organic compounds
(3,5-Dimethylphenyl)[8-(3,5-dimethylbenzoyl)-2,7-dimethoxynaphthalen-1-yl]methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title molecule, C30H28O4, the interplanar angle between the two benzene rings of the 3,5-dimethylbenzoyl groups is 50.35 (7)°. The dihedral angles between the two benzene rings and the naphthalene ring system are 81.87 (6) and 83.55 (6)°. In addition, the conformations of the pairs of methyl groups and their counterparts differ from each other though their environment is very similar. In the crystal, weak C—H⋯O interactions occur.
Related literature
For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010, 2011a,b; 2012).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812012202/fb2243sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812012202/fb2243Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812012202/fb2243Isup3.cml
3,5-dimethylbenzoyl chloride (1.50 mmol, 253 mg), titanium chloride (1.50 mmol, 285 mg) and methylene chloride (1.25 ml) were placed into a 10 ml flask, followed by stirring at room temperature. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (0.50 mmol, 94.1 mg) was added. The reaction mixture was poured into ice-cold water (30 ml) after it had been stirred for 6 h at room temperature. The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from hexane and CHCl3 (yield 62%). Colourless platelet single crystals suitable for X-ray diffraction were obtained (the average size: 0.8 × 0.4 × 0.1 mm) by repeated crystallization from hexane/CHCl3 mixtures (4:1 v/v).
1H NMR δ (300 MHz, CDCl3); 2.24 (12H, s), 3.69 (6H, s), 7.05 (2H, s), 7.21 (2H, d, J = 9.0 Hz), 7.26 (4H, s), 7.95 (2H, d, J = 9.3 Hz) p.p.m..
13C NMR δ (75 MHz, CDCl3); 21.19, 56.53, 111.40, 121.94, 124.53, 125.54, 126.99, 131.86, 134.52, 137.19, 138.56, 156.26, 196.94 p.p.m..
IR (KBr); 1656 (C=O), 1610, 1511, 1459 (Ar, naphthalene), 1267 (=C—O—C) cm-1.
High-resolution mass spectra (m/z); [M + Na]+ Calcd for C30H28O4Na, 475.1885; found, 475.1851.
m.p. = 576–580 K.
All the H atoms were found in the difference
and were subsequently refined in the riding atom approximation, with C—H = 0.95 (aryl) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(Caryl) and Uiso(H) = 1.5Ueq(Cmethyl). The methyl H atoms C29 are less clear, indicating possible disorder over 4 positions that has not been described in the published model.In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). We have recently reported crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2012). In these compounds, the aroyl groups at the 1,8-positions of the naphthalene rings contain almost 90°. In addition, crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated derivatives have been also determined such as (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011a) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011b).
As a part of our continuing study on the molecular structures of these homologous molecules, the
of title compound, peri-aroylnaphthalene bearing two methyl groups at 3,5-positions on the phenyl group, is discussed in this article.The title molecule is displayed in Fig. 1. Two 3,5-dimethylphenyl groups are out of the plane of the naphthalene ring. The interplanar angle between the best planes of the two phenyl rings (C12\C17 and C19\C24) is 50.35 (7)°. On the other hand, the two interplanar angles between the best planes of the 3,5-dimethylphenyl rings and the naphthalene ring are 81.87 (6) and 83.55 (6)°, respectively.
The torsion angles between the carbonyl groups and the naphthalene ring are 113.52 (15)° [C2\C1\C11\O1] and 102.95 (16)° [C8\C9\C18\O2], furthermore those between the carbonyl groups and 3,5-dimethylphenyl groups are 153.91 (13)° [O1\C11\C12\C13] and 164.07 (13)° [O2\C18\C19\C24].
In the
the molecular packing of the title compound is stabilized mainly by van der Waals interactions. In addition, the crystal packing is stabilized by three different C—H···O interactions: 1) C7—H7···O1i (Fig. 2 and Table 1). This interaction is directed along the b axis. 2) C25—H25b···O2ii (Fig. 3 and Table 1). This interaction is directed along the c axis. 3) C26—H26a···O1i (Fig. 2 and Table 1). This interaction is directed along the b axis.For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010, 2011a,b; 2012).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al. , 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C30H28O4 | F(000) = 960 |
Mr = 452.52 | Dx = 1.260 Mg m−3 |
Monoclinic, P21/c | Melting point = 576–580 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54187 Å |
a = 19.4659 (3) Å | Cell parameters from 38875 reflections |
b = 8.27808 (10) Å | θ = 3.0–68.2° |
c = 15.8244 (2) Å | µ = 0.66 mm−1 |
β = 110.69° | T = 193 K |
V = 2385.46 (6) Å3 | Platelet, colorless |
Z = 4 | 0.50 × 0.20 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 4360 independent reflections |
Radiation source: rotating anode | 3884 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.2°, θmin = 4.9° |
ω scans | h = −23→23 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −9→9 |
Tmin = 0.734, Tmax = 0.937 | l = −19→19 |
43008 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0691P)2 + 0.4917P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
4360 reflections | Δρmax = 0.22 e Å−3 |
314 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
106 constraints | Extinction coefficient: 0.0036 (3) |
Primary atom site location: structure-invariant direct methods |
C30H28O4 | V = 2385.46 (6) Å3 |
Mr = 452.52 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 19.4659 (3) Å | µ = 0.66 mm−1 |
b = 8.27808 (10) Å | T = 193 K |
c = 15.8244 (2) Å | 0.50 × 0.20 × 0.10 mm |
β = 110.69° |
Rigaku R-AXIS RAPID diffractometer | 4360 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3884 reflections with I > 2σ(I) |
Tmin = 0.734, Tmax = 0.937 | Rint = 0.032 |
43008 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.22 e Å−3 |
4360 reflections | Δρmin = −0.16 e Å−3 |
314 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.22734 (5) | 0.71254 (11) | 0.66111 (6) | 0.0394 (2) | |
O2 | 0.28061 (5) | 0.99466 (12) | 0.81457 (6) | 0.0453 (3) | |
O3 | 0.35203 (6) | 0.73717 (13) | 0.54561 (7) | 0.0537 (3) | |
O4 | 0.15557 (6) | 1.27961 (12) | 0.73319 (8) | 0.0523 (3) | |
C1 | 0.28767 (6) | 0.91046 (15) | 0.60689 (8) | 0.0338 (3) | |
C2 | 0.31864 (7) | 0.88289 (17) | 0.54171 (9) | 0.0410 (3) | |
C3 | 0.31234 (8) | 0.9973 (2) | 0.47309 (9) | 0.0497 (4) | |
H3 | 0.3334 | 0.9761 | 0.4284 | 0.060* | |
C4 | 0.27599 (8) | 1.1377 (2) | 0.47163 (9) | 0.0493 (4) | |
H4 | 0.2717 | 1.2140 | 0.4252 | 0.059* | |
C5 | 0.24450 (7) | 1.17353 (17) | 0.53693 (9) | 0.0410 (3) | |
C6 | 0.20817 (8) | 1.32174 (18) | 0.53500 (10) | 0.0482 (4) | |
H6 | 0.2054 | 1.3975 | 0.4888 | 0.058* | |
C7 | 0.17710 (8) | 1.35995 (17) | 0.59644 (10) | 0.0473 (4) | |
H7 | 0.1527 | 1.4604 | 0.5932 | 0.057* | |
C8 | 0.18160 (7) | 1.24812 (16) | 0.66535 (10) | 0.0412 (3) | |
C9 | 0.21571 (6) | 1.09969 (15) | 0.67024 (9) | 0.0343 (3) | |
C10 | 0.24920 (6) | 1.05758 (15) | 0.60622 (8) | 0.0340 (3) | |
C11 | 0.28661 (7) | 0.77005 (14) | 0.66698 (8) | 0.0319 (3) | |
C12 | 0.35610 (7) | 0.70057 (15) | 0.73078 (8) | 0.0320 (3) | |
C13 | 0.41949 (7) | 0.79286 (16) | 0.76626 (8) | 0.0360 (3) | |
H13 | 0.4196 | 0.9018 | 0.7475 | 0.043* | |
C14 | 0.48268 (7) | 0.72703 (18) | 0.82903 (9) | 0.0407 (3) | |
C15 | 0.48139 (7) | 0.56487 (18) | 0.85289 (9) | 0.0425 (3) | |
H15 | 0.5246 | 0.5181 | 0.8947 | 0.051* | |
C16 | 0.41900 (7) | 0.46975 (17) | 0.81758 (9) | 0.0399 (3) | |
C17 | 0.35596 (7) | 0.53999 (16) | 0.75728 (9) | 0.0356 (3) | |
H17 | 0.3122 | 0.4780 | 0.7338 | 0.043* | |
C18 | 0.22180 (7) | 1.00106 (14) | 0.75278 (8) | 0.0336 (3) | |
C19 | 0.15522 (6) | 0.91939 (14) | 0.75809 (8) | 0.0327 (3) | |
C20 | 0.15643 (7) | 0.86210 (15) | 0.84140 (9) | 0.0367 (3) | |
H20 | 0.1990 | 0.8777 | 0.8936 | 0.044* | |
C21 | 0.09618 (8) | 0.78263 (16) | 0.84899 (9) | 0.0411 (3) | |
C22 | 0.03586 (7) | 0.75515 (16) | 0.77074 (10) | 0.0412 (3) | |
H22 | −0.0053 | 0.6990 | 0.7751 | 0.049* | |
C23 | 0.03382 (7) | 0.80700 (16) | 0.68642 (9) | 0.0392 (3) | |
C24 | 0.09358 (7) | 0.89291 (15) | 0.68109 (9) | 0.0352 (3) | |
H24 | 0.0923 | 0.9338 | 0.6245 | 0.042* | |
C25 | 0.38607 (10) | 0.7042 (2) | 0.48124 (11) | 0.0560 (4) | |
H25A | 0.4240 | 0.7854 | 0.4866 | 0.084* | |
H25B | 0.3491 | 0.7076 | 0.4202 | 0.084* | |
H25C | 0.4086 | 0.5967 | 0.4926 | 0.084* | |
C26 | 0.12856 (10) | 1.43782 (19) | 0.73930 (15) | 0.0627 (5) | |
H26A | 0.1665 | 1.5177 | 0.7422 | 0.094* | |
H26B | 0.1159 | 1.4456 | 0.7939 | 0.094* | |
H26C | 0.0847 | 1.4587 | 0.6860 | 0.094* | |
C27 | 0.55064 (9) | 0.8269 (2) | 0.87241 (12) | 0.0620 (5) | |
H27A | 0.5428 | 0.9359 | 0.8466 | 0.093* | |
H27B | 0.5922 | 0.7766 | 0.8612 | 0.093* | |
H27C | 0.5612 | 0.8332 | 0.9376 | 0.093* | |
C28 | 0.42004 (9) | 0.29395 (19) | 0.84383 (13) | 0.0567 (4) | |
H28A | 0.4598 | 0.2381 | 0.8313 | 0.085* | |
H28B | 0.3730 | 0.2438 | 0.8088 | 0.085* | |
H28C | 0.4281 | 0.2860 | 0.9084 | 0.085* | |
C29 | 0.09670 (11) | 0.7238 (2) | 0.93949 (11) | 0.0632 (5) | |
H29A | 0.1082 | 0.8141 | 0.9823 | 0.095* | |
H29B | 0.1340 | 0.6393 | 0.9621 | 0.095* | |
H29C | 0.0483 | 0.6798 | 0.9328 | 0.095* | |
C30 | −0.03058 (8) | 0.7652 (2) | 0.60251 (11) | 0.0543 (4) | |
H30A | −0.0745 | 0.7500 | 0.6183 | 0.081* | |
H30B | −0.0200 | 0.6652 | 0.5762 | 0.081* | |
H30C | −0.0390 | 0.8531 | 0.5585 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0349 (5) | 0.0337 (5) | 0.0511 (5) | −0.0012 (4) | 0.0170 (4) | 0.0029 (4) |
O2 | 0.0366 (5) | 0.0497 (6) | 0.0424 (5) | −0.0041 (4) | 0.0050 (4) | 0.0061 (4) |
O3 | 0.0734 (7) | 0.0547 (6) | 0.0447 (6) | 0.0092 (5) | 0.0353 (5) | 0.0027 (5) |
O4 | 0.0599 (6) | 0.0322 (5) | 0.0717 (7) | 0.0075 (4) | 0.0315 (6) | 0.0012 (5) |
C1 | 0.0322 (6) | 0.0381 (7) | 0.0284 (6) | −0.0039 (5) | 0.0074 (5) | 0.0023 (5) |
C2 | 0.0418 (7) | 0.0465 (8) | 0.0344 (7) | −0.0034 (6) | 0.0130 (6) | 0.0004 (6) |
C3 | 0.0536 (8) | 0.0652 (10) | 0.0326 (7) | −0.0090 (7) | 0.0181 (6) | 0.0043 (6) |
C4 | 0.0515 (8) | 0.0559 (9) | 0.0355 (7) | −0.0080 (7) | 0.0090 (6) | 0.0151 (6) |
C5 | 0.0367 (6) | 0.0427 (7) | 0.0356 (7) | −0.0083 (6) | 0.0027 (5) | 0.0091 (6) |
C6 | 0.0469 (8) | 0.0382 (7) | 0.0458 (8) | −0.0065 (6) | −0.0007 (6) | 0.0152 (6) |
C7 | 0.0423 (7) | 0.0307 (7) | 0.0579 (9) | −0.0005 (6) | 0.0041 (6) | 0.0078 (6) |
C8 | 0.0343 (6) | 0.0312 (7) | 0.0524 (8) | −0.0025 (5) | 0.0083 (6) | 0.0010 (6) |
C9 | 0.0292 (6) | 0.0302 (6) | 0.0392 (7) | −0.0033 (5) | 0.0068 (5) | 0.0024 (5) |
C10 | 0.0300 (6) | 0.0342 (6) | 0.0320 (6) | −0.0060 (5) | 0.0035 (5) | 0.0038 (5) |
C11 | 0.0349 (6) | 0.0304 (6) | 0.0326 (6) | −0.0009 (5) | 0.0145 (5) | −0.0027 (5) |
C12 | 0.0350 (6) | 0.0350 (6) | 0.0299 (6) | 0.0021 (5) | 0.0166 (5) | 0.0010 (5) |
C13 | 0.0396 (7) | 0.0382 (7) | 0.0330 (6) | −0.0018 (5) | 0.0162 (5) | 0.0046 (5) |
C14 | 0.0371 (7) | 0.0497 (8) | 0.0364 (7) | −0.0026 (6) | 0.0144 (6) | 0.0053 (6) |
C15 | 0.0362 (7) | 0.0514 (8) | 0.0408 (7) | 0.0080 (6) | 0.0149 (6) | 0.0099 (6) |
C16 | 0.0412 (7) | 0.0383 (7) | 0.0448 (7) | 0.0071 (5) | 0.0209 (6) | 0.0062 (6) |
C17 | 0.0366 (6) | 0.0354 (7) | 0.0386 (7) | 0.0014 (5) | 0.0182 (5) | 0.0006 (5) |
C18 | 0.0352 (6) | 0.0281 (6) | 0.0366 (6) | 0.0010 (5) | 0.0113 (5) | −0.0025 (5) |
C19 | 0.0352 (6) | 0.0275 (6) | 0.0363 (6) | 0.0029 (5) | 0.0137 (5) | −0.0028 (5) |
C20 | 0.0419 (7) | 0.0328 (7) | 0.0354 (6) | 0.0007 (5) | 0.0135 (5) | −0.0046 (5) |
C21 | 0.0493 (8) | 0.0362 (7) | 0.0436 (7) | 0.0007 (6) | 0.0235 (6) | −0.0021 (6) |
C22 | 0.0386 (7) | 0.0366 (7) | 0.0549 (8) | −0.0009 (5) | 0.0246 (6) | −0.0026 (6) |
C23 | 0.0332 (6) | 0.0372 (7) | 0.0466 (7) | 0.0021 (5) | 0.0131 (5) | −0.0052 (6) |
C24 | 0.0352 (6) | 0.0342 (7) | 0.0367 (6) | 0.0033 (5) | 0.0134 (5) | −0.0003 (5) |
C25 | 0.0661 (10) | 0.0657 (10) | 0.0449 (8) | −0.0039 (8) | 0.0305 (8) | −0.0111 (7) |
C26 | 0.0634 (10) | 0.0313 (7) | 0.1061 (14) | 0.0047 (7) | 0.0459 (10) | 0.0001 (8) |
C27 | 0.0479 (8) | 0.0714 (11) | 0.0542 (9) | −0.0144 (8) | 0.0024 (7) | 0.0161 (8) |
C28 | 0.0537 (9) | 0.0416 (8) | 0.0746 (11) | 0.0102 (7) | 0.0226 (8) | 0.0151 (7) |
C29 | 0.0749 (11) | 0.0720 (11) | 0.0509 (9) | −0.0124 (9) | 0.0326 (8) | 0.0033 (8) |
C30 | 0.0383 (7) | 0.0636 (10) | 0.0552 (9) | −0.0076 (7) | 0.0094 (7) | −0.0055 (7) |
O1—C11 | 1.2208 (15) | C16—C28 | 1.512 (2) |
O2—C18 | 1.2158 (15) | C17—H17 | 0.9500 |
O3—C2 | 1.3613 (18) | C18—C19 | 1.4903 (17) |
O3—C25 | 1.4242 (17) | C19—C24 | 1.3926 (17) |
O4—C8 | 1.3644 (18) | C19—C20 | 1.3935 (18) |
O4—C26 | 1.4272 (18) | C20—C21 | 1.3865 (19) |
C1—C2 | 1.3853 (18) | C20—H20 | 0.9500 |
C1—C10 | 1.4278 (18) | C21—C22 | 1.392 (2) |
C1—C11 | 1.5065 (17) | C21—C29 | 1.509 (2) |
C2—C3 | 1.413 (2) | C22—C23 | 1.389 (2) |
C3—C4 | 1.356 (2) | C22—H22 | 0.9500 |
C3—H3 | 0.9500 | C23—C24 | 1.3912 (19) |
C4—C5 | 1.407 (2) | C23—C30 | 1.5094 (19) |
C4—H4 | 0.9500 | C24—H24 | 0.9500 |
C5—C6 | 1.411 (2) | C25—H25A | 0.9800 |
C5—C10 | 1.4356 (18) | C25—H25B | 0.9800 |
C6—C7 | 1.351 (2) | C25—H25C | 0.9800 |
C6—H6 | 0.9500 | C26—H26A | 0.9800 |
C7—C8 | 1.409 (2) | C26—H26B | 0.9800 |
C7—H7 | 0.9500 | C26—H26C | 0.9800 |
C8—C9 | 1.3857 (18) | C27—H27A | 0.9800 |
C9—C10 | 1.4282 (18) | C27—H27B | 0.9800 |
C9—C18 | 1.5090 (18) | C27—H27C | 0.9800 |
C11—C12 | 1.4882 (17) | C28—H28A | 0.9800 |
C12—C13 | 1.3899 (18) | C28—H28B | 0.9800 |
C12—C17 | 1.3942 (18) | C28—H28C | 0.9800 |
C13—C14 | 1.3904 (18) | C29—H29A | 0.9800 |
C13—H13 | 0.9500 | C29—H29B | 0.9800 |
C14—C15 | 1.397 (2) | C29—H29C | 0.9800 |
C14—C27 | 1.504 (2) | C30—H30A | 0.9800 |
C15—C16 | 1.388 (2) | C30—H30B | 0.9800 |
C15—H15 | 0.9500 | C30—H30C | 0.9800 |
C16—C17 | 1.3881 (18) | ||
C2—O3—C25 | 118.22 (12) | C19—C18—C9 | 119.36 (10) |
C8—O4—C26 | 118.47 (12) | C24—C19—C20 | 119.70 (12) |
C2—C1—C10 | 120.01 (11) | C24—C19—C18 | 121.32 (11) |
C2—C1—C11 | 116.72 (11) | C20—C19—C18 | 118.91 (11) |
C10—C1—C11 | 122.59 (11) | C21—C20—C19 | 120.76 (12) |
O3—C2—C1 | 116.02 (12) | C21—C20—H20 | 119.6 |
O3—C2—C3 | 122.64 (13) | C19—C20—H20 | 119.6 |
C1—C2—C3 | 121.28 (13) | C20—C21—C22 | 118.30 (12) |
C4—C3—C2 | 119.38 (13) | C20—C21—C29 | 120.87 (14) |
C4—C3—H3 | 120.3 | C22—C21—C29 | 120.81 (13) |
C2—C3—H3 | 120.3 | C23—C22—C21 | 122.22 (12) |
C3—C4—C5 | 121.87 (13) | C23—C22—H22 | 118.9 |
C3—C4—H4 | 119.1 | C21—C22—H22 | 118.9 |
C5—C4—H4 | 119.1 | C22—C23—C24 | 118.40 (12) |
C4—C5—C6 | 120.83 (13) | C22—C23—C30 | 120.47 (13) |
C4—C5—C10 | 119.56 (13) | C24—C23—C30 | 121.08 (13) |
C6—C5—C10 | 119.61 (13) | C23—C24—C19 | 120.52 (12) |
C7—C6—C5 | 122.42 (13) | C23—C24—H24 | 119.7 |
C7—C6—H6 | 118.8 | C19—C24—H24 | 119.7 |
C5—C6—H6 | 118.8 | O3—C25—H25A | 109.5 |
C6—C7—C8 | 118.79 (13) | O3—C25—H25B | 109.5 |
C6—C7—H7 | 120.6 | H25A—C25—H25B | 109.5 |
C8—C7—H7 | 120.6 | O3—C25—H25C | 109.5 |
O4—C8—C9 | 115.42 (12) | H25A—C25—H25C | 109.5 |
O4—C8—C7 | 122.99 (13) | H25B—C25—H25C | 109.5 |
C9—C8—C7 | 121.55 (14) | O4—C26—H26A | 109.5 |
C8—C9—C10 | 120.43 (12) | O4—C26—H26B | 109.5 |
C8—C9—C18 | 114.69 (12) | H26A—C26—H26B | 109.5 |
C10—C9—C18 | 124.47 (11) | O4—C26—H26C | 109.5 |
C1—C10—C9 | 124.93 (11) | H26A—C26—H26C | 109.5 |
C1—C10—C5 | 117.89 (12) | H26B—C26—H26C | 109.5 |
C9—C10—C5 | 117.18 (12) | C14—C27—H27A | 109.5 |
O1—C11—C12 | 120.59 (11) | C14—C27—H27B | 109.5 |
O1—C11—C1 | 118.44 (11) | H27A—C27—H27B | 109.5 |
C12—C11—C1 | 120.96 (10) | C14—C27—H27C | 109.5 |
C13—C12—C17 | 119.89 (12) | H27A—C27—H27C | 109.5 |
C13—C12—C11 | 121.74 (11) | H27B—C27—H27C | 109.5 |
C17—C12—C11 | 118.34 (11) | C16—C28—H28A | 109.5 |
C12—C13—C14 | 120.54 (12) | C16—C28—H28B | 109.5 |
C12—C13—H13 | 119.7 | H28A—C28—H28B | 109.5 |
C14—C13—H13 | 119.7 | C16—C28—H28C | 109.5 |
C13—C14—C15 | 118.28 (12) | H28A—C28—H28C | 109.5 |
C13—C14—C27 | 121.61 (13) | H28B—C28—H28C | 109.5 |
C15—C14—C27 | 120.10 (13) | C21—C29—H29A | 109.5 |
C16—C15—C14 | 122.20 (12) | C21—C29—H29B | 109.5 |
C16—C15—H15 | 118.9 | H29A—C29—H29B | 109.5 |
C14—C15—H15 | 118.9 | C21—C29—H29C | 109.5 |
C17—C16—C15 | 118.31 (12) | H29A—C29—H29C | 109.5 |
C17—C16—C28 | 120.99 (13) | H29B—C29—H29C | 109.5 |
C15—C16—C28 | 120.70 (13) | C23—C30—H30A | 109.5 |
C16—C17—C12 | 120.73 (12) | C23—C30—H30B | 109.5 |
C16—C17—H17 | 119.6 | H30A—C30—H30B | 109.5 |
C12—C17—H17 | 119.6 | C23—C30—H30C | 109.5 |
O2—C18—C19 | 121.69 (12) | H30A—C30—H30C | 109.5 |
O2—C18—C9 | 118.91 (11) | H30B—C30—H30C | 109.5 |
C25—O3—C2—C1 | −178.72 (12) | C10—C1—C11—C12 | −124.21 (12) |
C25—O3—C2—C3 | 4.3 (2) | O1—C11—C12—C13 | −153.92 (12) |
C10—C1—C2—O3 | −177.78 (11) | C1—C11—C12—C13 | 27.31 (17) |
C11—C1—C2—O3 | −7.02 (17) | O1—C11—C12—C17 | 23.92 (17) |
C10—C1—C2—C3 | −0.73 (19) | C1—C11—C12—C17 | −154.85 (11) |
C11—C1—C2—C3 | 170.02 (12) | C17—C12—C13—C14 | −0.87 (18) |
O3—C2—C3—C4 | 177.62 (13) | C11—C12—C13—C14 | 176.94 (11) |
C1—C2—C3—C4 | 0.8 (2) | C12—C13—C14—C15 | 2.17 (19) |
C2—C3—C4—C5 | 0.3 (2) | C12—C13—C14—C27 | −176.47 (14) |
C3—C4—C5—C6 | 178.77 (13) | C13—C14—C15—C16 | −1.4 (2) |
C3—C4—C5—C10 | −1.4 (2) | C27—C14—C15—C16 | 177.23 (14) |
C4—C5—C6—C7 | 179.79 (13) | C14—C15—C16—C17 | −0.6 (2) |
C10—C5—C6—C7 | 0.0 (2) | C14—C15—C16—C28 | 178.99 (14) |
C5—C6—C7—C8 | 0.5 (2) | C15—C16—C17—C12 | 1.98 (19) |
C26—O4—C8—C9 | 171.87 (13) | C28—C16—C17—C12 | −177.64 (13) |
C26—O4—C8—C7 | −5.8 (2) | C13—C12—C17—C16 | −1.26 (18) |
C6—C7—C8—O4 | 176.22 (13) | C11—C12—C17—C16 | −179.14 (11) |
C6—C7—C8—C9 | −1.3 (2) | C8—C9—C18—O2 | −102.93 (14) |
O4—C8—C9—C10 | −176.03 (11) | C10—C9—C18—O2 | 69.75 (17) |
C7—C8—C9—C10 | 1.64 (19) | C8—C9—C18—C19 | 74.74 (14) |
O4—C8—C9—C18 | −3.02 (16) | C10—C9—C18—C19 | −112.58 (13) |
C7—C8—C9—C18 | 174.65 (12) | O2—C18—C19—C24 | −164.08 (12) |
C2—C1—C10—C9 | −179.42 (11) | C9—C18—C19—C24 | 18.31 (17) |
C11—C1—C10—C9 | 10.39 (18) | O2—C18—C19—C20 | 12.90 (18) |
C2—C1—C10—C5 | −0.37 (17) | C9—C18—C19—C20 | −164.70 (11) |
C11—C1—C10—C5 | −170.56 (11) | C24—C19—C20—C21 | −1.70 (19) |
C8—C9—C10—C1 | 177.91 (11) | C18—C19—C20—C21 | −178.73 (11) |
C18—C9—C10—C1 | 5.62 (19) | C19—C20—C21—C22 | 2.87 (19) |
C8—C9—C10—C5 | −1.15 (17) | C19—C20—C21—C29 | −178.60 (14) |
C18—C9—C10—C5 | −173.44 (11) | C20—C21—C22—C23 | −1.1 (2) |
C4—C5—C10—C1 | 1.42 (18) | C29—C21—C22—C23 | −179.68 (14) |
C6—C5—C10—C1 | −178.78 (11) | C21—C22—C23—C24 | −1.7 (2) |
C4—C5—C10—C9 | −179.46 (11) | C21—C22—C23—C30 | 175.97 (13) |
C6—C5—C10—C9 | 0.35 (17) | C22—C23—C24—C19 | 2.93 (19) |
C2—C1—C11—O1 | −113.50 (13) | C30—C23—C24—C19 | −174.75 (12) |
C10—C1—C11—O1 | 56.99 (17) | C20—C19—C24—C23 | −1.27 (18) |
C2—C1—C11—C12 | 65.29 (15) | C18—C19—C24—C23 | 175.69 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1i | 0.95 | 2.55 | 3.1332 (17) | 120 |
C25—H25B···O2ii | 0.98 | 2.41 | 3.170 (2) | 134 |
C26—H26A···O1i | 0.98 | 2.59 | 3.475 (2) | 150 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C30H28O4 |
Mr | 452.52 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 19.4659 (3), 8.27808 (10), 15.8244 (2) |
β (°) | 110.69 |
V (Å3) | 2385.46 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.66 |
Crystal size (mm) | 0.50 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.734, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 43008, 4360, 3884 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.118, 1.08 |
No. of reflections | 4360 |
No. of parameters | 314 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.16 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al. , 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1i | 0.95 | 2.55 | 3.1332 (17) | 120 |
C25—H25B···O2ii | 0.98 | 2.41 | 3.170 (2) | 134 |
C26—H26A···O1i | 0.98 | 2.59 | 3.475 (2) | 150 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). We have recently reported crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2012). In these compounds, the aroyl groups at the 1,8-positions of the naphthalene rings contain almost 90°. In addition, crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated derivatives have been also determined such as (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011a) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011b).
As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, peri-aroylnaphthalene bearing two methyl groups at 3,5-positions on the phenyl group, is discussed in this article.
The title molecule is displayed in Fig. 1. Two 3,5-dimethylphenyl groups are out of the plane of the naphthalene ring. The interplanar angle between the best planes of the two phenyl rings (C12\C17 and C19\C24) is 50.35 (7)°. On the other hand, the two interplanar angles between the best planes of the 3,5-dimethylphenyl rings and the naphthalene ring are 81.87 (6) and 83.55 (6)°, respectively.
The torsion angles between the carbonyl groups and the naphthalene ring are 113.52 (15)° [C2\C1\C11\O1] and 102.95 (16)° [C8\C9\C18\O2], furthermore those between the carbonyl groups and 3,5-dimethylphenyl groups are 153.91 (13)° [O1\C11\C12\C13] and 164.07 (13)° [O2\C18\C19\C24].
In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. In addition, the crystal packing is stabilized by three different C—H···O interactions: 1) C7—H7···O1i (Fig. 2 and Table 1). This interaction is directed along the b axis. 2) C25—H25b···O2ii (Fig. 3 and Table 1). This interaction is directed along the c axis. 3) C26—H26a···O1i (Fig. 2 and Table 1). This interaction is directed along the b axis.