metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m425-m426

Bis(propane-1,3-di­amine)­disaccharinatonickel(II)

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: gkastas@omu.edu.tr

(Received 17 February 2012; accepted 9 March 2012; online 17 March 2012)

In the title complex, [Ni(C7H4NO3S)2(C3H10N2)2] or [Ni(sac)2(pen)2] (sac = saccharinate or 1,1,3-trioxo-2,3-dihydro-1λ6,2-benzothia­zol-2-ide and pen = propane-1,3-diamine), the NiII ion sits on an inversion center, being coordinated by two N atoms of the sac ligands, which occupy trans positions, and four N atoms of the bidentate pen ligands to define a distorted octa­hedral geometry. The pen ligands chelate the metal ion, forming a six-membered ring which adopts a half-chair conformation, while the sac ligands adopt the most common coordination mode. The crystal packing is stabilized by N—H⋯O hydrogen bonds, which form a one-dimensional network along [010]. It is also supported by an N—H⋯S hydrogen bond between the amine group of the pen ligand and the sulfonyl group of the sac ligand.

Related literature

For background to saccharin and the use of the saccharinato anion (sac), as a polyfunctional ligand, see: Baran & Yilmaz (2006[Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980-1999.]); Heren et al. (2008[Heren, Z., Paşaoğlu, H., Kaştaş, G. & Akdağ, K. (2008). Z. Anorg. Allg. Chem. 634, 1933-1936.]); Paşaoğlu et al. (2007[Paşaoğlu, H., Kaştaş, G., Yeşilel, O. Z. & Şahin, O. (2007). Acta Cryst. E63, m2953-m2954.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Bulut et al. (2007[Bulut, İ., Paşaoğlu, H., Kaştaş, G. & Bulut, A. (2007). Acta Cryst. E63, m2409-m2410.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4NO3S)2(C3H10N2)2]

  • Mr = 571.31

  • Monoclinic, P 21 /n

  • a = 11.447 (5) Å

  • b = 7.209 (6) Å

  • c = 15.236 (5) Å

  • β = 109.313 (5)°

  • V = 1186.5 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 296 K

  • 0.52 × 0.35 × 0.15 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.673, Tmax = 0.873

  • 18160 measured reflections

  • 2590 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.101

  • S = 0.83

  • 2590 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N2 2.092 (2)
Ni1—N3 2.118 (2)
Ni1—N1 2.2604 (18)
N2—Ni1—N3 91.43 (9)
N2—Ni1—N1 93.21 (8)
N3—Ni1—N1 88.87 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.78 (3) 2.58 (3) 3.194 (3) 137 (3)
N3—H3B⋯O2ii 0.85 (4) 2.34 (4) 3.143 (3) 158 (3)
N3—H3B⋯S1ii 0.85 (4) 2.82 (4) 3.431 (2) 130 (3)
N2—H2A⋯O1ii 0.90 (4) 2.60 (3) 3.227 (3) 128 (3)
N2—H2B⋯O3iii 0.81 (4) 2.39 (4) 3.090 (3) 146 (3)
N3—H3A⋯O1 0.78 (3) 2.36 (3) 2.952 (3) 134 (3)
N2—H2B⋯O3 0.81 (4) 2.56 (4) 3.085 (3) 124 (3)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y, -z+1; (iii) -x, -y-1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Saccharin (3H-benzisothiazol-3-one 1,1-dioxide or o-benzosulfimide) is a well known artificial sweetener. It is readily deprotonated to form saccharinato anion (sac), which is a versatile polyfunctional ligand (Baran & Yilmaz, 2006). Because of the biological significance of saccharin, there has been increased interest in its metal complexes, especially with first-row transition metals (Paşaoğlu et al., 2007; Heren et al., 2008. Saccharin, or its anion, may bond to metals by means of their imino nitrogen, carbonyl oxygen, or sulfonyl oxygen atoms. In the last two decades, the metal saccharinates and metal complexes including saccharin and various N-donor ligands (mono- or bidentate) have been intensively studied by many investigators. In the present study, the mixed-ligand NiII complex of saccharinate with pen (Scheme) is investigated.

In the title compound, NiII ion sits on an inversion center, being coordinated by two N atoms of sac ligand and four N atoms of bidentate pen ligands in trans positions. The bond distances and angles (Table 1) show that the coordination polyhedron of the NiII ion is a distorted octahedron. The equatorial plane of the octahedron is defined by the N atoms of pen ligands, whereas the axial positions are occupied by the N atoms of the sac ligands (Fig. 1). It is seen that the pen ligands chelate the metal ion to form a six-membered ring adopting a half-chair conformation while sac ligands prefer the most common coordination mode. The intra-ligand bond lengths and angles of the sac ligand are similar to those observed in previous studies (Paşaoğlu et al., 2007; Heren et al., 2008). The sac ligand is planar, with an r.m.s deviation of 0.022 Å. The dihedral angle between the equatorial plane and the mean plane of sac was measured as 84.50 (7)°. It is seen in Table 1 that the Ni—Npen bond distances span the range 2.094 (3)–2.119 (3) Å, being shorter than Ni-Nsac distance (2.262 (2) Å) which is comparable to that observed in [Ni(C7H4NO3S)(C5H9N3)2] (2.2874 (19) Å) (Bulut et al., 2007). The crystal packing of the complex is mainly stabilized by hydrogen bonds of N—H···O type (Table 2). Multiple H-bond donor and acceptor behaviors of amine and sulfonyl groups enable a variety of chain and ring systems in the crystal packing. For example, the inter-molecular N2—H2B···O3iii (iii: -x, -1 - y, 1 - z) hydrogen bonds form centrosymmetric R22(12) (Bernstein et al., 1995) rings located at (0, 1/2+n, 1/2: n=0 or integer) positions to form one-dimensional hyrogen bonding network along [010] (Fig. 2). On the other hand, the same ring motifs are also formed by N3—H3B···O2i (i:-x, -y, 1 - z) hydrogen bonds (Fig. 3).

Related literature top

For background to saccharin and the use of the saccharinato anion (sac), as a polyfunctional ligand, see: Baran & Yilmaz (2006); Heren et al. (2008); Paşaoğlu et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Bulut et al. (2007).

Experimental top

An aquous solution of pen (2.54 mmol, 0.19 g) was added dropwise with stirring to a solution of [Ni(sac)2(H2O)4].2H2O (1.27 mmol, 1.00 g). The mixture was heated to 343 K in a temperature-controlled bath and stirred for 3 h. The green reaction mixture was filtered and left for crystallization in room temperature. After two weeks, the violet crystals of the title complex were selected for X-ray experiment. IR (KBr, ν cm-1), stretching vibrations: 3326–3290 (NH2), 3153–3060 (CH)ring, 2948–2881 (CH2) 1658 (C=O), 1575 (C=C)sac 1406 (C=N)pen, 1325 (CNS)sym, 1269 (SO2)asym 1141 (SO2)sym, 950 (CNS)asym.

Refinement top

All H atoms except those involved in H-bonds were positioned geometrically and treated using a riding model, with the distances of 0.970 and 0.930 Å for methylene and aromatic groups, respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq for parent atoms.

Structure description top

Saccharin (3H-benzisothiazol-3-one 1,1-dioxide or o-benzosulfimide) is a well known artificial sweetener. It is readily deprotonated to form saccharinato anion (sac), which is a versatile polyfunctional ligand (Baran & Yilmaz, 2006). Because of the biological significance of saccharin, there has been increased interest in its metal complexes, especially with first-row transition metals (Paşaoğlu et al., 2007; Heren et al., 2008. Saccharin, or its anion, may bond to metals by means of their imino nitrogen, carbonyl oxygen, or sulfonyl oxygen atoms. In the last two decades, the metal saccharinates and metal complexes including saccharin and various N-donor ligands (mono- or bidentate) have been intensively studied by many investigators. In the present study, the mixed-ligand NiII complex of saccharinate with pen (Scheme) is investigated.

In the title compound, NiII ion sits on an inversion center, being coordinated by two N atoms of sac ligand and four N atoms of bidentate pen ligands in trans positions. The bond distances and angles (Table 1) show that the coordination polyhedron of the NiII ion is a distorted octahedron. The equatorial plane of the octahedron is defined by the N atoms of pen ligands, whereas the axial positions are occupied by the N atoms of the sac ligands (Fig. 1). It is seen that the pen ligands chelate the metal ion to form a six-membered ring adopting a half-chair conformation while sac ligands prefer the most common coordination mode. The intra-ligand bond lengths and angles of the sac ligand are similar to those observed in previous studies (Paşaoğlu et al., 2007; Heren et al., 2008). The sac ligand is planar, with an r.m.s deviation of 0.022 Å. The dihedral angle between the equatorial plane and the mean plane of sac was measured as 84.50 (7)°. It is seen in Table 1 that the Ni—Npen bond distances span the range 2.094 (3)–2.119 (3) Å, being shorter than Ni-Nsac distance (2.262 (2) Å) which is comparable to that observed in [Ni(C7H4NO3S)(C5H9N3)2] (2.2874 (19) Å) (Bulut et al., 2007). The crystal packing of the complex is mainly stabilized by hydrogen bonds of N—H···O type (Table 2). Multiple H-bond donor and acceptor behaviors of amine and sulfonyl groups enable a variety of chain and ring systems in the crystal packing. For example, the inter-molecular N2—H2B···O3iii (iii: -x, -1 - y, 1 - z) hydrogen bonds form centrosymmetric R22(12) (Bernstein et al., 1995) rings located at (0, 1/2+n, 1/2: n=0 or integer) positions to form one-dimensional hyrogen bonding network along [010] (Fig. 2). On the other hand, the same ring motifs are also formed by N3—H3B···O2i (i:-x, -y, 1 - z) hydrogen bonds (Fig. 3).

For background to saccharin and the use of the saccharinato anion (sac), as a polyfunctional ligand, see: Baran & Yilmaz (2006); Heren et al. (2008); Paşaoğlu et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Bulut et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A molecular view of the complex, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms not involved in hydrogen bonding were omitted for clarity.
[Figure 2] Fig. 2. The centrosymmetric R22(12) rings connecting the discrete molecules along [010]. Benzene rings and some H atoms were omitted for clarity.
[Figure 3] Fig. 3. The formation of centrosymmetric R22(12) rings. Benzene rings and some H atoms were omitted for clarity.
Bis(propane-1,3-diamine-κ2N,N')bis(1,1,3-trioxo-2,3- dihydro-1λ6,2-benzothiazol-2-ido-κN)nickel(II) top
Crystal data top
[Ni(C7H4NO3S)2(C3H10N2)2]F(000) = 596
Mr = 571.31Dx = 1.599 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 27512 reflections
a = 11.447 (5) Åθ = 1.9–28.1°
b = 7.209 (6) ŵ = 1.04 mm1
c = 15.236 (5) ÅT = 296 K
β = 109.313 (5)°Prism, violet
V = 1186.5 (12) Å30.52 × 0.35 × 0.15 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
2590 independent reflections
Radiation source: fine-focus sealed tube2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
rotation method scansθmax = 27.0°, θmin = 2.0°
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
h = 1414
Tmin = 0.673, Tmax = 0.873k = 99
18160 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.9405P]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max = 0.001
2590 reflectionsΔρmax = 0.74 e Å3
177 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0040 (12)
Crystal data top
[Ni(C7H4NO3S)2(C3H10N2)2]V = 1186.5 (12) Å3
Mr = 571.31Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.447 (5) ŵ = 1.04 mm1
b = 7.209 (6) ÅT = 296 K
c = 15.236 (5) Å0.52 × 0.35 × 0.15 mm
β = 109.313 (5)°
Data collection top
Stoe IPDS 2
diffractometer
2590 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
2334 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.873Rint = 0.045
18160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.74 e Å3
2590 reflectionsΔρmin = 0.37 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.50000.03195 (14)
S10.09614 (5)0.33212 (7)0.62118 (4)0.03795 (16)
O30.00193 (18)0.4563 (2)0.61249 (13)0.0506 (4)
N10.05429 (17)0.1179 (2)0.61849 (12)0.0384 (4)
O20.21766 (18)0.3644 (3)0.55571 (12)0.0567 (5)
N30.1349 (2)0.1650 (3)0.59749 (14)0.0408 (4)
C20.0733 (2)0.1541 (3)0.76883 (15)0.0409 (5)
O10.02673 (19)0.1378 (2)0.71301 (14)0.0585 (5)
C70.10157 (19)0.3318 (3)0.73503 (15)0.0378 (4)
C10.0490 (2)0.0281 (3)0.69877 (17)0.0414 (5)
N20.12960 (19)0.2097 (3)0.50843 (14)0.0416 (4)
C60.1277 (2)0.4744 (4)0.78602 (17)0.0459 (5)
H60.14670.59310.76160.055*
C50.1241 (3)0.4313 (5)0.87586 (19)0.0578 (7)
H50.14040.52310.91310.069*
C30.0707 (3)0.1121 (4)0.85797 (18)0.0566 (6)
H30.05220.00710.88190.068*
C90.3068 (2)0.0680 (5)0.6283 (2)0.0633 (7)
H9A0.33050.01130.57900.076*
H9B0.38240.10270.67730.076*
C80.2373 (2)0.2388 (4)0.59136 (17)0.0527 (6)
H8A0.29240.32640.57670.063*
H8B0.21000.29390.63940.063*
C40.0965 (3)0.2530 (5)0.91060 (19)0.0641 (8)
H40.09520.22740.97070.077*
C100.2423 (2)0.0754 (5)0.66625 (18)0.0614 (7)
H10A0.21480.01790.71360.074*
H10B0.30180.17080.69640.074*
H3A0.098 (3)0.220 (4)0.623 (2)0.045 (7)*
H3B0.168 (3)0.238 (5)0.569 (2)0.079 (11)*
H2A0.157 (3)0.179 (5)0.461 (2)0.068 (9)*
H2B0.091 (3)0.306 (5)0.498 (2)0.071 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0364 (2)0.0281 (2)0.0298 (2)0.00006 (13)0.00887 (14)0.00239 (12)
S10.0495 (3)0.0318 (3)0.0353 (3)0.0060 (2)0.0177 (2)0.00277 (19)
O30.0724 (12)0.0318 (8)0.0610 (11)0.0004 (8)0.0399 (9)0.0036 (7)
N10.0512 (10)0.0299 (8)0.0373 (9)0.0036 (7)0.0189 (8)0.0019 (7)
O20.0613 (10)0.0609 (11)0.0423 (9)0.0209 (9)0.0098 (8)0.0012 (8)
N30.0475 (10)0.0392 (10)0.0351 (9)0.0075 (8)0.0125 (8)0.0044 (8)
C20.0426 (11)0.0438 (12)0.0393 (11)0.0010 (9)0.0176 (9)0.0056 (9)
O10.0853 (13)0.0364 (9)0.0662 (12)0.0125 (9)0.0419 (11)0.0154 (8)
C70.0375 (10)0.0408 (11)0.0371 (10)0.0010 (8)0.0152 (8)0.0012 (8)
C10.0471 (11)0.0362 (11)0.0448 (12)0.0018 (9)0.0204 (10)0.0074 (9)
N20.0458 (10)0.0352 (10)0.0430 (10)0.0030 (8)0.0138 (8)0.0004 (8)
C60.0488 (12)0.0479 (13)0.0453 (12)0.0005 (10)0.0214 (10)0.0061 (10)
C50.0595 (15)0.0734 (18)0.0474 (13)0.0001 (13)0.0270 (12)0.0104 (13)
C30.0673 (16)0.0627 (16)0.0461 (13)0.0074 (13)0.0275 (12)0.0155 (12)
C90.0435 (13)0.0687 (18)0.0675 (17)0.0012 (12)0.0045 (12)0.0007 (15)
C80.0532 (13)0.0592 (15)0.0434 (12)0.0150 (11)0.0128 (10)0.0037 (11)
C40.0736 (18)0.086 (2)0.0411 (13)0.0076 (16)0.0303 (13)0.0077 (13)
C100.0522 (14)0.081 (2)0.0412 (13)0.0014 (14)0.0020 (11)0.0180 (13)
Geometric parameters (Å, º) top
Ni1—N22.092 (2)N2—C81.459 (3)
Ni1—N2i2.092 (2)N2—H2A0.90 (4)
Ni1—N32.118 (2)N2—H2B0.81 (4)
Ni1—N3i2.118 (2)C6—C51.391 (4)
Ni1—N1i2.2604 (18)C6—H60.9300
Ni1—N12.2604 (18)C5—C41.386 (5)
S1—O21.4375 (19)C5—H50.9300
S1—O31.4409 (18)C3—C41.385 (4)
S1—N11.622 (2)C3—H30.9300
S1—C71.756 (2)C9—C81.473 (4)
N1—C11.367 (3)C9—C101.493 (4)
N3—C101.475 (3)C9—H9A0.9700
N3—H3A0.78 (3)C9—H9B0.9700
N3—H3B0.85 (4)C8—H8A0.9700
C2—C71.378 (3)C8—H8B0.9700
C2—C31.382 (3)C4—H40.9300
C2—C11.497 (3)C10—H10A0.9700
O1—C11.227 (3)C10—H10B0.9700
C7—C61.379 (3)
N2—Ni1—N2i180.00 (12)N1—C1—C2112.75 (19)
N2—Ni1—N391.43 (9)C8—N2—Ni1122.38 (16)
N2i—Ni1—N388.57 (9)C8—N2—H2A108 (2)
N2—Ni1—N3i88.57 (9)Ni1—N2—H2A101 (2)
N2i—Ni1—N3i91.43 (9)C8—N2—H2B107 (3)
N3—Ni1—N3i180.0Ni1—N2—H2B106 (2)
N2—Ni1—N1i86.79 (8)H2A—N2—H2B112 (3)
N2i—Ni1—N1i93.21 (8)C7—C6—C5116.5 (2)
N3—Ni1—N1i91.13 (8)C7—C6—H6121.7
N3i—Ni1—N1i88.87 (8)C5—C6—H6121.7
N2—Ni1—N193.21 (8)C4—C5—C6120.8 (3)
N2i—Ni1—N186.79 (8)C4—C5—H5119.6
N3—Ni1—N188.87 (8)C6—C5—H5119.6
N3i—Ni1—N191.13 (8)C2—C3—C4117.9 (3)
N1i—Ni1—N1180.000 (1)C2—C3—H3121.0
O2—S1—O3114.68 (12)C4—C3—H3121.0
O2—S1—N1111.28 (11)C8—C9—C10116.9 (2)
O3—S1—N1110.67 (11)C8—C9—H9A108.1
O2—S1—C7110.08 (11)C10—C9—H9A108.1
O3—S1—C7111.32 (11)C8—C9—H9B108.1
N1—S1—C797.53 (10)C10—C9—H9B108.1
C1—N1—S1110.76 (15)H9A—C9—H9B107.3
C1—N1—Ni1126.42 (15)N2—C8—C9113.9 (2)
S1—N1—Ni1122.67 (9)N2—C8—H8A108.8
C10—N3—Ni1119.70 (17)C9—C8—H8A108.8
C10—N3—H3A109 (2)N2—C8—H8B108.8
Ni1—N3—H3A105 (2)C9—C8—H8B108.8
C10—N3—H3B103 (2)H8A—C8—H8B107.7
Ni1—N3—H3B110 (2)C3—C4—C5121.6 (2)
H3A—N3—H3B110 (3)C3—C4—H4119.2
C7—C2—C3119.8 (2)C5—C4—H4119.2
C7—C2—C1111.95 (19)N3—C10—C9115.5 (2)
C3—C2—C1128.2 (2)N3—C10—H10A108.4
C2—C7—C6123.3 (2)C9—C10—H10A108.4
C2—C7—S1106.84 (16)N3—C10—H10B108.4
C6—C7—S1129.82 (18)C9—C10—H10B108.4
O1—C1—N1124.4 (2)H10A—C10—H10B107.5
O1—C1—C2122.9 (2)
O2—S1—N1—C1111.22 (18)O3—S1—C7—C662.0 (2)
O3—S1—N1—C1120.04 (17)N1—S1—C7—C6177.7 (2)
C7—S1—N1—C13.81 (18)S1—N1—C1—O1175.6 (2)
O2—S1—N1—Ni172.90 (14)Ni1—N1—C1—O18.7 (4)
O3—S1—N1—Ni155.84 (15)S1—N1—C1—C24.4 (2)
C7—S1—N1—Ni1172.06 (11)Ni1—N1—C1—C2171.32 (14)
N2—Ni1—N1—C1122.6 (2)C7—C2—C1—O1177.2 (2)
N2i—Ni1—N1—C157.4 (2)C3—C2—C1—O12.7 (4)
N3—Ni1—N1—C131.3 (2)C7—C2—C1—N12.8 (3)
N3i—Ni1—N1—C1148.7 (2)C3—C2—C1—N1177.3 (2)
N2—Ni1—N1—S152.59 (13)N3—Ni1—N2—C827.2 (2)
N2i—Ni1—N1—S1127.41 (13)N3i—Ni1—N2—C8152.8 (2)
N3—Ni1—N1—S1143.95 (13)N1i—Ni1—N2—C8118.2 (2)
N3i—Ni1—N1—S136.05 (13)N1—Ni1—N2—C861.8 (2)
N2—Ni1—N3—C1026.0 (2)C2—C7—C6—C50.2 (4)
N2i—Ni1—N3—C10154.0 (2)S1—C7—C6—C5179.64 (19)
N1i—Ni1—N3—C10112.9 (2)C7—C6—C5—C40.5 (4)
N1—Ni1—N3—C1067.1 (2)C7—C2—C3—C40.3 (4)
C3—C2—C7—C60.2 (4)C1—C2—C3—C4179.9 (3)
C1—C2—C7—C6179.9 (2)Ni1—N2—C8—C948.1 (3)
C3—C2—C7—S1179.9 (2)C10—C9—C8—N266.0 (3)
C1—C2—C7—S10.1 (2)C2—C3—C4—C50.0 (5)
O2—S1—C7—C2113.86 (17)C6—C5—C4—C30.4 (5)
O3—S1—C7—C2117.82 (17)Ni1—N3—C10—C947.0 (3)
N1—S1—C7—C22.12 (17)C8—C9—C10—N366.7 (4)
O2—S1—C7—C666.3 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3ii0.78 (3)2.58 (3)3.194 (3)137 (3)
N3—H3B···O2i0.85 (4)2.34 (4)3.143 (3)158 (3)
N3—H3B···S1i0.85 (4)2.82 (4)3.431 (2)130 (3)
N2—H2A···O1i0.90 (4)2.60 (3)3.227 (3)128 (3)
N2—H2B···O3iii0.81 (4)2.39 (4)3.090 (3)146 (3)
N3—H3A···O10.78 (3)2.36 (3)2.952 (3)134 (3)
N2—H2B···O30.81 (4)2.56 (4)3.085 (3)124 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C7H4NO3S)2(C3H10N2)2]
Mr571.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.447 (5), 7.209 (6), 15.236 (5)
β (°) 109.313 (5)
V3)1186.5 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.52 × 0.35 × 0.15
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.673, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
18160, 2590, 2334
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.101, 0.83
No. of reflections2590
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.37

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—N22.092 (2)Ni1—N12.2604 (18)
Ni1—N32.118 (2)
N2—Ni1—N391.43 (9)N3—Ni1—N188.87 (8)
N2—Ni1—N193.21 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.78 (3)2.58 (3)3.194 (3)137 (3)
N3—H3B···O2ii0.85 (4)2.34 (4)3.143 (3)158 (3)
N3—H3B···S1ii0.85 (4)2.82 (4)3.431 (2)130 (3)
N2—H2A···O1ii0.90 (4)2.60 (3)3.227 (3)128 (3)
N2—H2B···O3iii0.81 (4)2.39 (4)3.090 (3)146 (3)
N3—H3A···O10.78 (3)2.36 (3)2.952 (3)134 (3)
N2—H2B···O30.81 (4)2.56 (4)3.085 (3)124 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y1, z+1.
 

Acknowledgements

The authors sincerely thank Assoc. Professor Hümeyra Paşaoğlu, Professor Dr. Orhan Büyükgüngör and Assoc. Professor Okan Z. Yeşilel for their contributions.

References

First citationBaran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980–1999.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBulut, İ., Paşaoğlu, H., Kaştaş, G. & Bulut, A. (2007). Acta Cryst. E63, m2409–m2410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeren, Z., Paşaoğlu, H., Kaştaş, G. & Akdağ, K. (2008). Z. Anorg. Allg. Chem. 634, 1933–1936.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaşaoğlu, H., Kaştaş, G., Yeşilel, O. Z. & Şahin, O. (2007). Acta Cryst. E63, m2953–m2954.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m425-m426
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds