organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,5-Di­methyl­phen­yl)[8-(3,5-di­methyl­benzo­yl)-2,7-dimeth­­oxy­naphthalen-1-yl]methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 23 February 2012; accepted 21 March 2012; online 28 March 2012)

In the title mol­ecule, C30H28O4, the inter­planar angle between the two benzene rings of the 3,5-dimethyl­benzoyl groups is 50.35 (7)°. The dihedral angles between the two benzene rings and the naphthalene ring system are 81.87 (6) and 83.55 (6)°. In addition, the conformations of the pairs of methyl groups and their counterparts differ from each other though their environment is very similar. In the crystal, weak C—H⋯O inter­actions occur.

Related literature

For electrophilic aromatic substitution of naphthalene deriv­atives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.], 2011a[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813.],b[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062.]; 2012[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28O4

  • Mr = 452.52

  • Monoclinic, P 21 /c

  • a = 19.4659 (3) Å

  • b = 8.27808 (10) Å

  • c = 15.8244 (2) Å

  • β = 110.69°

  • V = 2385.46 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 193 K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.734, Tmax = 0.937

  • 43008 measured reflections

  • 4360 independent reflections

  • 3884 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.118

  • S = 1.08

  • 4360 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.95 2.55 3.1332 (17) 120
C25—H25B⋯O2ii 0.98 2.41 3.170 (2) 134
C26—H26A⋯O1i 0.98 2.59 3.475 (2) 150
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). We have recently reported crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2012). In these compounds, the aroyl groups at the 1,8-positions of the naphthalene rings contain almost 90°. In addition, crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated derivatives have been also determined such as (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011a) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011b).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, peri-aroylnaphthalene bearing two methyl groups at 3,5-positions on the phenyl group, is discussed in this article.

The title molecule is displayed in Fig. 1. Two 3,5-dimethylphenyl groups are out of the plane of the naphthalene ring. The interplanar angle between the best planes of the two phenyl rings (C12\C17 and C19\C24) is 50.35 (7)°. On the other hand, the two interplanar angles between the best planes of the 3,5-dimethylphenyl rings and the naphthalene ring are 81.87 (6) and 83.55 (6)°, respectively.

The torsion angles between the carbonyl groups and the naphthalene ring are 113.52 (15)° [C2\C1\C11\O1] and 102.95 (16)° [C8\C9\C18\O2], furthermore those between the carbonyl groups and 3,5-dimethylphenyl groups are 153.91 (13)° [O1\C11\C12\C13] and 164.07 (13)° [O2\C18\C19\C24].

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. In addition, the crystal packing is stabilized by three different C—H···O interactions: 1) C7—H7···O1i (Fig. 2 and Table 1). This interaction is directed along the b axis. 2) C25—H25b···O2ii (Fig. 3 and Table 1). This interaction is directed along the c axis. 3) C26—H26a···O1i (Fig. 2 and Table 1). This interaction is directed along the b axis.

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010, 2011a,b; 2012).

Experimental top

3,5-dimethylbenzoyl chloride (1.50 mmol, 253 mg), titanium chloride (1.50 mmol, 285 mg) and methylene chloride (1.25 ml) were placed into a 10 ml flask, followed by stirring at room temperature. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (0.50 mmol, 94.1 mg) was added. The reaction mixture was poured into ice-cold water (30 ml) after it had been stirred for 6 h at room temperature. The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from hexane and CHCl3 (yield 62%). Colourless platelet single crystals suitable for X-ray diffraction were obtained (the average size: 0.8 × 0.4 × 0.1 mm) by repeated crystallization from hexane/CHCl3 mixtures (4:1 v/v).

1H NMR δ (300 MHz, CDCl3); 2.24 (12H, s), 3.69 (6H, s), 7.05 (2H, s), 7.21 (2H, d, J = 9.0 Hz), 7.26 (4H, s), 7.95 (2H, d, J = 9.3 Hz) p.p.m..

13C NMR δ (75 MHz, CDCl3); 21.19, 56.53, 111.40, 121.94, 124.53, 125.54, 126.99, 131.86, 134.52, 137.19, 138.56, 156.26, 196.94 p.p.m..

IR (KBr); 1656 (C=O), 1610, 1511, 1459 (Ar, naphthalene), 1267 (=C—O—C) cm-1.

High-resolution mass spectra (m/z); [M + Na]+ Calcd for C30H28O4Na, 475.1885; found, 475.1851.

m.p. = 576–580 K.

Refinement top

All the H atoms were found in the difference electron density map and were subsequently refined in the riding atom approximation, with C—H = 0.95 (aryl) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(Caryl) and Uiso(H) = 1.5Ueq(Cmethyl). The methyl H atoms C29 are less clear, indicating possible disorder over 4 positions that has not been described in the published model.

Structure description top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). We have recently reported crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2012). In these compounds, the aroyl groups at the 1,8-positions of the naphthalene rings contain almost 90°. In addition, crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated derivatives have been also determined such as (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011a) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011b).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, peri-aroylnaphthalene bearing two methyl groups at 3,5-positions on the phenyl group, is discussed in this article.

The title molecule is displayed in Fig. 1. Two 3,5-dimethylphenyl groups are out of the plane of the naphthalene ring. The interplanar angle between the best planes of the two phenyl rings (C12\C17 and C19\C24) is 50.35 (7)°. On the other hand, the two interplanar angles between the best planes of the 3,5-dimethylphenyl rings and the naphthalene ring are 81.87 (6) and 83.55 (6)°, respectively.

The torsion angles between the carbonyl groups and the naphthalene ring are 113.52 (15)° [C2\C1\C11\O1] and 102.95 (16)° [C8\C9\C18\O2], furthermore those between the carbonyl groups and 3,5-dimethylphenyl groups are 153.91 (13)° [O1\C11\C12\C13] and 164.07 (13)° [O2\C18\C19\C24].

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. In addition, the crystal packing is stabilized by three different C—H···O interactions: 1) C7—H7···O1i (Fig. 2 and Table 1). This interaction is directed along the b axis. 2) C25—H25b···O2ii (Fig. 3 and Table 1). This interaction is directed along the c axis. 3) C26—H26a···O1i (Fig. 2 and Table 1). This interaction is directed along the b axis.

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010, 2011a,b; 2012).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al. , 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Two weak intermolecular C—H···O interactions [distances: H7···O1i = 2.55 Å and H26a···O1i = 2.59 Å; symmetry code: (i) x, y + 1, z].
[Figure 3] Fig. 3. A week intermolecular C25—H25b···O2ii interaction [distance: H25b···O2 = 2.41 Å; symmetry code: (ii) x, -y + 3/2, z - 1/2].
(3,5-Dimethylphenyl)[8-(3,5-dimethylbenzoyl)- 2,7-dimethoxynaphthalen-1-yl]methanone top
Crystal data top
C30H28O4F(000) = 960
Mr = 452.52Dx = 1.260 Mg m3
Monoclinic, P21/cMelting point = 576–580 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 19.4659 (3) ÅCell parameters from 38875 reflections
b = 8.27808 (10) Åθ = 3.0–68.2°
c = 15.8244 (2) ŵ = 0.66 mm1
β = 110.69°T = 193 K
V = 2385.46 (6) Å3Platelet, colorless
Z = 40.50 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4360 independent reflections
Radiation source: rotating anode3884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 4.9°
ω scansh = 2323
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.734, Tmax = 0.937l = 1919
43008 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.4917P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4360 reflectionsΔρmax = 0.22 e Å3
314 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
106 constraintsExtinction coefficient: 0.0036 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C30H28O4V = 2385.46 (6) Å3
Mr = 452.52Z = 4
Monoclinic, P21/cCu Kα radiation
a = 19.4659 (3) ŵ = 0.66 mm1
b = 8.27808 (10) ÅT = 193 K
c = 15.8244 (2) Å0.50 × 0.20 × 0.10 mm
β = 110.69°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4360 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3884 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.937Rint = 0.032
43008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
4360 reflectionsΔρmin = 0.16 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22734 (5)0.71254 (11)0.66111 (6)0.0394 (2)
O20.28061 (5)0.99466 (12)0.81457 (6)0.0453 (3)
O30.35203 (6)0.73717 (13)0.54561 (7)0.0537 (3)
O40.15557 (6)1.27961 (12)0.73319 (8)0.0523 (3)
C10.28767 (6)0.91046 (15)0.60689 (8)0.0338 (3)
C20.31864 (7)0.88289 (17)0.54171 (9)0.0410 (3)
C30.31234 (8)0.9973 (2)0.47309 (9)0.0497 (4)
H30.33340.97610.42840.060*
C40.27599 (8)1.1377 (2)0.47163 (9)0.0493 (4)
H40.27171.21400.42520.059*
C50.24450 (7)1.17353 (17)0.53693 (9)0.0410 (3)
C60.20817 (8)1.32174 (18)0.53500 (10)0.0482 (4)
H60.20541.39750.48880.058*
C70.17710 (8)1.35995 (17)0.59644 (10)0.0473 (4)
H70.15271.46040.59320.057*
C80.18160 (7)1.24812 (16)0.66535 (10)0.0412 (3)
C90.21571 (6)1.09969 (15)0.67024 (9)0.0343 (3)
C100.24920 (6)1.05758 (15)0.60622 (8)0.0340 (3)
C110.28661 (7)0.77005 (14)0.66698 (8)0.0319 (3)
C120.35610 (7)0.70057 (15)0.73078 (8)0.0320 (3)
C130.41949 (7)0.79286 (16)0.76626 (8)0.0360 (3)
H130.41960.90180.74750.043*
C140.48268 (7)0.72703 (18)0.82903 (9)0.0407 (3)
C150.48139 (7)0.56487 (18)0.85289 (9)0.0425 (3)
H150.52460.51810.89470.051*
C160.41900 (7)0.46975 (17)0.81758 (9)0.0399 (3)
C170.35596 (7)0.53999 (16)0.75728 (9)0.0356 (3)
H170.31220.47800.73380.043*
C180.22180 (7)1.00106 (14)0.75278 (8)0.0336 (3)
C190.15522 (6)0.91939 (14)0.75809 (8)0.0327 (3)
C200.15643 (7)0.86210 (15)0.84140 (9)0.0367 (3)
H200.19900.87770.89360.044*
C210.09618 (8)0.78263 (16)0.84899 (9)0.0411 (3)
C220.03586 (7)0.75515 (16)0.77074 (10)0.0412 (3)
H220.00530.69900.77510.049*
C230.03382 (7)0.80700 (16)0.68642 (9)0.0392 (3)
C240.09358 (7)0.89291 (15)0.68109 (9)0.0352 (3)
H240.09230.93380.62450.042*
C250.38607 (10)0.7042 (2)0.48124 (11)0.0560 (4)
H25A0.42400.78540.48660.084*
H25B0.34910.70760.42020.084*
H25C0.40860.59670.49260.084*
C260.12856 (10)1.43782 (19)0.73930 (15)0.0627 (5)
H26A0.16651.51770.74220.094*
H26B0.11591.44560.79390.094*
H26C0.08471.45870.68600.094*
C270.55064 (9)0.8269 (2)0.87241 (12)0.0620 (5)
H27A0.54280.93590.84660.093*
H27B0.59220.77660.86120.093*
H27C0.56120.83320.93760.093*
C280.42004 (9)0.29395 (19)0.84383 (13)0.0567 (4)
H28A0.45980.23810.83130.085*
H28B0.37300.24380.80880.085*
H28C0.42810.28600.90840.085*
C290.09670 (11)0.7238 (2)0.93949 (11)0.0632 (5)
H29A0.10820.81410.98230.095*
H29B0.13400.63930.96210.095*
H29C0.04830.67980.93280.095*
C300.03058 (8)0.7652 (2)0.60251 (11)0.0543 (4)
H30A0.07450.75000.61830.081*
H30B0.02000.66520.57620.081*
H30C0.03900.85310.55850.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0349 (5)0.0337 (5)0.0511 (5)0.0012 (4)0.0170 (4)0.0029 (4)
O20.0366 (5)0.0497 (6)0.0424 (5)0.0041 (4)0.0050 (4)0.0061 (4)
O30.0734 (7)0.0547 (6)0.0447 (6)0.0092 (5)0.0353 (5)0.0027 (5)
O40.0599 (6)0.0322 (5)0.0717 (7)0.0075 (4)0.0315 (6)0.0012 (5)
C10.0322 (6)0.0381 (7)0.0284 (6)0.0039 (5)0.0074 (5)0.0023 (5)
C20.0418 (7)0.0465 (8)0.0344 (7)0.0034 (6)0.0130 (6)0.0004 (6)
C30.0536 (8)0.0652 (10)0.0326 (7)0.0090 (7)0.0181 (6)0.0043 (6)
C40.0515 (8)0.0559 (9)0.0355 (7)0.0080 (7)0.0090 (6)0.0151 (6)
C50.0367 (6)0.0427 (7)0.0356 (7)0.0083 (6)0.0027 (5)0.0091 (6)
C60.0469 (8)0.0382 (7)0.0458 (8)0.0065 (6)0.0007 (6)0.0152 (6)
C70.0423 (7)0.0307 (7)0.0579 (9)0.0005 (6)0.0041 (6)0.0078 (6)
C80.0343 (6)0.0312 (7)0.0524 (8)0.0025 (5)0.0083 (6)0.0010 (6)
C90.0292 (6)0.0302 (6)0.0392 (7)0.0033 (5)0.0068 (5)0.0024 (5)
C100.0300 (6)0.0342 (6)0.0320 (6)0.0060 (5)0.0035 (5)0.0038 (5)
C110.0349 (6)0.0304 (6)0.0326 (6)0.0009 (5)0.0145 (5)0.0027 (5)
C120.0350 (6)0.0350 (6)0.0299 (6)0.0021 (5)0.0166 (5)0.0010 (5)
C130.0396 (7)0.0382 (7)0.0330 (6)0.0018 (5)0.0162 (5)0.0046 (5)
C140.0371 (7)0.0497 (8)0.0364 (7)0.0026 (6)0.0144 (6)0.0053 (6)
C150.0362 (7)0.0514 (8)0.0408 (7)0.0080 (6)0.0149 (6)0.0099 (6)
C160.0412 (7)0.0383 (7)0.0448 (7)0.0071 (5)0.0209 (6)0.0062 (6)
C170.0366 (6)0.0354 (7)0.0386 (7)0.0014 (5)0.0182 (5)0.0006 (5)
C180.0352 (6)0.0281 (6)0.0366 (6)0.0010 (5)0.0113 (5)0.0025 (5)
C190.0352 (6)0.0275 (6)0.0363 (6)0.0029 (5)0.0137 (5)0.0028 (5)
C200.0419 (7)0.0328 (7)0.0354 (6)0.0007 (5)0.0135 (5)0.0046 (5)
C210.0493 (8)0.0362 (7)0.0436 (7)0.0007 (6)0.0235 (6)0.0021 (6)
C220.0386 (7)0.0366 (7)0.0549 (8)0.0009 (5)0.0246 (6)0.0026 (6)
C230.0332 (6)0.0372 (7)0.0466 (7)0.0021 (5)0.0131 (5)0.0052 (6)
C240.0352 (6)0.0342 (7)0.0367 (6)0.0033 (5)0.0134 (5)0.0003 (5)
C250.0661 (10)0.0657 (10)0.0449 (8)0.0039 (8)0.0305 (8)0.0111 (7)
C260.0634 (10)0.0313 (7)0.1061 (14)0.0047 (7)0.0459 (10)0.0001 (8)
C270.0479 (8)0.0714 (11)0.0542 (9)0.0144 (8)0.0024 (7)0.0161 (8)
C280.0537 (9)0.0416 (8)0.0746 (11)0.0102 (7)0.0226 (8)0.0151 (7)
C290.0749 (11)0.0720 (11)0.0509 (9)0.0124 (9)0.0326 (8)0.0033 (8)
C300.0383 (7)0.0636 (10)0.0552 (9)0.0076 (7)0.0094 (7)0.0055 (7)
Geometric parameters (Å, º) top
O1—C111.2208 (15)C16—C281.512 (2)
O2—C181.2158 (15)C17—H170.9500
O3—C21.3613 (18)C18—C191.4903 (17)
O3—C251.4242 (17)C19—C241.3926 (17)
O4—C81.3644 (18)C19—C201.3935 (18)
O4—C261.4272 (18)C20—C211.3865 (19)
C1—C21.3853 (18)C20—H200.9500
C1—C101.4278 (18)C21—C221.392 (2)
C1—C111.5065 (17)C21—C291.509 (2)
C2—C31.413 (2)C22—C231.389 (2)
C3—C41.356 (2)C22—H220.9500
C3—H30.9500C23—C241.3912 (19)
C4—C51.407 (2)C23—C301.5094 (19)
C4—H40.9500C24—H240.9500
C5—C61.411 (2)C25—H25A0.9800
C5—C101.4356 (18)C25—H25B0.9800
C6—C71.351 (2)C25—H25C0.9800
C6—H60.9500C26—H26A0.9800
C7—C81.409 (2)C26—H26B0.9800
C7—H70.9500C26—H26C0.9800
C8—C91.3857 (18)C27—H27A0.9800
C9—C101.4282 (18)C27—H27B0.9800
C9—C181.5090 (18)C27—H27C0.9800
C11—C121.4882 (17)C28—H28A0.9800
C12—C131.3899 (18)C28—H28B0.9800
C12—C171.3942 (18)C28—H28C0.9800
C13—C141.3904 (18)C29—H29A0.9800
C13—H130.9500C29—H29B0.9800
C14—C151.397 (2)C29—H29C0.9800
C14—C271.504 (2)C30—H30A0.9800
C15—C161.388 (2)C30—H30B0.9800
C15—H150.9500C30—H30C0.9800
C16—C171.3881 (18)
C2—O3—C25118.22 (12)C19—C18—C9119.36 (10)
C8—O4—C26118.47 (12)C24—C19—C20119.70 (12)
C2—C1—C10120.01 (11)C24—C19—C18121.32 (11)
C2—C1—C11116.72 (11)C20—C19—C18118.91 (11)
C10—C1—C11122.59 (11)C21—C20—C19120.76 (12)
O3—C2—C1116.02 (12)C21—C20—H20119.6
O3—C2—C3122.64 (13)C19—C20—H20119.6
C1—C2—C3121.28 (13)C20—C21—C22118.30 (12)
C4—C3—C2119.38 (13)C20—C21—C29120.87 (14)
C4—C3—H3120.3C22—C21—C29120.81 (13)
C2—C3—H3120.3C23—C22—C21122.22 (12)
C3—C4—C5121.87 (13)C23—C22—H22118.9
C3—C4—H4119.1C21—C22—H22118.9
C5—C4—H4119.1C22—C23—C24118.40 (12)
C4—C5—C6120.83 (13)C22—C23—C30120.47 (13)
C4—C5—C10119.56 (13)C24—C23—C30121.08 (13)
C6—C5—C10119.61 (13)C23—C24—C19120.52 (12)
C7—C6—C5122.42 (13)C23—C24—H24119.7
C7—C6—H6118.8C19—C24—H24119.7
C5—C6—H6118.8O3—C25—H25A109.5
C6—C7—C8118.79 (13)O3—C25—H25B109.5
C6—C7—H7120.6H25A—C25—H25B109.5
C8—C7—H7120.6O3—C25—H25C109.5
O4—C8—C9115.42 (12)H25A—C25—H25C109.5
O4—C8—C7122.99 (13)H25B—C25—H25C109.5
C9—C8—C7121.55 (14)O4—C26—H26A109.5
C8—C9—C10120.43 (12)O4—C26—H26B109.5
C8—C9—C18114.69 (12)H26A—C26—H26B109.5
C10—C9—C18124.47 (11)O4—C26—H26C109.5
C1—C10—C9124.93 (11)H26A—C26—H26C109.5
C1—C10—C5117.89 (12)H26B—C26—H26C109.5
C9—C10—C5117.18 (12)C14—C27—H27A109.5
O1—C11—C12120.59 (11)C14—C27—H27B109.5
O1—C11—C1118.44 (11)H27A—C27—H27B109.5
C12—C11—C1120.96 (10)C14—C27—H27C109.5
C13—C12—C17119.89 (12)H27A—C27—H27C109.5
C13—C12—C11121.74 (11)H27B—C27—H27C109.5
C17—C12—C11118.34 (11)C16—C28—H28A109.5
C12—C13—C14120.54 (12)C16—C28—H28B109.5
C12—C13—H13119.7H28A—C28—H28B109.5
C14—C13—H13119.7C16—C28—H28C109.5
C13—C14—C15118.28 (12)H28A—C28—H28C109.5
C13—C14—C27121.61 (13)H28B—C28—H28C109.5
C15—C14—C27120.10 (13)C21—C29—H29A109.5
C16—C15—C14122.20 (12)C21—C29—H29B109.5
C16—C15—H15118.9H29A—C29—H29B109.5
C14—C15—H15118.9C21—C29—H29C109.5
C17—C16—C15118.31 (12)H29A—C29—H29C109.5
C17—C16—C28120.99 (13)H29B—C29—H29C109.5
C15—C16—C28120.70 (13)C23—C30—H30A109.5
C16—C17—C12120.73 (12)C23—C30—H30B109.5
C16—C17—H17119.6H30A—C30—H30B109.5
C12—C17—H17119.6C23—C30—H30C109.5
O2—C18—C19121.69 (12)H30A—C30—H30C109.5
O2—C18—C9118.91 (11)H30B—C30—H30C109.5
C25—O3—C2—C1178.72 (12)C10—C1—C11—C12124.21 (12)
C25—O3—C2—C34.3 (2)O1—C11—C12—C13153.92 (12)
C10—C1—C2—O3177.78 (11)C1—C11—C12—C1327.31 (17)
C11—C1—C2—O37.02 (17)O1—C11—C12—C1723.92 (17)
C10—C1—C2—C30.73 (19)C1—C11—C12—C17154.85 (11)
C11—C1—C2—C3170.02 (12)C17—C12—C13—C140.87 (18)
O3—C2—C3—C4177.62 (13)C11—C12—C13—C14176.94 (11)
C1—C2—C3—C40.8 (2)C12—C13—C14—C152.17 (19)
C2—C3—C4—C50.3 (2)C12—C13—C14—C27176.47 (14)
C3—C4—C5—C6178.77 (13)C13—C14—C15—C161.4 (2)
C3—C4—C5—C101.4 (2)C27—C14—C15—C16177.23 (14)
C4—C5—C6—C7179.79 (13)C14—C15—C16—C170.6 (2)
C10—C5—C6—C70.0 (2)C14—C15—C16—C28178.99 (14)
C5—C6—C7—C80.5 (2)C15—C16—C17—C121.98 (19)
C26—O4—C8—C9171.87 (13)C28—C16—C17—C12177.64 (13)
C26—O4—C8—C75.8 (2)C13—C12—C17—C161.26 (18)
C6—C7—C8—O4176.22 (13)C11—C12—C17—C16179.14 (11)
C6—C7—C8—C91.3 (2)C8—C9—C18—O2102.93 (14)
O4—C8—C9—C10176.03 (11)C10—C9—C18—O269.75 (17)
C7—C8—C9—C101.64 (19)C8—C9—C18—C1974.74 (14)
O4—C8—C9—C183.02 (16)C10—C9—C18—C19112.58 (13)
C7—C8—C9—C18174.65 (12)O2—C18—C19—C24164.08 (12)
C2—C1—C10—C9179.42 (11)C9—C18—C19—C2418.31 (17)
C11—C1—C10—C910.39 (18)O2—C18—C19—C2012.90 (18)
C2—C1—C10—C50.37 (17)C9—C18—C19—C20164.70 (11)
C11—C1—C10—C5170.56 (11)C24—C19—C20—C211.70 (19)
C8—C9—C10—C1177.91 (11)C18—C19—C20—C21178.73 (11)
C18—C9—C10—C15.62 (19)C19—C20—C21—C222.87 (19)
C8—C9—C10—C51.15 (17)C19—C20—C21—C29178.60 (14)
C18—C9—C10—C5173.44 (11)C20—C21—C22—C231.1 (2)
C4—C5—C10—C11.42 (18)C29—C21—C22—C23179.68 (14)
C6—C5—C10—C1178.78 (11)C21—C22—C23—C241.7 (2)
C4—C5—C10—C9179.46 (11)C21—C22—C23—C30175.97 (13)
C6—C5—C10—C90.35 (17)C22—C23—C24—C192.93 (19)
C2—C1—C11—O1113.50 (13)C30—C23—C24—C19174.75 (12)
C10—C1—C11—O156.99 (17)C20—C19—C24—C231.27 (18)
C2—C1—C11—C1265.29 (15)C18—C19—C24—C23175.69 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.553.1332 (17)120
C25—H25B···O2ii0.982.413.170 (2)134
C26—H26A···O1i0.982.593.475 (2)150
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC30H28O4
Mr452.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)19.4659 (3), 8.27808 (10), 15.8244 (2)
β (°) 110.69
V3)2385.46 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.734, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
43008, 4360, 3884
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.118, 1.08
No. of reflections4360
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al. , 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.553.1332 (17)120
C25—H25B···O2ii0.982.413.170 (2)134
C26—H26A···O1i0.982.593.475 (2)150
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds