metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m480-m481

Intra- and supra­molecular inter­actions in cis,mer-di­aqua­tris­­(1H-imidazole-κN3)(terephthalato-κO)cobalt(II) monohydrate

aLaboratoire de Cristallographie-Thermodynamique, Faculté de Chimie, U.S.T.H.B., BP 32 El-Alia, Bab-Ezzouar 16111, Alger, Algeria, and bCRM 2,CNRS-UPRESA 7036, Université Henry Poincaré, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvres, Les Nancy Cedex, France
*Correspondence e-mail: guehria_laidoudi@yahoo.fr

(Received 28 February 2012; accepted 20 March 2012; online 24 March 2012)

In the title compound, [Co(C8H4O4)(C3H4N2)3(H2O)2]·H2O, the cisoid angles are in the range 85.59 (5)–93.56 (5)°, while two equal transoid angles deviate significantly from the ideal linear angle, the third being almost linear. One carboxyl­ate group is almost coplanar [1.23 (13)°] with the plane of its parent aromatic ring, although it has one O-atom donor involved in one coordination and one hydrogen bond as acceptor. The other carboxyl­ate group does not coordinate and is rotated out of this plane with a torsional twist of 17.27 (20)°. The coordination neutral entity, based on aqua ligands and two cyclic co-ligands seems, at first sight, monomeric. Strongly tight, via one intra­molecular hydrogen bond between aqua and carboxyl­ate O atoms, it brings out a quasi-planar six-membered ring around the CoII atom, turning the CoN3O3 coordination octa­hedron into a new building block. The rigidity of this feature associated with several hydrogen-bonded arrays yields an extended structure. In the resulting supra­molecular packing, a binuclear hydrated CoII assembly, built up from triple strands driven by different heterosynthons, embodies the synergy of coordination, covalent and hydrogen bonds.

Related literature

For general background to important structural features inducing some inter­esting properties, see: Chen et al. (1996[Chen, X. M., Ye, B. H., Huang, X. C. & Xu, Z. T. (1996). J. Chem. Soc. Dalton Trans. pp. 3465-3468.]); Yang et al. (2002[Yang, J. H., Zheng, S. L., Jim, T., Liu, G. F. & Chen, X. M. (2002). Aust. J. Chem. 55, 741-744.]); Ye & Chen (2003[Ye, B. H. & Chen, X. M. (2003). Chin. J. Chem. 21, 531-536.]); Xie et al. (2009[Xie, Q.-A., Dong, G.-Y., Yu, Y.-M. & Wang, Y.-G. (2009). Acta Cryst. E65, m576.]); Baca et al. (2003[Baca, S. G., Filippova, I. G., Gerbeleu, N. V., Simonov, Y. A., Gdaniec, M., Timco, G. A., Gherco, O. A. & Malaestean, Y. L. (2003). Inorg. Chim. Acta, 344, 109-116.]). For related compounds or structures, see: Niu et al. (2004[Niu, S.-Y., Zhang, S.-S., Li, X.-M., Wen, Y.-H. & Jiao, K. (2004). Acta Cryst. E60, m209-m211.]); Tong et al. (2002[Tong, M.-L., Li, W., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. E58, m186-m188.]); Liu et al. (2001[Liu, Y., Xu, D. J. & Liu, J. (2001). J. Coord. Chem. 54, 175-181.], 2003[Liu, Y., Xu, D. J., Nie, J. J., Wu, J. Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 155-159.]); Zeng et al. (1997[Zeng, H., Yang, M., Huang, X. & Chen, X. (1997). Cryst. Res. Technol. 32, 467-473.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H4O4)(C3H4N2)3(H2O)2]·H2O

  • Mr = 481.34

  • Monoclinic, P 21 /n

  • a = 7.65363 (8) Å

  • b = 10.45169 (13) Å

  • c = 24.7538 (3) Å

  • β = 90.227 (1)°

  • V = 1980.12 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 291 K

  • 0.21 × 0.14 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.871, Tmax = 0.935

  • 86135 measured reflections

  • 4760 independent reflections

  • 4153 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.071

  • S = 1.08

  • 4760 reflections

  • 316 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co—O2W 2.1064 (11)
Co—N3 2.1076 (13)
Co—N5 2.1124 (13)
Co—N1 2.1347 (13)
Co—O1 2.1442 (10)
Co—O1W 2.1680 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.86 (2) 2.09 (2) 2.9204 (17) 162 (2)
N4—H4N⋯O3Wii 0.85 (2) 2.18 (2) 2.9842 (18) 157.0 (19)
N4—H4N⋯O4iii 0.85 (2) 2.50 (2) 2.9521 (18) 114.5 (17)
N6—H6N⋯O3iv 0.84 (2) 2.02 (2) 2.8249 (18) 162 (2)
O1W—H1W⋯O2 0.85 (3) 1.79 (3) 2.6160 (16) 163 (3)
O1W—H2W⋯O4v 0.85 (3) 1.85 (3) 2.6606 (16) 161 (2)
O2W—H3W⋯O3vi 0.82 (3) 1.95 (3) 2.7516 (16) 168 (2)
O2W—H4W⋯O3Wvii 0.82 (2) 2.00 (2) 2.8118 (17) 172 (2)
O3W—H5W⋯O1W 0.81 (2) 2.08 (2) 2.8632 (16) 164 (2)
O3W—H6W⋯O3vi 0.82 (3) 1.95 (3) 2.7528 (17) 167 (2)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z+1; (v) -x+1, -y+1, -z+1; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This Cobalt-based compound, is the first isomer evidenced, with two aqua ligands cis and three N-coordinated imidazole ligands meridional, relative to the CoII centre (Fig.1). Although it is built up from monomeric entity, it exhibits a packing with a relatively interesting metal-metal separation. As shown in Table 1, the Co-Ocarboxylate and the average Co—Ow distances are very closed and are comparable to those observed in related compounds (Niu et al., 2004; Tong et al., 2002). The three independent imidazole groups, and the single terephthalate dianion, both unidentate, participate respectively as donor and acceptor, in strong to moderate hydrogen bonds, and allow the recognition of supramolecular dimensionality (Table 2). The backbone of the architecture is the helical hydrogen-bonded ladder running along b axis, composed of alternating R44(10) and R33(8) heterosynthons (Fig.2), which are developed in turn, in bicyclic sheets, both of them containing a six-membered ring, and connected to imidazole ligands via secondary N atom. The former is associated with a crossed R22(6) and involves one bifurcated intermolecular H-bond. The latter shares a common Co—O(aqua) bond with a cycle formed of two coordination and three covalent bondings, beside one intramolecular H-bond (Table 2). The resulting quasi-planar six-membered ring, is responsible of environment's rigidity around the metal centre and changes the coordination octahedron in a new building block. The three imidazoles participate as donor with oxygen atom of adjacent carboxylates, and they bring about polymeric chain which mimics the carboxylate-histidine-zinc triad systems (Chen et al., 1996; Yang et al., 2002; Ye et al., 2003; Xie et al., 2009). As seen in Fig.2 and Fig.3, all these overlapping subnetworks lead to the formation of cross-linked supramolecular layers where additional single H-bonds provided by secondary N atom of the imidazoles in one hand, and the spacer of the dicarboxylate on other hand, achieve a well organized three-dimensional packing. Within this three-dimensional framework, the binuclear CoII assembly showing the shortest and probably interesting (Baca et al., 2003) separation metal-metal of 7.6536 (1) Å is built up from triple strand driven by R33(14), R44(16) and R55(18) heterosynthons (Fig.4). A comparison with the two chemically similar CoII compounds [Co(C3H4N2)4(H2O)2](C8H404), and [Co(C3H4N2)](C8H404).4H2O (Tong et al., 2002), as well as their isostructural compounds obtained with Mn(II) (Liu et al., 2001;2003) and Cu(II) (Zeng et al., 1997), reveals that their building blocks are mononuclear, and the terephthalate dianion doesn't get involved in coordination. With this study, we may confirm that in this structure, a competition takes place between terephthalate and water and it is probably the presence of both coordinated and uncoordinated water molecules, which builts a new building block, by enhancing the dicarboxylato ligand ability to get involved in coordination sphere.

Related literature top

For general background to important structural features inducing some interesting properties see: Chen et al. (1996); Yang et al. (2002); Ye et al. (2003); Xie et al. (2009); Baca et al. (2003). For related compounds or structures, see: Niu et al. (2004); Tong et al. (2002); Liu et al. (2001, 2003); Zeng et al. (1997).

Experimental top

A mixture of CoCl2,6H2O (0.24 g, 1 mmol), terephthalic acid (0.17 g,1 mmol), imidazole (0.14 g, 2 mmol) NaOH (0.08 g, 2 mmol) and water (15 ml) was stirred for 30 min at room temperature, then transferred in a 25 ml Teflon-lined stainless steel reactor, then sealed and heated at 120°C for 72 h. Upon cooling to room temperature, light-pink crystals of title compound suitable for X-ray crystallographic analysis were obtained.

Refinement top

H atoms attached to C atoms were positioned at calculated positions and were treated as riding on the parent atoms, with C—H=0.95 Å and Uiso(H)=1.2Ueq(C). Water hydrogen atoms and H atoms bonded to N atoms were located in a difference map and refined isotropically.

Structure description top

This Cobalt-based compound, is the first isomer evidenced, with two aqua ligands cis and three N-coordinated imidazole ligands meridional, relative to the CoII centre (Fig.1). Although it is built up from monomeric entity, it exhibits a packing with a relatively interesting metal-metal separation. As shown in Table 1, the Co-Ocarboxylate and the average Co—Ow distances are very closed and are comparable to those observed in related compounds (Niu et al., 2004; Tong et al., 2002). The three independent imidazole groups, and the single terephthalate dianion, both unidentate, participate respectively as donor and acceptor, in strong to moderate hydrogen bonds, and allow the recognition of supramolecular dimensionality (Table 2). The backbone of the architecture is the helical hydrogen-bonded ladder running along b axis, composed of alternating R44(10) and R33(8) heterosynthons (Fig.2), which are developed in turn, in bicyclic sheets, both of them containing a six-membered ring, and connected to imidazole ligands via secondary N atom. The former is associated with a crossed R22(6) and involves one bifurcated intermolecular H-bond. The latter shares a common Co—O(aqua) bond with a cycle formed of two coordination and three covalent bondings, beside one intramolecular H-bond (Table 2). The resulting quasi-planar six-membered ring, is responsible of environment's rigidity around the metal centre and changes the coordination octahedron in a new building block. The three imidazoles participate as donor with oxygen atom of adjacent carboxylates, and they bring about polymeric chain which mimics the carboxylate-histidine-zinc triad systems (Chen et al., 1996; Yang et al., 2002; Ye et al., 2003; Xie et al., 2009). As seen in Fig.2 and Fig.3, all these overlapping subnetworks lead to the formation of cross-linked supramolecular layers where additional single H-bonds provided by secondary N atom of the imidazoles in one hand, and the spacer of the dicarboxylate on other hand, achieve a well organized three-dimensional packing. Within this three-dimensional framework, the binuclear CoII assembly showing the shortest and probably interesting (Baca et al., 2003) separation metal-metal of 7.6536 (1) Å is built up from triple strand driven by R33(14), R44(16) and R55(18) heterosynthons (Fig.4). A comparison with the two chemically similar CoII compounds [Co(C3H4N2)4(H2O)2](C8H404), and [Co(C3H4N2)](C8H404).4H2O (Tong et al., 2002), as well as their isostructural compounds obtained with Mn(II) (Liu et al., 2001;2003) and Cu(II) (Zeng et al., 1997), reveals that their building blocks are mononuclear, and the terephthalate dianion doesn't get involved in coordination. With this study, we may confirm that in this structure, a competition takes place between terephthalate and water and it is probably the presence of both coordinated and uncoordinated water molecules, which builts a new building block, by enhancing the dicarboxylato ligand ability to get involved in coordination sphere.

For general background to important structural features inducing some interesting properties see: Chen et al. (1996); Yang et al. (2002); Ye et al. (2003); Xie et al. (2009); Baca et al. (2003). For related compounds or structures, see: Niu et al. (2004); Tong et al. (2002); Liu et al. (2001, 2003); Zeng et al. (1997).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Helical hydrogen-bonded ladder composed of R33(8) and R44(10). Symmetry codes: i: x + 1,y,z; ii: x - 1,y,z; v: -x + 1,-y + 1,-z + 1; vii: -x + 3/2,y - 1/2,-z + 3/2; viii: x - 1/2,-y - 1/2,-z - 1/2; ix: -x + 3/2,y + 1/2,-z + 3/2; x: -x + 1/2,y - 1/2,-z + 3/2 xi: -x + 1/2,y + 1/2,-z + 3/2, xii: x + 1, y + 1,z; xiii: x,y + 1,z; xiv: -x + 5/2,y + 1/2,-z + 3/2, xv: x - 1/2,-y + 1/2,z - 1/2
[Figure 3] Fig. 3. : Packing diagram viewed along [100] showing hydrogen bonds and ladder's layers.
[Figure 4] Fig. 4. : Binuclear CoII assembly with triple strand. Symmetry codes: ii: x - 1,y,z; iii: -x,-y + 1,-z + 1; iv: -x,-y,-z + 1; x: -x + 1/2,y - 1/2,-z + 3/2
cis,mer-diaquatris(1H-imidazole- κN3)(terephthalato-κO)cobalt(II) monohydrate top
Crystal data top
[Co(C8H4O4)(C3H4N2)3(H2O)2]·H2OF(000) = 996
Mr = 481.34Dx = 1.615 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 35056 reflections
a = 7.65363 (8) Åθ = 3.3–32.9°
b = 10.45169 (13) ŵ = 0.92 mm1
c = 24.7538 (3) ÅT = 291 K
β = 90.227 (1)°Prism, pink
V = 1980.12 (4) Å30.21 × 0.14 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4760 independent reflections
Radiation source: fine-focus sealed tube4153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 10.4508 pixels mm-1θmax = 28.0°, θmin = 3.4°
wσcansh = 1010
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 1313
Tmin = 0.871, Tmax = 0.935l = 3232
86135 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0265P)2 + 1.5429P]
where P = (Fo2 + 2Fc2)/3
4760 reflections(Δ/σ)max = 0.003
316 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C8H4O4)(C3H4N2)3(H2O)2]·H2OV = 1980.12 (4) Å3
Mr = 481.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.65363 (8) ŵ = 0.92 mm1
b = 10.45169 (13) ÅT = 291 K
c = 24.7538 (3) Å0.21 × 0.14 × 0.08 mm
β = 90.227 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4760 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
4153 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.935Rint = 0.066
86135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
4760 reflectionsΔρmin = 0.33 e Å3
316 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction (2009) Analytical numerical absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. CrysAlis RED, Oxford Diffraction Ltd Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.44254 (2)0.144772 (19)0.652633 (8)0.00874 (6)
O1W0.52240 (15)0.33528 (11)0.67705 (4)0.0123 (2)
O2W0.60355 (16)0.07515 (12)0.71527 (5)0.0147 (2)
O3W0.66608 (15)0.36561 (12)0.78325 (5)0.0149 (2)
O10.29257 (14)0.22971 (10)0.58868 (4)0.0115 (2)
O20.31457 (15)0.43979 (11)0.60544 (4)0.0165 (2)
O30.05014 (14)0.36582 (10)0.32226 (4)0.0130 (2)
O40.16128 (14)0.56111 (11)0.33113 (4)0.0134 (2)
C10.28701 (19)0.34725 (15)0.57476 (6)0.0116 (3)
C20.24336 (19)0.37422 (15)0.51627 (6)0.0115 (3)
C30.21121 (19)0.27458 (15)0.48037 (6)0.0115 (3)
H30.21880.18850.49250.014*
C40.16812 (19)0.30000 (15)0.42695 (6)0.0117 (3)
H40.14120.23150.40310.014*
C50.16416 (19)0.42578 (15)0.40819 (6)0.0106 (3)
C60.2013 (2)0.52539 (15)0.44372 (6)0.0154 (3)
H60.20190.61110.43100.018*
C70.2375 (2)0.49999 (16)0.49776 (6)0.0160 (3)
H70.25840.56860.52210.019*
C80.12281 (19)0.45417 (14)0.34977 (6)0.0101 (3)
N10.66337 (16)0.13362 (12)0.60043 (5)0.0113 (3)
N20.93656 (18)0.13617 (13)0.57266 (6)0.0143 (3)
C90.8290 (2)0.13727 (15)0.61550 (6)0.0128 (3)
H90.86740.14030.65200.015*
C100.8336 (2)0.13227 (16)0.52700 (6)0.0155 (3)
H100.87220.13100.49060.019*
C110.6653 (2)0.13062 (15)0.54460 (6)0.0143 (3)
H110.56470.12780.52200.017*
N30.23535 (16)0.16873 (12)0.70755 (5)0.0115 (3)
N40.00080 (18)0.25190 (14)0.74341 (5)0.0145 (3)
C120.1779 (2)0.09015 (16)0.74877 (6)0.0146 (3)
H120.23270.01290.75990.017*
C130.0312 (2)0.14045 (16)0.77079 (6)0.0152 (3)
H130.03590.10540.79940.018*
C140.12406 (19)0.26542 (15)0.70594 (6)0.0127 (3)
H140.13150.33520.68150.015*
N50.36196 (16)0.04089 (12)0.62981 (5)0.0120 (3)
N60.23014 (18)0.22776 (14)0.63208 (6)0.0157 (3)
C150.4649 (2)0.13139 (15)0.60470 (6)0.0141 (3)
H150.57540.11500.58880.017*
C160.3850 (2)0.24738 (16)0.60607 (6)0.0159 (3)
H160.42780.32580.59190.019*
C170.2212 (2)0.10428 (16)0.64582 (6)0.0147 (3)
H170.12620.06670.66470.018*
H2N1.048 (3)0.147 (2)0.5743 (9)0.030 (6)*
H4N0.088 (3)0.301 (2)0.7480 (8)0.022 (5)*
H6N0.156 (3)0.283 (2)0.6416 (9)0.026 (6)*
H1W0.454 (3)0.381 (3)0.6584 (10)0.043 (7)*
H2W0.623 (3)0.360 (2)0.6673 (9)0.034 (6)*
H3W0.576 (3)0.085 (2)0.7469 (10)0.036 (7)*
H4W0.670 (3)0.014 (2)0.7123 (9)0.029 (6)*
H5W0.610 (3)0.365 (2)0.7556 (9)0.025 (6)*
H6W0.639 (3)0.301 (2)0.7995 (9)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.00883 (10)0.00915 (11)0.00823 (10)0.00041 (7)0.00022 (7)0.00042 (7)
O1W0.0120 (5)0.0125 (6)0.0125 (5)0.0014 (4)0.0014 (4)0.0007 (4)
O2W0.0183 (6)0.0166 (6)0.0093 (5)0.0060 (5)0.0001 (4)0.0001 (4)
O3W0.0167 (6)0.0158 (6)0.0120 (5)0.0031 (5)0.0020 (5)0.0025 (5)
O10.0127 (5)0.0111 (5)0.0107 (5)0.0006 (4)0.0015 (4)0.0024 (4)
O20.0244 (6)0.0126 (5)0.0125 (5)0.0002 (5)0.0050 (5)0.0009 (4)
O30.0158 (5)0.0130 (5)0.0101 (5)0.0024 (4)0.0015 (4)0.0003 (4)
O40.0146 (5)0.0124 (5)0.0134 (5)0.0022 (4)0.0017 (4)0.0038 (4)
C10.0094 (6)0.0142 (7)0.0113 (7)0.0001 (6)0.0001 (5)0.0019 (6)
C20.0114 (7)0.0137 (7)0.0093 (7)0.0006 (6)0.0007 (5)0.0011 (6)
C30.0116 (7)0.0103 (7)0.0127 (7)0.0001 (5)0.0008 (6)0.0022 (6)
C40.0113 (7)0.0116 (7)0.0121 (7)0.0003 (6)0.0005 (5)0.0013 (6)
C50.0095 (6)0.0125 (7)0.0098 (7)0.0001 (5)0.0000 (5)0.0006 (6)
C60.0218 (8)0.0101 (7)0.0141 (7)0.0013 (6)0.0020 (6)0.0015 (6)
C70.0230 (8)0.0117 (8)0.0131 (7)0.0015 (6)0.0037 (6)0.0015 (6)
C80.0079 (6)0.0130 (7)0.0095 (7)0.0012 (5)0.0011 (5)0.0006 (6)
N10.0120 (6)0.0118 (6)0.0101 (6)0.0012 (5)0.0007 (5)0.0010 (5)
N20.0108 (6)0.0168 (7)0.0153 (7)0.0009 (5)0.0021 (5)0.0002 (5)
C90.0120 (7)0.0138 (7)0.0126 (7)0.0012 (6)0.0009 (6)0.0000 (6)
C100.0157 (7)0.0194 (8)0.0114 (7)0.0020 (6)0.0029 (6)0.0007 (6)
C110.0153 (7)0.0173 (8)0.0105 (7)0.0021 (6)0.0004 (6)0.0002 (6)
N30.0116 (6)0.0126 (6)0.0104 (6)0.0004 (5)0.0008 (5)0.0002 (5)
N40.0121 (6)0.0157 (7)0.0158 (7)0.0017 (5)0.0021 (5)0.0027 (5)
C120.0169 (7)0.0143 (8)0.0124 (7)0.0000 (6)0.0009 (6)0.0024 (6)
C130.0151 (7)0.0182 (8)0.0123 (7)0.0036 (6)0.0023 (6)0.0010 (6)
C140.0127 (7)0.0118 (7)0.0135 (7)0.0002 (6)0.0009 (6)0.0001 (6)
N50.0121 (6)0.0115 (6)0.0124 (6)0.0016 (5)0.0011 (5)0.0002 (5)
N60.0172 (7)0.0139 (7)0.0161 (7)0.0062 (6)0.0014 (5)0.0019 (5)
C150.0156 (7)0.0131 (7)0.0135 (7)0.0001 (6)0.0019 (6)0.0009 (6)
C160.0200 (8)0.0130 (8)0.0147 (7)0.0010 (6)0.0015 (6)0.0014 (6)
C170.0131 (7)0.0158 (8)0.0151 (7)0.0023 (6)0.0008 (6)0.0004 (6)
Geometric parameters (Å, º) top
Co—O2W2.1064 (11)N1—C91.3204 (19)
Co—N32.1076 (13)N1—C111.3825 (19)
Co—N52.1124 (13)N2—C91.345 (2)
Co—N12.1347 (13)N2—C101.376 (2)
Co—O12.1442 (10)N2—H2N0.86 (2)
Co—O1W2.1680 (11)C9—H90.9500
O1W—H1W0.85 (3)C10—C111.362 (2)
O1W—H2W0.85 (3)C10—H100.9500
O2W—H3W0.82 (3)C11—H110.9500
O2W—H4W0.82 (2)N3—C141.322 (2)
O3W—H5W0.81 (2)N3—C121.383 (2)
O3W—H6W0.82 (3)N4—C141.342 (2)
O1—C11.2765 (19)N4—C131.369 (2)
O2—C11.2471 (19)N4—H4N0.85 (2)
O3—C81.2738 (18)C12—C131.356 (2)
O4—C81.2450 (19)C12—H120.9500
C1—C21.511 (2)C13—H130.9500
C2—C31.390 (2)C14—H140.9500
C2—C71.393 (2)N5—C171.327 (2)
C3—C41.387 (2)N5—C151.380 (2)
C3—H30.9500N6—C171.337 (2)
C4—C51.395 (2)N6—C161.366 (2)
C4—H40.9500N6—H6N0.84 (2)
C5—C61.391 (2)C15—C161.358 (2)
C5—C81.509 (2)C15—H150.9500
C6—C71.391 (2)C16—H160.9500
C6—H60.9500C17—H170.9500
C7—H70.9500
O2W—Co—N390.33 (5)O3—C8—C5117.34 (13)
O2W—Co—N592.80 (5)C9—N1—C11105.60 (13)
N3—Co—N593.56 (5)C9—N1—Co126.08 (10)
O2W—Co—N187.96 (5)C11—N1—Co128.17 (10)
N3—Co—N1175.12 (5)C9—N2—C10107.31 (13)
N5—Co—N191.09 (5)C9—N2—H2N124.9 (15)
O2W—Co—O1175.14 (5)C10—N2—H2N127.3 (15)
N3—Co—O191.44 (4)N1—C9—N2111.54 (14)
N5—Co—O191.60 (5)N1—C9—H9124.2
N1—Co—O189.91 (5)N2—C9—H9124.2
O2W—Co—O1W87.05 (5)C11—C10—N2106.07 (14)
N3—Co—O1W85.59 (5)C11—C10—H10127.0
N5—Co—O1W179.13 (5)N2—C10—H10127.0
N1—Co—O1W89.76 (5)C10—C11—N1109.48 (14)
O1—Co—O1W88.57 (4)C10—C11—H11125.3
Co—O1W—H1W101.0 (18)N1—C11—H11125.3
Co—O1W—H2W117.2 (16)C14—N3—C12105.64 (13)
H1W—O1W—H2W104 (2)C14—N3—Co123.89 (11)
Co—O2W—H3W120.8 (17)C12—N3—Co130.35 (11)
Co—O2W—H4W124.3 (16)C14—N4—C13107.78 (14)
H3W—O2W—H4W110 (2)C14—N4—H4N126.4 (14)
H5W—O3W—H6W106 (2)C13—N4—H4N125.7 (14)
C1—O1—Co127.94 (10)C13—C12—N3109.42 (14)
O2—C1—O1125.22 (14)C13—C12—H12125.3
O2—C1—C2118.35 (14)N3—C12—H12125.3
O1—C1—C2116.43 (13)C12—C13—N4106.11 (14)
C3—C2—C7119.42 (14)C12—C13—H13126.9
C3—C2—C1120.70 (14)N4—C13—H13126.9
C7—C2—C1119.87 (14)N3—C14—N4111.05 (14)
C4—C3—C2120.44 (14)N3—C14—H14124.5
C4—C3—H3119.8N4—C14—H14124.5
C2—C3—H3119.8C17—N5—C15104.94 (13)
C3—C4—C5120.18 (14)C17—N5—Co127.98 (11)
C3—C4—H4119.9C15—N5—Co125.69 (10)
C5—C4—H4119.9C17—N6—C16108.07 (14)
C6—C5—C4119.39 (14)C17—N6—H6N123.5 (15)
C6—C5—C8120.01 (14)C16—N6—H6N128.1 (15)
C4—C5—C8120.59 (13)C16—C15—N5110.03 (14)
C7—C6—C5120.30 (15)C16—C15—H15125.0
C7—C6—H6119.9N5—C15—H15125.0
C5—C6—H6119.9C15—C16—N6105.63 (14)
C6—C7—C2120.18 (15)C15—C16—H16127.2
C6—C7—H7119.9N6—C16—H16127.2
C2—C7—H7119.9N5—C17—N6111.33 (14)
O4—C8—O3123.78 (14)N5—C17—H17124.3
O4—C8—C5118.87 (13)N6—C17—H17124.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.86 (2)2.09 (2)2.9204 (17)162 (2)
N4—H4N···O3Wii0.85 (2)2.18 (2)2.9842 (18)157.0 (19)
N4—H4N···O4iii0.85 (2)2.50 (2)2.9521 (18)114.5 (17)
N6—H6N···O3iv0.84 (2)2.02 (2)2.8249 (18)162 (2)
O1W—H1W···O20.85 (3)1.79 (3)2.6160 (16)163 (3)
O1W—H2W···O4v0.85 (3)1.85 (3)2.6606 (16)161 (2)
O2W—H3W···O3vi0.82 (3)1.95 (3)2.7516 (16)168 (2)
O2W—H4W···O3Wvii0.82 (2)2.00 (2)2.8118 (17)172 (2)
O3W—H5W···O1W0.81 (2)2.08 (2)2.8632 (16)164 (2)
O3W—H6W···O3vi0.82 (3)1.95 (3)2.7528 (17)167 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+1, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C8H4O4)(C3H4N2)3(H2O)2]·H2O
Mr481.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)7.65363 (8), 10.45169 (13), 24.7538 (3)
β (°) 90.227 (1)
V3)1980.12 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.21 × 0.14 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.871, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
86135, 4760, 4153
Rint0.066
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.08
No. of reflections4760
No. of parameters316
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co—O2W2.1064 (11)Co—N12.1347 (13)
Co—N32.1076 (13)Co—O12.1442 (10)
Co—N52.1124 (13)Co—O1W2.1680 (11)
O2W—Co—N390.33 (5)N1—Co—O189.91 (5)
O2W—Co—N592.80 (5)O2W—Co—O1W87.05 (5)
N3—Co—N593.56 (5)N3—Co—O1W85.59 (5)
O2W—Co—N187.96 (5)N5—Co—O1W179.13 (5)
N3—Co—N1175.12 (5)N1—Co—O1W89.76 (5)
N5—Co—N191.09 (5)O1—Co—O1W88.57 (4)
O2W—Co—O1175.14 (5)O2—C1—O1125.22 (14)
N3—Co—O191.44 (4)O4—C8—O3123.78 (14)
N5—Co—O191.60 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.86 (2)2.09 (2)2.9204 (17)162 (2)
N4—H4N···O3Wii0.85 (2)2.18 (2)2.9842 (18)157.0 (19)
N4—H4N···O4iii0.85 (2)2.50 (2)2.9521 (18)114.5 (17)
N6—H6N···O3iv0.84 (2)2.02 (2)2.8249 (18)162 (2)
O1W—H1W···O20.85 (3)1.79 (3)2.6160 (16)163 (3)
O1W—H2W···O4v0.85 (3)1.85 (3)2.6606 (16)161 (2)
O2W—H3W···O3vi0.82 (3)1.95 (3)2.7516 (16)168 (2)
O2W—H4W···O3Wvii0.82 (2)2.00 (2)2.8118 (17)172 (2)
O3W—H5W···O1W0.81 (2)2.08 (2)2.8632 (16)164 (2)
O3W—H6W···O3vi0.82 (3)1.95 (3)2.7528 (17)167 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+1, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+3/2, y1/2, z+3/2.
 

References

First citationBaca, S. G., Filippova, I. G., Gerbeleu, N. V., Simonov, Y. A., Gdaniec, M., Timco, G. A., Gherco, O. A. & Malaestean, Y. L. (2003). Inorg. Chim. Acta, 344, 109–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. M., Ye, B. H., Huang, X. C. & Xu, Z. T. (1996). J. Chem. Soc. Dalton Trans. pp. 3465–3468.  CSD CrossRef Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Y., Xu, D. J. & Liu, J. (2001). J. Coord. Chem. 54, 175–181.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y., Xu, D. J., Nie, J. J., Wu, J. Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 155–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, S.-Y., Zhang, S.-S., Li, X.-M., Wen, Y.-H. & Jiao, K. (2004). Acta Cryst. E60, m209–m211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M.-L., Li, W., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. E58, m186–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Q.-A., Dong, G.-Y., Yu, Y.-M. & Wang, Y.-G. (2009). Acta Cryst. E65, m576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J. H., Zheng, S. L., Jim, T., Liu, G. F. & Chen, X. M. (2002). Aust. J. Chem. 55, 741–744.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, B. H. & Chen, X. M. (2003). Chin. J. Chem. 21, 531–536.  CAS Google Scholar
First citationZeng, H., Yang, M., Huang, X. & Chen, X. (1997). Cryst. Res. Technol. 32, 467–473.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m480-m481
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds