metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m419-m420

[2-(Di­methyl­amino)­ethanol-κ2N,O][2-(di­methyl­amino)­ethano­lato-κ2N,O]iodidocopper(II)

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64, Kyiv 01033, Ukraine, and bCentre for Microscopy, Characterisation and Analysis, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

(Received 15 February 2012; accepted 7 March 2012; online 14 March 2012)

The title compound, [Cu(C4H10NO)I(C4H11NO)], was obtained unintentionally as the product of an attempted synthesis of a Cu/Zn mixed-metal complex using zerovalent copper, zinc(II) oxide and ammonium iodide in pure 2-(dimethyl­amino)­ethanol, in air. The mol­ecular complex has no crystallographically imposed symmetry. The coordination geometry around the metal atom is distorted square-pyramidal. The equatorial coordination around copper involves donor atoms of the bidentate chelating 2-(dimethyl­amino)­ethanol ligand and the 2-(dimethyl­amino)­ethano­late group, which are mutually trans to each other, with four approximately equal short Cu—O/N bond distances. The axial Cu—I bond is substanti­ally elongated. Inter­molecular hydrogen-bonding inter­actions involving the –OH group of the neutral 2-(dimethyl­amino)­ethanol ligand to the O atom of the monodeprotonated 2-(dimethyl­amino)­ethano­late group of the mol­ecule related by the n-glide plane, as indicated by the O⋯O distance of 2.482 (12) Å, form chains of mol­ecules propagating along [101].

Related literature

For background to the synthesis, see: Vinogradova et al. (2002[Vinogradova, E. A., Vassilyeva, O. Yu. & Kokozay, V. N. (2002). Inorg. Chem. Commun. 5, 19-22.]). Buvaylo et al. (2009[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Eremenko, I. L., Jezierska, J. & Ozarowski, A. (2009). Inorg. Chem. 48, 11092-11097.], 2011[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J. & Ozarowski, A. (2011). Inorg. Chim. Acta, 373, 27-31.]). Elongation of the axial Cu—I bond is common in this kind of compound, see: Wells (1986[Wells, A. F. (1986). In Structural Inorganic Chemistry, 5th ed. Oxford: Clarendon Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H10NO)I(C4H11NO)]

  • Mr = 367.71

  • Monoclinic, P 21 /n

  • a = 8.690 (1) Å

  • b = 15.241 (1) Å

  • c = 11.116 (1) Å

  • β = 106.847 (10)°

  • V = 1409.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.72 mm−1

  • T = 296 K

  • 0.32 × 0.3 × 0.2 mm

Data collection
  • Rigaku AFC-6S diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.333, Tmax = 0.47

  • 2642 measured reflections

  • 2471 independent reflections

  • 1003 reflections with I > 2σ(I)

  • Rint = 0.089

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.204

  • S = 1.00

  • 2471 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 1.80 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected bond lengths (Å)

I1—Cu1 2.928 (2)
Cu1—O1 2.030 (9)
Cu1—N2 2.058 (11)
Cu1—N1 2.059 (10)
Cu1—O2 2.010 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.82 1.68 2.482 (12) 167
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: AFC6S Diffractometer Control Software (Molecular Structure Corporation, 1998)[Molecular Structure Corporation (1998). AFC6S Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]; cell refinement: AFC6S Diffractometer Control Software; data reduction: TEXSAN (Molec­ular Structure Corporation & Rigaku, 2000[Molecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Johnson (1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In our previous study metal powders of zinc and copper were found to react with ammonium iodide and 2-(dimethylamino)ethanol (HMe2Ea) in methanol, in air, affording the new heterotrinuclear complex [Cu2Zn(NH3)I3(Me2Ea)3] (Vinogradova et al., 2002). Reactions employing elemental copper and aminoalcohol allow in situ formation of the metal aminoalkoxo species - key building blocks that can subsequently self-assemble with other metal centres present in the reaction vessel (Buvaylo et al., 2009; Buvaylo et al., 2011). The title compound was isolated from the solution obtained by reacting copper powder and zinc oxide with ammonium iodide in pure 2-(dimethylamino)ethanol. It can be considered as an intermediate, a building block that failed self-organization with another metal species produced in the reaction medium. To the best of our knowledge the title compound has not been structurally characterized.

The molecular complex has no crystallographically imposed symmetry (Fig. 1). The coordination geometry around the metal atom is distorted square pyramidal. The equatorial coordination around Cu(1) involves donor atoms of bidentate chelating 2-(dimethylamino)ethanol and 2-(dimethylamino)ethanolato group, which are mutually trans to each other, with four approximately equal short distances. The axial Cu(1)–I(1) bond is substantially elongated [2.928 (2) Å], and it is common for this kind of compounds (Wells, 1986).

Intermolecular hydrogen-bonding interactions from the OH group of neutral 2-(dimethylamino)ethanol ligand to O atom of monodeprotonated 2-(dimethylamino)ethanolato group of the molecule related by the n glide plane [H2O···O1{x - 1/2, -y + 1/2, z - 1/2} = 1.68 Å; O2···O1{x - 1/2, -y + 1/2, z - 1/2} = 2.482 (12) Å and O2—H2O···O1{x - 1/2, -y + 1/2, z - 1/2} = 167.3°] form chains of Cu(Me2Ea)(HMe2Ea)I molecules propagated along the 101 direction (Fig. 2). Cu···Cu separations in the crystal are > 6.6 Å.

Related literature top

For background to the synthesis, see: Vinogradova et al. (2002). Buvaylo et al. (2009, 2011). Elongation of the axial Cu—I bond is common in this kind of compound, see: Wells (1986).

Experimental top

Copper powder (0.16 g, 2.5 mmol), ZnO (0.20 g, 2.5 mmol), NH4I (1.45 g, 10 mmol), HMe2Ea (15 ml) were heated to 323–333 K and magnetically stirred until total dissolution of the copper and ZnO was observed (95 min). The resulting blue solution was filtered and allowed to stand at room temperature. Green-blue microcrystals of the title compound were formed after one day. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo (yield: 0.23 g).

Refinement top

The non-hydrogen atoms were refined anisotropically. The hydrogen atom on O2 atom was located and its position constrained with the isotropic displacement parameter allowed to refine. Other hydrogen atoms were placed at idealized positions (C–H = 0.95 Å, UisoH = 1.20Ueq C for CH2, 1.5Ueq C for CH3) and not refined.

Structure description top

In our previous study metal powders of zinc and copper were found to react with ammonium iodide and 2-(dimethylamino)ethanol (HMe2Ea) in methanol, in air, affording the new heterotrinuclear complex [Cu2Zn(NH3)I3(Me2Ea)3] (Vinogradova et al., 2002). Reactions employing elemental copper and aminoalcohol allow in situ formation of the metal aminoalkoxo species - key building blocks that can subsequently self-assemble with other metal centres present in the reaction vessel (Buvaylo et al., 2009; Buvaylo et al., 2011). The title compound was isolated from the solution obtained by reacting copper powder and zinc oxide with ammonium iodide in pure 2-(dimethylamino)ethanol. It can be considered as an intermediate, a building block that failed self-organization with another metal species produced in the reaction medium. To the best of our knowledge the title compound has not been structurally characterized.

The molecular complex has no crystallographically imposed symmetry (Fig. 1). The coordination geometry around the metal atom is distorted square pyramidal. The equatorial coordination around Cu(1) involves donor atoms of bidentate chelating 2-(dimethylamino)ethanol and 2-(dimethylamino)ethanolato group, which are mutually trans to each other, with four approximately equal short distances. The axial Cu(1)–I(1) bond is substantially elongated [2.928 (2) Å], and it is common for this kind of compounds (Wells, 1986).

Intermolecular hydrogen-bonding interactions from the OH group of neutral 2-(dimethylamino)ethanol ligand to O atom of monodeprotonated 2-(dimethylamino)ethanolato group of the molecule related by the n glide plane [H2O···O1{x - 1/2, -y + 1/2, z - 1/2} = 1.68 Å; O2···O1{x - 1/2, -y + 1/2, z - 1/2} = 2.482 (12) Å and O2—H2O···O1{x - 1/2, -y + 1/2, z - 1/2} = 167.3°] form chains of Cu(Me2Ea)(HMe2Ea)I molecules propagated along the 101 direction (Fig. 2). Cu···Cu separations in the crystal are > 6.6 Å.

For background to the synthesis, see: Vinogradova et al. (2002). Buvaylo et al. (2009, 2011). Elongation of the axial Cu—I bond is common in this kind of compound, see: Wells (1986).

Computing details top

Data collection: AFC6S Diffractometer Control Software (Molecular Structure Corporation, 1998); cell refinement: AFC6S Diffractometer Control Software (Molecular Structure Corporation, 1998); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Johnson (1976); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the complex with the numbering scheme (the non-hydrogen atoms shown as 20% thermal ellipsoids).
[Figure 2] Fig. 2. Hydrogen-bonding interactions between Cu(Me2Ea)(HMe2Ea)I molecules within a polymeric chain.
[2-(Dimethylamino)ethanol-κ2N,O][2-(dimethylamino)ethanolato- κ2N,O]iodidocopper(II) top
Crystal data top
[Cu(C4H10NO)I(C4H11NO)]F(000) = 724
Mr = 367.71Dx = 1.733 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -p 2ynCell parameters from 6 reflections
a = 8.690 (1) Åθ = 10.9–11.9°
b = 15.241 (1) ŵ = 3.72 mm1
c = 11.116 (1) ÅT = 296 K
β = 106.847 (10)°Rod, blue-green
V = 1409.1 (2) Å30.32 × 0.3 × 0.2 mm
Z = 4
Data collection top
Rigaku AFC-6S
diffractometer
1003 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
Graphite monochromatorθmax = 25°, θmin = 2.3°
2θω scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.333, Tmax = 0.47l = 1312
2642 measured reflections3 standard reflections every 150 reflections
2471 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0962P)2]
where P = (Fo2 + 2Fc2)/3
2471 reflections(Δ/σ)max = 0.013
133 parametersΔρmax = 1.80 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cu(C4H10NO)I(C4H11NO)]V = 1409.1 (2) Å3
Mr = 367.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.690 (1) ŵ = 3.72 mm1
b = 15.241 (1) ÅT = 296 K
c = 11.116 (1) Å0.32 × 0.3 × 0.2 mm
β = 106.847 (10)°
Data collection top
Rigaku AFC-6S
diffractometer
1003 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.089
Tmin = 0.333, Tmax = 0.473 standard reflections every 150 reflections
2642 measured reflections intensity decay: none
2471 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.00Δρmax = 1.80 e Å3
2471 reflectionsΔρmin = 0.83 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.64794 (15)0.39539 (8)0.25072 (11)0.0679 (5)
Cu10.4723 (2)0.26167 (12)0.34694 (15)0.0456 (6)
O10.5633 (10)0.2803 (6)0.5351 (8)0.044 (2)
O20.3381 (11)0.2106 (6)0.1834 (8)0.038 (2)
H2O0.24280.21470.14370.08 (6)*
N10.2813 (13)0.3302 (7)0.3748 (9)0.038 (3)
N20.6101 (12)0.1521 (7)0.3455 (9)0.033 (3)
C10.4697 (16)0.3364 (10)0.5848 (13)0.050 (4)
H1A0.53910.37550.64570.06*
H1B0.40740.30210.62760.06*
C20.3579 (18)0.3894 (9)0.4808 (13)0.048 (4)
H2A0.27610.41730.51130.057*
H2B0.41780.43490.4530.057*
C30.1879 (19)0.3814 (10)0.2666 (13)0.061 (5)
H3A0.09860.40860.28640.092*
H3B0.14880.34340.19540.092*
H3C0.25510.42590.2470.092*
C40.1717 (17)0.2652 (10)0.4069 (14)0.052 (4)
H4A0.08540.29550.4270.079*
H4B0.23040.23110.47810.079*
H4C0.12840.22710.33650.079*
C50.4044 (16)0.1367 (9)0.1424 (13)0.046 (4)
H5A0.38690.13980.05230.055*
H5B0.35280.08390.16070.055*
C60.5814 (15)0.1335 (9)0.2087 (11)0.038 (3)
H6A0.62340.07590.1980.045*
H6B0.6370.17660.17250.045*
C70.7829 (17)0.1630 (11)0.4054 (13)0.059 (5)
H7A0.80630.15340.49420.089*
H7B0.81440.22150.39050.089*
H7C0.84130.12140.37070.089*
C80.5534 (19)0.0790 (9)0.4089 (13)0.054 (4)
H8A0.59480.02460.38770.08*
H8B0.43810.07750.3820.08*
H8C0.59060.08760.49820.08*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0801 (9)0.0630 (7)0.0579 (7)0.0279 (7)0.0159 (6)0.0090 (6)
Cu10.0337 (9)0.0659 (13)0.0304 (9)0.0154 (9)0.0015 (7)0.0125 (9)
O10.040 (5)0.057 (6)0.032 (5)0.016 (5)0.006 (4)0.003 (5)
O20.030 (6)0.046 (6)0.034 (5)0.003 (4)0.004 (4)0.012 (5)
N10.042 (7)0.047 (7)0.021 (6)0.013 (5)0.005 (5)0.001 (5)
N20.033 (6)0.045 (7)0.020 (5)0.010 (5)0.005 (5)0.001 (5)
C10.038 (9)0.063 (11)0.046 (9)0.004 (8)0.005 (7)0.006 (8)
C20.050 (9)0.046 (9)0.045 (8)0.003 (8)0.010 (7)0.015 (8)
C30.073 (12)0.062 (11)0.037 (8)0.027 (9)0.001 (8)0.001 (8)
C40.048 (9)0.070 (11)0.053 (9)0.019 (8)0.035 (8)0.008 (8)
C50.053 (9)0.048 (9)0.032 (8)0.011 (7)0.007 (7)0.005 (7)
C60.038 (8)0.045 (9)0.030 (7)0.011 (7)0.011 (6)0.014 (6)
C70.059 (10)0.071 (12)0.042 (9)0.033 (9)0.008 (8)0.009 (9)
C80.081 (12)0.043 (9)0.034 (8)0.000 (8)0.013 (8)0.011 (7)
Geometric parameters (Å, º) top
I1—Cu12.928 (2)C2—H2B0.97
Cu1—O12.030 (9)C3—H3A0.96
Cu1—N22.058 (11)C3—H3B0.96
Cu1—N12.059 (10)C3—H3C0.96
Cu1—O22.010 (8)C4—H4A0.96
O1—C11.399 (16)C4—H4B0.96
O2—C51.400 (16)C4—H4C0.96
O2—H2O0.82C5—C61.502 (17)
N1—C31.466 (15)C5—H5A0.97
N1—C21.481 (16)C5—H5B0.97
N1—C41.488 (16)C6—H6A0.97
N2—C71.465 (16)C6—H6B0.97
N2—C81.476 (17)C7—H7A0.96
N2—C61.495 (15)C7—H7B0.96
C1—C21.512 (19)C7—H7C0.96
C1—H1A0.97C8—H8A0.96
C1—H1B0.97C8—H8B0.96
C2—H2A0.97C8—H8C0.96
O1—Cu1—N293.9 (4)N1—C3—H3A109.5
O1—Cu1—N182.2 (4)N1—C3—H3B109.5
N2—Cu1—N1155.4 (4)H3A—C3—H3B109.5
O1—Cu1—I1101.0 (3)N1—C3—H3C109.5
N2—Cu1—I1101.3 (3)H3A—C3—H3C109.5
N1—Cu1—I1103.3 (3)H3B—C3—H3C109.5
I1—Cu1—O299.6 (3)N1—C4—H4A109.5
O1—Cu1—O2159.5 (4)N1—C4—H4B109.5
O2—Cu1—N192.9 (4)H4A—C4—H4B109.5
O2—Cu1—N282.3 (4)N1—C4—H4C109.5
C1—O1—Cu1113.3 (7)H4A—C4—H4C109.5
C5—O2—H2O109.5H4B—C4—H4C109.5
C3—N1—C2110.0 (11)O2—C5—C6109.0 (11)
C3—N1—C4108.1 (11)O2—C5—H5A109.9
C2—N1—C4112.7 (11)C6—C5—H5A109.9
C3—N1—Cu1115.2 (9)O2—C5—H5B109.9
C2—N1—Cu1103.5 (8)C6—C5—H5B109.9
C4—N1—Cu1107.4 (8)H5A—C5—H5B108.3
C7—N2—C8108.0 (11)N2—C6—C5109.7 (10)
C7—N2—C6109.3 (10)N2—C6—H6A109.7
C8—N2—C6111.3 (10)C5—C6—H6A109.7
C7—N2—Cu1115.2 (9)N2—C6—H6B109.7
C8—N2—Cu1109.4 (8)C5—C6—H6B109.7
C6—N2—Cu1103.6 (7)H6A—C6—H6B108.2
O1—C1—C2110.1 (11)N2—C7—H7A109.5
O1—C1—H1A109.6N2—C7—H7B109.5
C2—C1—H1A109.6H7A—C7—H7B109.5
O1—C1—H1B109.6N2—C7—H7C109.5
C2—C1—H1B109.6H7A—C7—H7C109.5
H1A—C1—H1B108.2H7B—C7—H7C109.5
N1—C2—C1108.9 (11)N2—C8—H8A109.5
N1—C2—H2A109.9N2—C8—H8B109.5
C1—C2—H2A109.9H8A—C8—H8B109.5
N1—C2—H2B109.9N2—C8—H8C109.5
C1—C2—H2B109.9H8A—C8—H8C109.5
H2A—C2—H2B108.3H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.821.682.482 (12)167
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C4H10NO)I(C4H11NO)]
Mr367.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.690 (1), 15.241 (1), 11.116 (1)
β (°) 106.847 (10)
V3)1409.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.72
Crystal size (mm)0.32 × 0.3 × 0.2
Data collection
DiffractometerRigaku AFC-6S
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.333, 0.47
No. of measured, independent and
observed [I > 2σ(I)] reflections
2642, 2471, 1003
Rint0.089
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.204, 1.00
No. of reflections2471
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.80, 0.83

Computer programs: AFC6S Diffractometer Control Software (Molecular Structure Corporation, 1998), TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Johnson (1976), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
I1—Cu12.928 (2)Cu1—N12.059 (10)
Cu1—O12.030 (9)Cu1—O22.010 (8)
Cu1—N22.058 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.821.682.482 (12)167.3
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

We thank Professor Philip J. Squattrito for the data collection.

References

First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Eremenko, I. L., Jezierska, J. & Ozarowski, A. (2009). Inorg. Chem. 48, 11092–11097.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J. & Ozarowski, A. (2011). Inorg. Chim. Acta, 373, 27–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation (1998). AFC6S Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinogradova, E. A., Vassilyeva, O. Yu. & Kokozay, V. N. (2002). Inorg. Chem. Commun. 5, 19–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationWells, A. F. (1986). In Structural Inorganic Chemistry, 5th ed. Oxford: Clarendon Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m419-m420
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds