 (8)
C20.0478 (15)0.0418 (11)0.0312 (10)0.0023 (10)0.0072 (9)0.0146 (8)
C30.0303 (12)0.0533 (13)0.0280 (9)0.0016 (10)0.0009 (8)0.0081 (9)
C40.0414 (13)0.0365 (10)0.0279 (9)0.0028 (9)0.0026 (9)0.0000 (8)
C50.0452 (14)0.0261 (9)0.0287 (9)0.0047 (9)0.0062 (9)0.0064 (7)
C60.0218 (9)0.0198 (7)0.0287 (8)0.0071 (7)0.0053 (7)0.0067 (6)
C70.0234 (10)0.0200 (8)0.0346 (9)0.0018 (7)0.0059 (7)0.0100 (7)
C80.0208 (10)0.0158 (7)0.0361 (9)0.0002 (6)0.0011 (7)0.0049 (6)
C90.0181 (9)0.0161 (7)0.0303 (8)0.0012 (6)0.0001 (7)0.0048 (6)
C100.0195 (9)0.0148 (7)0.0290 (8)0.0010 (6)0.0017 (7)0.0060 (6)
C110.0232 (10)0.0159 (7)0.0295 (8)0.0028 (7)0.0013 (7)0.0048 (6)
C120.0247 (10)0.0200 (7)0.0300 (9)0.0017 (7)0.0005 (7)0.0037 (6)
C130.0262 (10)0.0167 (7)0.0295 (9)0.0003 (7)0.0000 (7)0.0030 (6)
C140.0260 (10)0.0159 (7)0.0309 (9)0.0017 (7)0.0006 (7)0.0014 (6)
C150.0180 (9)0.0150 (7)0.0307 (8)0.0012 (6)0.0007 (7)0.0024 (6)
C160.0202 (9)0.0169 (7)0.0337 (9)0.0009 (7)0.0007 (7)0.0002 (6)
C170.0224 (10)0.0157 (7)0.0435 (10)0.0008 (7)0.0006 (8)0.0043 (7)
C180.0210 (10)0.0215 (8)0.0373 (10)0.0008 (7)0.0036 (7)0.0095 (7)
C190.0189 (9)0.0234 (8)0.0285 (8)0.0052 (7)0.0011 (7)0.0028 (6)
C200.0209 (9)0.0163 (7)0.0291 (8)0.0022 (6)0.0007 (7)0.0017 (6)
Geometric parameters (Å, º) top
O1—C121.236 (2)C7—H7A0.9300
O2—N21.226 (2)C8—C91.406 (2)
O3—N21.230 (2)C8—H8A0.9300
N1—C61.391 (2)C9—C101.395 (2)
N1—C51.464 (2)C9—C121.477 (2)
N1—C11.474 (2)C10—C111.386 (2)
N2—C191.466 (2)C10—H10A0.9300
C1—C21.515 (3)C11—H11A0.9300
C1—H1A0.9700C12—C131.488 (2)
C1—H1B0.9700C13—C141.334 (2)
C2—C31.513 (3)C13—H13A0.9300
C2—H2A0.9700C14—C151.467 (2)
C2—H2B0.9700C14—H14A0.9300
C3—C41.516 (3)C15—C201.401 (2)
C3—H3A0.9700C15—C161.403 (2)
C3—H3B0.9700C16—C171.385 (2)
C4—C51.518 (3)C16—H16A0.9300
C4—H4A0.9700C17—C181.382 (3)
C4—H4B0.9700C17—H17A0.9300
C5—H5A0.9700C18—C191.387 (2)
C5—H5B0.9700C18—H18A0.9300
C6—C111.408 (2)C19—C201.382 (2)
C6—C71.417 (2)C20—H20A0.9300
C7—C81.373 (2)
C6—N1—C5118.97 (14)C6—C7—H7A119.6
C6—N1—C1118.37 (14)C7—C8—C9122.09 (16)
C5—N1—C1112.13 (15)C7—C8—H8A119.0
O2—N2—O3123.40 (16)C9—C8—H8A119.0
O2—N2—C19118.41 (15)C10—C9—C8117.18 (16)
O3—N2—C19118.19 (14)C10—C9—C12124.39 (15)
N1—C1—C2112.11 (16)C8—C9—C12118.34 (15)
N1—C1—H1A109.2C11—C10—C9121.49 (15)
C2—C1—H1A109.2C11—C10—H10A119.3
N1—C1—H1B109.2C9—C10—H10A119.3
C2—C1—H1B109.2C10—C11—C6121.31 (15)
H1A—C1—H1B107.9C10—C11—H11A119.3
C3—C2—C1111.60 (18)C6—C11—H11A119.3
C3—C2—H2A109.3O1—C12—C9120.37 (15)
C1—C2—H2A109.3O1—C12—C13120.44 (16)
C3—C2—H2B109.3C9—C12—C13119.18 (14)
C1—C2—H2B109.3C14—C13—C12120.41 (15)
H2A—C2—H2B108.0C14—C13—H13A119.8
C2—C3—C4109.88 (17)C12—C13—H13A119.8
C2—C3—H3A109.7C13—C14—C15126.26 (15)
C4—C3—H3A109.7C13—C14—H14A116.9
C2—C3—H3B109.7C15—C14—H14A116.9
C4—C3—H3B109.7C20—C15—C16118.44 (15)
H3A—C3—H3B108.2C20—C15—C14119.36 (15)
C3—C4—C5111.17 (17)C16—C15—C14122.20 (15)
C3—C4—H4A109.4C17—C16—C15120.77 (16)
C5—C4—H4A109.4C17—C16—H16A119.6
C3—C4—H4B109.4C15—C16—H16A119.6
C5—C4—H4B109.4C18—C17—C16120.84 (16)
H4A—C4—H4B108.0C18—C17—H17A119.6
N1—C5—C4111.55 (16)C16—C17—H17A119.6
N1—C5—H5A109.3C17—C18—C19118.19 (16)
C4—C5—H5A109.3C17—C18—H18A120.9
N1—C5—H5B109.3C19—C18—H18A120.9
C4—C5—H5B109.3C20—C19—C18122.36 (16)
H5A—C5—H5B108.0C20—C19—N2119.06 (15)
N1—C6—C11122.43 (16)C18—C19—N2118.56 (15)
N1—C6—C7120.46 (15)C19—C20—C15119.38 (15)
C11—C6—C7117.06 (15)C19—C20—H20A120.3
C8—C7—C6120.87 (15)C15—C20—H20A120.3
C8—C7—H7A119.6
C6—N1—C1—C2160.67 (19)C8—C9—C12—O17.8 (3)
C5—N1—C1—C254.9 (2)C10—C9—C12—C1310.0 (3)
N1—C1—C2—C354.1 (3)C8—C9—C12—C13173.55 (17)
C1—C2—C3—C453.8 (3)O1—C12—C13—C144.7 (3)
C2—C3—C4—C554.8 (2)C9—C12—C13—C14174.04 (18)
C6—N1—C5—C4159.97 (17)C12—C13—C14—C15179.56 (17)
C1—N1—C5—C455.8 (2)C13—C14—C15—C20164.14 (19)
C3—C4—C5—N156.2 (2)C13—C14—C15—C1616.6 (3)
C5—N1—C6—C111.4 (3)C20—C15—C16—C170.2 (3)
C1—N1—C6—C11143.41 (19)C14—C15—C16—C17179.45 (17)
C5—N1—C6—C7178.68 (17)C15—C16—C17—C181.0 (3)
C1—N1—C6—C739.3 (3)C16—C17—C18—C191.5 (3)
N1—C6—C7—C8178.05 (17)C17—C18—C19—C200.7 (3)
C11—C6—C7—C80.6 (3)C17—C18—C19—N2177.91 (16)
C6—C7—C8—C90.1 (3)O2—N2—C19—C20174.07 (18)
C7—C8—C9—C100.9 (3)O3—N2—C19—C206.5 (3)
C7—C8—C9—C12175.81 (17)O2—N2—C19—C187.2 (3)
C8—C9—C10—C111.4 (3)O3—N2—C19—C18172.18 (17)
C12—C9—C10—C11175.06 (17)C18—C19—C20—C150.5 (3)
C9—C10—C11—C60.9 (3)N2—C19—C20—C15179.10 (16)
N1—C6—C11—C10177.47 (17)C16—C15—C20—C190.9 (3)
C7—C6—C11—C100.1 (3)C14—C15—C20—C19179.82 (17)
C10—C9—C12—O1168.65 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O3i0.932.553.441 (2)161
C16—H16A···O1ii0.932.453.358 (2)164
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H20N2O3
Mr336.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.4268 (12), 11.3884 (18), 39.447 (6)
V3)3336.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.22 × 0.11
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.973, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
20847, 4870, 3174
Rint0.062
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.154, 1.04
No. of reflections4870
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O3i0.932.553.441 (2)161.4
C16—H16A···O1ii0.932.453.358 (2)163.8
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PSKBP/8630013). BN thanks the UGC, New Delhi, Government of India, for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248–o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372–o1373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3058–o3059.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011c). Acta Cryst. E67, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds