organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[4-(Di­methyl­amino)­phen­yl]ethen­yl}-1-methyl­pyridinium 4-nitro­benzene­sulfonate

aDepartment of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: yangz@ustb.edu.cn

(Received 12 January 2012; accepted 1 March 2012; online 10 March 2012)

The asymmetric unit of the title salt, C16H19N2+. C6H4NO5S, consists of two cations and two anions. The crystal structure is stabilized by ππ inter­actions between the pyridyl and phenyl rings of the cations, with a centroid–centroid distance of 3.7323 (6) Å.

Related literature

The title compound was synthesized as part of our continuing research on the non-linear optical properties of DAS (4-N,N-dimethyl­amino-4′-N′-methyl­stilbazolium) derivatives. For the synthesis, see: Okada et al. (1990[Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn. J. Appl. Phys. 29, 1112-1115.]). For background to non-linear optical materials, see: Yang et al. (2005[Yang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072-1075.]); Kumar et al. (2009[Kumar, K., Rai, R. & Rai, S. (2009). Appl. Phys. B, 96, 85-94.]); Kwon et al. (2010[Kwon, S., Jazbinsek, M., Kwon, O. & Günter, P. (2010). Cryst. Growth Des. 10, 1552-1558.]). For the effects of different substit­uents of benzene sulfonate on its non-linear optical properties, see: Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]); Okada et al. (2003[Okada, S., Nogi, K., Anwar, Tsuji, K., Duan, X. M., Oikawa, H., Matsuda, H. & Nakanishi, H. (2003). Jpn J. Appl. Phys. 42, 668-671.]); Yang et al. (2007[Yang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018-2023.]); Yin et al. (2012[Yin, J., Li, L., Yang, Z., Jazbinsek, M., Tao, X., Günter, P. & Yang, H. (2012). Dyes Pigments, 94, 120-126.]); Li et al. (2012[Li, L., Cui, H., Yang, Z., Tao, X. & Yang, H. (2012). Acta Cryst. E68, o281.]). For standard bond-lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N2+·C6H4NO5S

  • Mr = 441.49

  • Monoclinic, P 21 /c

  • a = 18.901 (3) Å

  • b = 6.4504 (10) Å

  • c = 34.222 (6) Å

  • β = 96.77 (3)°

  • V = 4143.1 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.20 × 0.16 × 0.13 mm

Data collection
  • Rigaku Saturn 724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.752, Tmax = 1.000

  • 20075 measured reflections

  • 9459 independent reflections

  • 7630 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.176

  • S = 1.15

  • 9459 reflections

  • 593 parameters

  • 69 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nonlinear optical materials have recently invoked a large amount of interest due to their potential application in harmonic generation, optical information processing, optical storage and two photon pumped lasers (Yang et al., 2005; Kumar et al., 2009; Kwon et al., 2010). The synthesis and crystal growth of the title compound is part of our series of studies on the nonlinear optical properties of DAS (4-N, N-dimethylamino-4'-N'-methyl-stilbazolium) derivatives (Yang, Mutter et al., 2007; Yin et al., 2012; Li et al., 2012). By changing the anion from 3-nitrobenzenesulfonate to 4-nitrobenzenesulfonate, the space group has changed from monoclinic P21 (Ogawa et al., 2008; Okada et al., 2003) to the centrosymmetric space group monoclinic P21/c. Fig. 1 illustrates the molecular structure of the title salt together with the atomic numbering scheme. The asymmetric unit of the title salt consists of two 4-{2-[4-dimethylamino)phenyl]ethenyl}-1- methylpyridinium cations and two 4-nitrobenzenesulfonate anions. The bond distances and angles in both the cation and anion are in normal ranges (Allen et al., 1987).

The crystal structure is stabilized by a π-π interaction between the pyridyl and C3—C8 phenyl rings with a centroid-centroid distance of 3.7323 (6) Å. The packing diagram of the title salt obtained from X-ray analysis is presented in Fig. 2. Disorder was observed in one of the anions, whereas the structures of the cations were determined unequivocally. The crystallographic data suggests that coulombic interactions between cations and anions play a key role in crystal packing and orientation of the chromophores.

Related literature top

The title compound was synthesized as part of our continuing research on the non-linear optical properties of DAS (4-N,N-dimethylamino-4'-N'-methylstilbazolium) derivatives. For the synthesis, see: Okada et al. (1990). For background to non-linear optical materials, see: Yang et al. (2005); Kumar et al. (2009); Kwon et al. (2010). For the effects of different substituents of benzene sulfonate on its non-linear optical properties, see: Ogawa et al. (2008); Okada et al. (2003); Yang et al. (2007); Yin et al. (2012); Li et al. (2012). For standard bond-lengths, see: Allen et al. (1987).

Experimental top

4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 4-nitrobenzenesulfonate was prepared by the metathesization of 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium iodide (Okada et al., 1990) with the sodium salt of the 4-nitrobenzenesulfonic acid. The title salt was then recrystallized from methanol to get high purity material for crystal growth. 4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 4-nitrobenzenesulfonate: yield 79%; 1H-NMR (300 MHz, DMSO-d6): 8.69 (d, 2H, J= 6.6 Hz, C5H4N), 8.21 (d, 2H, J= 9.0 Hz, C6H4SO3-), 8.04 (d, 2H, J= 6.3 Hz, C5H4N), 7.93 (d, 1H, J= 16.2 Hz, CH), 7.84 (d, 2H, J= 9.0 Hz, C6H4SO3-),7.60 (d, 2H, J= 8.7 Hz, C6H4SO3-), 7.19 (d, 1H, J= 16.2 Hz, CH), 6.80(d, 2H, J= 8.7 Hz, C6H4), 4.17 (s, 3H, NMe), 3.02 (s, 6H, NMe2). C, H, N analysis calcd. for C22H23N3O5S: C 59.85, H 5.25, N 9.52; found: C 59.89, H 5.32, N 9.59. Crystals were obtained by the slow cooling method from 45°C to room temperature in methanol.

Refinement top

All H atoms were located geometrically (methyl C—H = 0.98 Å and aromatic C—H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Nonlinear optical materials have recently invoked a large amount of interest due to their potential application in harmonic generation, optical information processing, optical storage and two photon pumped lasers (Yang et al., 2005; Kumar et al., 2009; Kwon et al., 2010). The synthesis and crystal growth of the title compound is part of our series of studies on the nonlinear optical properties of DAS (4-N, N-dimethylamino-4'-N'-methyl-stilbazolium) derivatives (Yang, Mutter et al., 2007; Yin et al., 2012; Li et al., 2012). By changing the anion from 3-nitrobenzenesulfonate to 4-nitrobenzenesulfonate, the space group has changed from monoclinic P21 (Ogawa et al., 2008; Okada et al., 2003) to the centrosymmetric space group monoclinic P21/c. Fig. 1 illustrates the molecular structure of the title salt together with the atomic numbering scheme. The asymmetric unit of the title salt consists of two 4-{2-[4-dimethylamino)phenyl]ethenyl}-1- methylpyridinium cations and two 4-nitrobenzenesulfonate anions. The bond distances and angles in both the cation and anion are in normal ranges (Allen et al., 1987).

The crystal structure is stabilized by a π-π interaction between the pyridyl and C3—C8 phenyl rings with a centroid-centroid distance of 3.7323 (6) Å. The packing diagram of the title salt obtained from X-ray analysis is presented in Fig. 2. Disorder was observed in one of the anions, whereas the structures of the cations were determined unequivocally. The crystallographic data suggests that coulombic interactions between cations and anions play a key role in crystal packing and orientation of the chromophores.

The title compound was synthesized as part of our continuing research on the non-linear optical properties of DAS (4-N,N-dimethylamino-4'-N'-methylstilbazolium) derivatives. For the synthesis, see: Okada et al. (1990). For background to non-linear optical materials, see: Yang et al. (2005); Kumar et al. (2009); Kwon et al. (2010). For the effects of different substituents of benzene sulfonate on its non-linear optical properties, see: Ogawa et al. (2008); Okada et al. (2003); Yang et al. (2007); Yin et al. (2012); Li et al. (2012). For standard bond-lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Projections of the crystal packing of the title compound along the (a) x and (b) y axes.
4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 4-nitrobenzenesulfonate top
Crystal data top
C16H19N2+·C6H4NO5SF(000) = 1856
Mr = 441.49Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.901 (3) ÅCell parameters from 11440 reflections
b = 6.4504 (10) Åθ = 1.2–27.5°
c = 34.222 (6) ŵ = 0.20 mm1
β = 96.77 (3)°T = 173 K
V = 4143.1 (12) Å3Block, red
Z = 80.20 × 0.16 × 0.13 mm
Data collection top
Rigaku Saturn 724+
diffractometer
9459 independent reflections
Radiation source: Rotating Anode7630 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.048
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 1.1°
ω scans at fixed χ = 45°h = 2324
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 84
Tmin = 0.752, Tmax = 1.000l = 4244
20075 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0574P)2 + 2.7972P]
where P = (Fo2 + 2Fc2)/3
9459 reflections(Δ/σ)max < 0.001
593 parametersΔρmax = 0.42 e Å3
69 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H19N2+·C6H4NO5SV = 4143.1 (12) Å3
Mr = 441.49Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.901 (3) ŵ = 0.20 mm1
b = 6.4504 (10) ÅT = 173 K
c = 34.222 (6) Å0.20 × 0.16 × 0.13 mm
β = 96.77 (3)°
Data collection top
Rigaku Saturn 724+
diffractometer
9459 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
7630 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 1.000Rint = 0.048
20075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07569 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.15Δρmax = 0.42 e Å3
9459 reflectionsΔρmin = 0.32 e Å3
593 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.37863 (3)0.12715 (9)0.308633 (19)0.02941 (17)
S20.12093 (4)0.62094 (10)0.17599 (2)0.03390 (18)
O80.1528 (6)0.7557 (9)0.20680 (16)0.064 (3)0.370 (8)
O90.0563 (4)0.526 (2)0.1802 (3)0.093 (4)0.370 (8)
O100.1751 (5)0.4736 (14)0.1683 (2)0.062 (3)0.370 (8)
O8'0.0890 (4)0.7475 (6)0.20394 (11)0.0686 (19)0.630 (8)
O9'0.0757 (3)0.4454 (6)0.16520 (14)0.0523 (13)0.630 (8)
O10'0.1927 (2)0.5691 (12)0.1848 (2)0.087 (2)0.630 (8)
O10.37877 (13)0.8246 (4)0.45206 (7)0.0559 (6)
O20.41484 (16)0.5583 (4)0.48663 (7)0.0702 (8)
O30.35623 (16)0.2650 (3)0.27682 (6)0.0636 (7)
O40.32662 (14)0.0268 (4)0.31472 (7)0.0609 (7)
O50.44820 (12)0.0429 (4)0.30699 (8)0.0669 (8)
O60.08242 (19)1.0636 (4)0.00120 (7)0.0840 (10)
O70.11956 (14)1.3255 (3)0.03349 (7)0.0550 (6)
N10.12972 (12)0.7625 (3)0.43882 (7)0.0346 (5)
N20.13677 (14)0.6462 (3)0.27136 (6)0.0357 (5)
N30.39469 (14)0.6409 (4)0.45540 (7)0.0416 (6)
N40.36366 (12)1.2762 (3)0.04493 (7)0.0345 (5)
N50.37284 (14)0.1338 (3)0.21319 (6)0.0378 (6)
N60.10301 (14)1.1431 (4)0.03000 (7)0.0415 (6)
C10.06152 (15)0.8609 (4)0.43954 (9)0.0396 (7)
H1A0.03770.87330.41260.059*
H1C0.06830.99920.45120.059*
H1B0.03210.77710.45520.059*
C20.19048 (16)0.8511 (5)0.46267 (9)0.0438 (7)
H2B0.20830.75270.48330.066*
H2C0.17620.98000.47470.066*
H2A0.22820.88080.44610.066*
C30.13599 (13)0.5801 (4)0.41936 (7)0.0276 (5)
C40.20215 (14)0.4821 (4)0.41864 (8)0.0357 (6)
H40.24340.54000.43320.043*
C50.20844 (15)0.3036 (4)0.39728 (8)0.0371 (6)
H50.25420.24340.39700.045*
C60.14965 (14)0.2081 (4)0.37603 (7)0.0287 (5)
C70.08349 (14)0.3022 (4)0.37776 (7)0.0294 (5)
H70.04210.24020.36410.035*
C80.07638 (13)0.4817 (4)0.39858 (8)0.0307 (6)
H80.03040.54070.39900.037*
C90.15916 (14)0.0206 (4)0.35363 (8)0.0306 (6)
H90.20680.02420.35250.037*
C100.10748 (14)0.0953 (4)0.33444 (8)0.0315 (6)
H100.05960.05200.33520.038*
C110.11937 (14)0.2824 (4)0.31252 (7)0.0304 (5)
C120.18615 (15)0.3475 (4)0.30397 (8)0.0354 (6)
H120.22710.26610.31230.042*
C130.19324 (16)0.5275 (4)0.28375 (8)0.0371 (6)
H130.23930.56960.27840.045*
C140.07128 (16)0.5876 (4)0.27859 (8)0.0389 (7)
H140.03140.67190.26960.047*
C150.06104 (15)0.4083 (4)0.29873 (8)0.0355 (6)
H150.01430.36900.30340.043*
C160.1471 (2)0.8361 (4)0.24863 (9)0.0482 (8)
H16B0.10800.93300.25120.072*
H16C0.19240.90110.25870.072*
H16A0.14760.80040.22080.072*
C170.39135 (14)0.5143 (4)0.41939 (8)0.0326 (6)
C180.41112 (15)0.3080 (4)0.42251 (8)0.0356 (6)
H180.42620.24760.44740.043*
C190.40826 (14)0.1920 (4)0.38835 (8)0.0338 (6)
H190.42210.05040.38960.041*
C200.38529 (13)0.2818 (4)0.35221 (7)0.0285 (5)
C210.36631 (14)0.4897 (4)0.34995 (8)0.0313 (6)
H210.35150.55100.32510.038*
C220.36883 (14)0.6077 (4)0.38385 (8)0.0331 (6)
H220.35540.74970.38270.040*
C230.30478 (16)1.3508 (5)0.01807 (10)0.0466 (8)
H23A0.29521.25320.00390.070*
H23C0.31671.48690.00790.070*
H23B0.26241.36300.03190.070*
C240.43187 (15)1.3785 (4)0.04490 (9)0.0389 (6)
H24B0.45321.40070.07210.058*
H24C0.42501.51230.03150.058*
H24A0.46351.29150.03110.058*
C250.35836 (13)1.0924 (4)0.06437 (7)0.0287 (5)
C260.41646 (14)1.0084 (4)0.08882 (8)0.0317 (6)
H260.46091.07870.09120.038*
C270.41043 (14)0.8274 (4)0.10934 (7)0.0298 (5)
H270.45100.77510.12530.036*
C280.34625 (14)0.7180 (4)0.10732 (7)0.0296 (5)
C290.28885 (14)0.7994 (4)0.08273 (8)0.0351 (6)
H290.24460.72810.08030.042*
C300.29433 (14)0.9806 (4)0.06174 (8)0.0345 (6)
H300.25401.03040.04520.041*
C310.33848 (14)0.5268 (4)0.12887 (8)0.0314 (6)
H310.29220.46750.12690.038*
C320.39066 (15)0.4265 (4)0.15121 (8)0.0327 (6)
H320.43710.48470.15300.039*
C330.38214 (15)0.2367 (4)0.17282 (7)0.0312 (6)
C340.44284 (16)0.1363 (4)0.19169 (8)0.0359 (6)
H340.48860.19610.19080.043*
C350.43683 (17)0.0466 (4)0.21127 (8)0.0391 (7)
H350.47850.11260.22370.047*
C360.31342 (17)0.0411 (4)0.19604 (9)0.0414 (7)
H360.26840.10370.19780.050*
C370.31675 (16)0.1414 (4)0.17617 (9)0.0391 (6)
H370.27400.20450.16450.047*
C380.3673 (2)0.3277 (4)0.23577 (9)0.0507 (9)
H38C0.36440.29410.26350.076*
H38B0.40930.41400.23370.076*
H38A0.32430.40350.22510.076*
C390.10720 (14)1.0136 (4)0.06567 (8)0.0315 (6)
C400.12965 (14)1.1045 (4)0.10139 (8)0.0324 (6)
H400.14301.24660.10290.039*
C410.13245 (14)0.9851 (4)0.13503 (8)0.0320 (6)
H410.14701.04560.16000.038*
C420.11398 (13)0.7763 (4)0.13242 (8)0.0282 (5)
C430.09127 (14)0.6893 (4)0.09603 (8)0.0334 (6)
H430.07840.54690.09430.040*
C440.08723 (15)0.8083 (4)0.06225 (8)0.0353 (6)
H440.07110.75000.03730.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0308 (3)0.0233 (3)0.0340 (4)0.0026 (2)0.0037 (3)0.0017 (2)
S20.0372 (4)0.0287 (3)0.0351 (4)0.0001 (3)0.0014 (3)0.0070 (3)
O80.120 (7)0.037 (3)0.031 (3)0.006 (4)0.005 (4)0.005 (3)
O90.025 (4)0.170 (10)0.084 (7)0.015 (5)0.010 (4)0.071 (7)
O100.065 (6)0.073 (5)0.046 (4)0.034 (4)0.003 (4)0.017 (4)
O8'0.135 (5)0.039 (2)0.036 (2)0.014 (3)0.030 (3)0.0050 (16)
O9'0.065 (3)0.048 (2)0.044 (3)0.024 (2)0.007 (2)0.0114 (18)
O10'0.027 (2)0.133 (5)0.095 (5)0.007 (3)0.013 (2)0.081 (4)
O10.0700 (17)0.0481 (14)0.0498 (13)0.0011 (12)0.0087 (12)0.0167 (11)
O20.117 (2)0.0632 (16)0.0299 (12)0.0117 (16)0.0045 (13)0.0008 (11)
O30.120 (2)0.0370 (12)0.0332 (11)0.0231 (13)0.0045 (13)0.0002 (9)
O40.0716 (17)0.0579 (14)0.0557 (14)0.0352 (13)0.0181 (12)0.0154 (12)
O50.0406 (13)0.0849 (18)0.0732 (17)0.0226 (13)0.0017 (12)0.0396 (15)
O60.158 (3)0.0651 (17)0.0270 (12)0.0008 (18)0.0034 (15)0.0041 (12)
O70.0759 (17)0.0416 (12)0.0488 (13)0.0006 (11)0.0133 (12)0.0152 (10)
N10.0300 (12)0.0328 (12)0.0405 (13)0.0008 (9)0.0020 (10)0.0117 (10)
N20.0545 (15)0.0242 (11)0.0278 (11)0.0015 (10)0.0024 (10)0.0011 (9)
N30.0448 (15)0.0451 (14)0.0363 (14)0.0143 (12)0.0102 (11)0.0080 (11)
N40.0316 (12)0.0329 (12)0.0387 (13)0.0022 (9)0.0026 (10)0.0096 (10)
N50.0617 (17)0.0256 (11)0.0256 (11)0.0021 (11)0.0028 (11)0.0009 (9)
N60.0508 (16)0.0431 (14)0.0321 (13)0.0114 (12)0.0114 (11)0.0069 (11)
C10.0401 (16)0.0323 (14)0.0466 (17)0.0056 (12)0.0058 (13)0.0091 (12)
C20.0424 (17)0.0389 (15)0.0484 (17)0.0017 (13)0.0019 (14)0.0175 (14)
C30.0274 (13)0.0276 (12)0.0285 (13)0.0014 (10)0.0054 (10)0.0009 (10)
C40.0233 (13)0.0376 (14)0.0453 (16)0.0023 (11)0.0003 (11)0.0083 (12)
C50.0301 (14)0.0354 (14)0.0462 (16)0.0002 (11)0.0058 (12)0.0062 (12)
C60.0301 (13)0.0247 (12)0.0321 (13)0.0012 (10)0.0072 (10)0.0012 (10)
C70.0258 (13)0.0320 (13)0.0301 (13)0.0021 (10)0.0021 (10)0.0033 (11)
C80.0237 (13)0.0341 (13)0.0340 (14)0.0002 (10)0.0029 (10)0.0050 (11)
C90.0300 (13)0.0282 (12)0.0343 (14)0.0024 (10)0.0060 (11)0.0004 (11)
C100.0344 (14)0.0280 (12)0.0324 (14)0.0003 (11)0.0054 (11)0.0015 (11)
C110.0352 (14)0.0280 (12)0.0278 (13)0.0020 (11)0.0033 (11)0.0016 (10)
C120.0356 (15)0.0274 (13)0.0431 (16)0.0016 (11)0.0046 (12)0.0052 (11)
C130.0420 (16)0.0325 (14)0.0367 (15)0.0023 (12)0.0036 (12)0.0016 (12)
C140.0473 (17)0.0336 (14)0.0345 (15)0.0111 (13)0.0002 (12)0.0023 (12)
C150.0392 (15)0.0370 (14)0.0299 (14)0.0049 (12)0.0024 (11)0.0004 (11)
C160.081 (2)0.0283 (14)0.0349 (16)0.0015 (15)0.0043 (15)0.0068 (12)
C170.0319 (14)0.0359 (14)0.0308 (14)0.0062 (11)0.0071 (11)0.0045 (11)
C180.0368 (15)0.0358 (14)0.0337 (14)0.0048 (12)0.0021 (12)0.0055 (12)
C190.0336 (14)0.0279 (13)0.0389 (15)0.0003 (11)0.0005 (11)0.0041 (11)
C200.0249 (12)0.0281 (12)0.0331 (13)0.0006 (10)0.0062 (10)0.0010 (10)
C210.0328 (14)0.0277 (12)0.0329 (14)0.0011 (11)0.0014 (11)0.0024 (11)
C220.0337 (14)0.0285 (13)0.0378 (15)0.0012 (11)0.0068 (11)0.0026 (11)
C230.0427 (18)0.0420 (16)0.0532 (19)0.0034 (13)0.0023 (14)0.0195 (14)
C240.0399 (16)0.0344 (14)0.0424 (16)0.0011 (12)0.0054 (13)0.0073 (12)
C250.0291 (13)0.0276 (12)0.0294 (13)0.0047 (10)0.0037 (10)0.0014 (10)
C260.0283 (13)0.0297 (13)0.0364 (14)0.0004 (10)0.0016 (11)0.0016 (11)
C270.0262 (13)0.0308 (13)0.0318 (13)0.0064 (10)0.0003 (10)0.0012 (11)
C280.0320 (14)0.0260 (12)0.0309 (13)0.0024 (10)0.0046 (11)0.0019 (10)
C290.0265 (13)0.0361 (14)0.0418 (15)0.0003 (11)0.0007 (11)0.0070 (12)
C300.0252 (13)0.0381 (14)0.0385 (15)0.0045 (11)0.0028 (11)0.0088 (12)
C310.0297 (14)0.0290 (13)0.0356 (14)0.0025 (10)0.0041 (11)0.0010 (11)
C320.0359 (15)0.0295 (13)0.0331 (14)0.0023 (11)0.0053 (11)0.0023 (11)
C330.0408 (15)0.0278 (12)0.0248 (12)0.0024 (11)0.0033 (11)0.0011 (10)
C340.0414 (16)0.0346 (14)0.0313 (14)0.0054 (12)0.0021 (12)0.0046 (11)
C350.0517 (18)0.0339 (14)0.0309 (14)0.0076 (13)0.0023 (13)0.0020 (12)
C360.0460 (17)0.0357 (15)0.0414 (16)0.0033 (13)0.0013 (13)0.0040 (13)
C370.0417 (16)0.0344 (14)0.0408 (16)0.0002 (12)0.0029 (13)0.0052 (12)
C380.089 (3)0.0282 (14)0.0342 (16)0.0011 (15)0.0041 (16)0.0071 (12)
C390.0306 (14)0.0339 (13)0.0308 (13)0.0078 (11)0.0074 (11)0.0047 (11)
C400.0372 (15)0.0249 (12)0.0356 (14)0.0021 (11)0.0058 (11)0.0010 (11)
C410.0365 (15)0.0277 (13)0.0309 (13)0.0025 (11)0.0004 (11)0.0012 (10)
C420.0229 (12)0.0266 (12)0.0348 (13)0.0037 (10)0.0027 (10)0.0024 (10)
C430.0314 (14)0.0268 (12)0.0406 (15)0.0009 (11)0.0012 (11)0.0024 (11)
C440.0374 (15)0.0367 (14)0.0306 (14)0.0057 (12)0.0002 (11)0.0047 (11)
Geometric parameters (Å, º) top
S1—O41.430 (2)C15—H150.9500
S1—O51.430 (2)C16—H16B0.9800
S1—O31.431 (2)C16—H16C0.9800
S1—C201.786 (3)C16—H16A0.9800
S2—O91.389 (5)C17—C221.379 (4)
S2—O10'1.395 (4)C17—C181.383 (4)
S2—O9'1.440 (3)C18—C191.383 (4)
S2—O8'1.442 (3)C18—H180.9500
S2—O81.443 (5)C19—C201.388 (4)
S2—O101.443 (5)C19—H190.9500
S2—C421.789 (3)C20—C211.387 (3)
O1—N31.225 (3)C21—C221.384 (4)
O2—N31.215 (3)C21—H210.9500
O6—N61.207 (3)C22—H220.9500
O7—N61.220 (3)C23—H23A0.9800
N1—C31.364 (3)C23—H23C0.9800
N1—C11.440 (3)C23—H23B0.9800
N1—C21.446 (3)C24—H24B0.9800
N2—C131.341 (4)C24—H24C0.9800
N2—C141.345 (4)C24—H24A0.9800
N2—C161.476 (3)C25—C301.402 (4)
N3—C171.473 (3)C25—C261.408 (3)
N4—C251.369 (3)C26—C271.374 (3)
N4—C231.440 (3)C26—H260.9500
N4—C241.448 (3)C27—C281.398 (4)
N5—C351.343 (4)C27—H270.9500
N5—C361.345 (4)C28—C291.395 (4)
N5—C381.480 (3)C28—C311.453 (3)
N6—C391.473 (3)C29—C301.382 (4)
C1—H1A0.9800C29—H290.9500
C1—H1C0.9800C30—H300.9500
C1—H1B0.9800C31—C321.341 (4)
C2—H2B0.9800C31—H310.9500
C2—H2C0.9800C32—C331.449 (3)
C2—H2A0.9800C32—H320.9500
C3—C41.404 (3)C33—C371.397 (4)
C3—C81.410 (3)C33—C341.406 (4)
C4—C51.376 (4)C34—C351.368 (4)
C4—H40.9500C34—H340.9500
C5—C61.397 (4)C35—H350.9500
C5—H50.9500C36—C371.365 (4)
C6—C71.398 (3)C36—H360.9500
C6—C91.454 (3)C37—H370.9500
C7—C81.375 (3)C38—H38C0.9800
C7—H70.9500C38—H38B0.9800
C8—H80.9500C38—H38A0.9800
C9—C101.339 (4)C39—C401.377 (4)
C9—H90.9500C39—C441.378 (4)
C10—C111.452 (3)C40—C411.381 (4)
C10—H100.9500C40—H400.9500
C11—C121.394 (4)C41—C421.392 (3)
C11—C151.405 (4)C41—H410.9500
C12—C131.366 (4)C42—C431.387 (4)
C12—H120.9500C43—C441.382 (4)
C13—H130.9500C43—H430.9500
C14—C151.372 (4)C44—H440.9500
C14—H140.9500
O4—S1—O5113.13 (17)H16B—C16—H16C109.5
O4—S1—O3113.31 (17)N2—C16—H16A109.5
O5—S1—O3113.42 (17)H16B—C16—H16A109.5
O4—S1—C20104.38 (13)H16C—C16—H16A109.5
O5—S1—C20105.70 (13)C22—C17—C18122.8 (2)
O3—S1—C20105.87 (12)C22—C17—N3118.3 (3)
O9—S2—O10'135.7 (5)C18—C17—N3119.0 (3)
O9—S2—O9'34.6 (5)C17—C18—C19118.2 (3)
O10'—S2—O9'113.6 (4)C17—C18—H18120.9
O9—S2—O8'75.0 (6)C19—C18—H18120.9
O10'—S2—O8'117.6 (4)C18—C19—C20120.3 (2)
O9'—S2—O8'109.5 (3)C18—C19—H19119.9
O9—S2—O8119.2 (6)C20—C19—H19119.9
O10'—S2—O871.0 (4)C21—C20—C19120.3 (2)
O9'—S2—O8147.7 (3)C21—C20—S1120.0 (2)
O8'—S2—O849.1 (4)C19—C20—S1119.6 (2)
O9—S2—O10112.2 (7)C22—C21—C20120.1 (3)
O10'—S2—O1035.9 (3)C22—C21—H21119.9
O9'—S2—O1081.2 (5)C20—C21—H21119.9
O8'—S2—O10148.7 (4)C17—C22—C21118.4 (3)
O8—S2—O10106.6 (5)C17—C22—H22120.8
O9—S2—C42110.8 (4)C21—C22—H22120.8
O10'—S2—C42106.8 (2)N4—C23—H23A109.5
O9'—S2—C42104.1 (2)N4—C23—H23C109.5
O8'—S2—C42103.90 (18)H23A—C23—H23C109.5
O8—S2—C42104.8 (3)N4—C23—H23B109.5
O10—S2—C42101.6 (3)H23A—C23—H23B109.5
C3—N1—C1121.2 (2)H23C—C23—H23B109.5
C3—N1—C2120.5 (2)N4—C24—H24B109.5
C1—N1—C2118.0 (2)N4—C24—H24C109.5
C13—N2—C14119.8 (2)H24B—C24—H24C109.5
C13—N2—C16119.4 (3)N4—C24—H24A109.5
C14—N2—C16120.8 (3)H24B—C24—H24A109.5
O2—N3—O1123.7 (3)H24C—C24—H24A109.5
O2—N3—C17118.1 (3)N4—C25—C30121.7 (2)
O1—N3—C17118.2 (3)N4—C25—C26121.7 (2)
C25—N4—C23120.3 (2)C30—C25—C26116.6 (2)
C25—N4—C24120.7 (2)C27—C26—C25121.6 (2)
C23—N4—C24117.9 (2)C27—C26—H26119.2
C35—N5—C36120.2 (2)C25—C26—H26119.2
C35—N5—C38120.0 (3)C26—C27—C28121.8 (2)
C36—N5—C38119.7 (3)C26—C27—H27119.1
O6—N6—O7123.3 (3)C28—C27—H27119.1
O6—N6—C39118.2 (3)C29—C28—C27116.6 (2)
O7—N6—C39118.5 (3)C29—C28—C31120.5 (2)
N1—C1—H1A109.5C27—C28—C31122.8 (2)
N1—C1—H1C109.5C30—C29—C28122.1 (3)
H1A—C1—H1C109.5C30—C29—H29119.0
N1—C1—H1B109.5C28—C29—H29119.0
H1A—C1—H1B109.5C29—C30—C25121.2 (2)
H1C—C1—H1B109.5C29—C30—H30119.4
N1—C2—H2B109.5C25—C30—H30119.4
N1—C2—H2C109.5C32—C31—C28126.0 (3)
H2B—C2—H2C109.5C32—C31—H31117.0
N1—C2—H2A109.5C28—C31—H31117.0
H2B—C2—H2A109.5C31—C32—C33125.5 (3)
H2C—C2—H2A109.5C31—C32—H32117.3
N1—C3—C4121.7 (2)C33—C32—H32117.3
N1—C3—C8121.6 (2)C37—C33—C34116.2 (2)
C4—C3—C8116.7 (2)C37—C33—C32124.5 (3)
C5—C4—C3121.3 (3)C34—C33—C32119.3 (3)
C5—C4—H4119.4C35—C34—C33120.8 (3)
C3—C4—H4119.4C35—C34—H34119.6
C4—C5—C6122.1 (3)C33—C34—H34119.6
C4—C5—H5118.9N5—C35—C34120.9 (3)
C6—C5—H5118.9N5—C35—H35119.6
C5—C6—C7116.5 (2)C34—C35—H35119.6
C5—C6—C9120.1 (2)N5—C36—C37121.1 (3)
C7—C6—C9123.4 (2)N5—C36—H36119.5
C8—C7—C6122.0 (2)C37—C36—H36119.5
C8—C7—H7119.0C36—C37—C33120.9 (3)
C6—C7—H7119.0C36—C37—H37119.5
C7—C8—C3121.3 (2)C33—C37—H37119.5
C7—C8—H8119.4N5—C38—H38C109.5
C3—C8—H8119.4N5—C38—H38B109.5
C10—C9—C6126.5 (2)H38C—C38—H38B109.5
C10—C9—H9116.8N5—C38—H38A109.5
C6—C9—H9116.8H38C—C38—H38A109.5
C9—C10—C11124.7 (2)H38B—C38—H38A109.5
C9—C10—H10117.7C40—C39—C44122.5 (2)
C11—C10—H10117.7C40—C39—N6118.4 (2)
C12—C11—C15116.7 (2)C44—C39—N6119.1 (2)
C12—C11—C10123.9 (2)C39—C40—C41118.7 (2)
C15—C11—C10119.4 (2)C39—C40—H40120.6
C13—C12—C11120.5 (3)C41—C40—H40120.6
C13—C12—H12119.7C40—C41—C42120.1 (3)
C11—C12—H12119.7C40—C41—H41120.0
N2—C13—C12121.6 (3)C42—C41—H41120.0
N2—C13—H13119.2C43—C42—C41119.9 (2)
C12—C13—H13119.2C43—C42—S2120.4 (2)
N2—C14—C15121.1 (3)C41—C42—S2119.7 (2)
N2—C14—H14119.4C44—C43—C42120.5 (2)
C15—C14—H14119.4C44—C43—H43119.8
C14—C15—C11120.3 (3)C42—C43—H43119.8
C14—C15—H15119.9C39—C44—C43118.4 (3)
C11—C15—H15119.9C39—C44—H44120.8
N2—C16—H16B109.5C43—C44—H44120.8
N2—C16—H16C109.5
C1—N1—C3—C4179.6 (3)C24—N4—C25—C267.8 (4)
C2—N1—C3—C46.0 (4)N4—C25—C26—C27177.8 (2)
C1—N1—C3—C81.1 (4)C30—C25—C26—C270.6 (4)
C2—N1—C3—C8174.7 (3)C25—C26—C27—C280.6 (4)
N1—C3—C4—C5176.7 (3)C26—C27—C28—C291.3 (4)
C8—C3—C4—C52.7 (4)C26—C27—C28—C31179.7 (2)
C3—C4—C5—C61.5 (4)C27—C28—C29—C300.9 (4)
C4—C5—C6—C70.5 (4)C31—C28—C29—C30179.9 (2)
C4—C5—C6—C9179.5 (3)C28—C29—C30—C250.3 (4)
C5—C6—C7—C81.3 (4)N4—C25—C30—C29177.4 (2)
C9—C6—C7—C8178.7 (2)C26—C25—C30—C291.1 (4)
C6—C7—C8—C30.0 (4)C29—C28—C31—C32175.3 (3)
N1—C3—C8—C7177.4 (2)C27—C28—C31—C323.6 (4)
C4—C3—C8—C71.9 (4)C28—C31—C32—C33179.5 (2)
C5—C6—C9—C10174.7 (3)C31—C32—C33—C376.0 (4)
C7—C6—C9—C105.3 (4)C31—C32—C33—C34173.2 (3)
C6—C9—C10—C11179.7 (2)C37—C33—C34—C351.4 (4)
C9—C10—C11—C129.8 (4)C32—C33—C34—C35177.9 (2)
C9—C10—C11—C15170.2 (3)C36—N5—C35—C340.6 (4)
C15—C11—C12—C131.2 (4)C38—N5—C35—C34177.8 (2)
C10—C11—C12—C13178.9 (2)C33—C34—C35—N50.4 (4)
C14—N2—C13—C120.4 (4)C35—N5—C36—C370.6 (4)
C16—N2—C13—C12178.2 (2)C38—N5—C36—C37177.8 (3)
C11—C12—C13—N20.4 (4)N5—C36—C37—C330.4 (4)
C13—N2—C14—C150.4 (4)C34—C33—C37—C361.4 (4)
C16—N2—C14—C15178.1 (2)C32—C33—C37—C36177.9 (3)
N2—C14—C15—C110.5 (4)O6—N6—C39—C40179.0 (3)
C12—C11—C15—C141.2 (4)O7—N6—C39—C400.0 (4)
C10—C11—C15—C14178.8 (2)O6—N6—C39—C440.4 (4)
O2—N3—C17—C22179.7 (3)O7—N6—C39—C44178.7 (3)
O1—N3—C17—C221.5 (4)C44—C39—C40—C410.2 (4)
O2—N3—C17—C180.0 (4)N6—C39—C40—C41178.8 (2)
O1—N3—C17—C18178.1 (3)C39—C40—C41—C421.1 (4)
C22—C17—C18—C190.3 (4)C40—C41—C42—C431.4 (4)
N3—C17—C18—C19179.4 (2)C40—C41—C42—S2177.7 (2)
C17—C18—C19—C200.7 (4)O9—S2—C42—C4356.2 (7)
C18—C19—C20—C211.2 (4)O10'—S2—C42—C4399.9 (4)
C18—C19—C20—S1177.6 (2)O9'—S2—C42—C4320.6 (3)
O4—S1—C20—C21116.7 (2)O8'—S2—C42—C43135.1 (4)
O5—S1—C20—C21123.7 (2)O8—S2—C42—C43174.1 (5)
O3—S1—C20—C213.1 (3)O10—S2—C42—C4363.2 (5)
O4—S1—C20—C1962.1 (3)O9—S2—C42—C41124.7 (7)
O5—S1—C20—C1957.5 (3)O10'—S2—C42—C4179.2 (4)
O3—S1—C20—C19178.1 (2)O9'—S2—C42—C41160.3 (3)
C19—C20—C21—C221.3 (4)O8'—S2—C42—C4145.8 (4)
S1—C20—C21—C22177.5 (2)O8—S2—C42—C415.0 (5)
C18—C17—C22—C210.3 (4)O10—S2—C42—C41115.9 (5)
N3—C17—C22—C21179.4 (2)C41—C42—C43—C440.4 (4)
C20—C21—C22—C170.8 (4)S2—C42—C43—C44178.7 (2)
C23—N4—C25—C305.9 (4)C40—C39—C44—C431.2 (4)
C24—N4—C25—C30173.8 (3)N6—C39—C44—C43179.8 (2)
C23—N4—C25—C26175.8 (3)C42—C43—C44—C390.9 (4)

Experimental details

Crystal data
Chemical formulaC16H19N2+·C6H4NO5S
Mr441.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)18.901 (3), 6.4504 (10), 34.222 (6)
β (°) 96.77 (3)
V3)4143.1 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.16 × 0.13
Data collection
DiffractometerRigaku Saturn 724+
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.752, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20075, 9459, 7630
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.176, 1.15
No. of reflections9459
No. of parameters593
No. of restraints69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.32

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

 

Acknowledgements

The authors thank the Natural Science Foundation (grant No. 50803005), the Fundamental Research Funds for the Central Universities, the Scientific Research Foundation for Returned Overseas Chinese Scholars and the National Natural Science Fund for Distinguished Young Scholars (grant No. 51025313).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationKumar, K., Rai, R. & Rai, S. (2009). Appl. Phys. B, 96, 85–94.  Web of Science CrossRef CAS Google Scholar
First citationKwon, S., Jazbinsek, M., Kwon, O. & Günter, P. (2010). Cryst. Growth Des. 10, 1552–1558.  Web of Science CrossRef CAS Google Scholar
First citationLi, L., Cui, H., Yang, Z., Tao, X. & Yang, H. (2012). Acta Cryst. E68, o281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOgawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.  Web of Science CrossRef CAS Google Scholar
First citationOkada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn. J. Appl. Phys. 29, 1112–1115.  CSD CrossRef CAS Web of Science Google Scholar
First citationOkada, S., Nogi, K., Anwar, Tsuji, K., Duan, X. M., Oikawa, H., Matsuda, H. & Nakanishi, H. (2003). Jpn J. Appl. Phys. 42, 668–671.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072–1075.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018–2023.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, J., Li, L., Yang, Z., Jazbinsek, M., Tao, X., Günter, P. & Yang, H. (2012). Dyes Pigments, 94, 120–126.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds