organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Bromo-2-methyl­phen­yl)-2-oxo-1,2-di­hydro­pyridine-3-carboxamide

aSchool of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China, and bCollege of Pharmacy, Ohio State University, Columbus, OH 43210, USA
*Correspondence e-mail: longsihui@yahoo.com

(Received 7 March 2012; accepted 15 March 2012; online 21 March 2012)

The title compound, C13H11BrN2O2, consists of two six-membered rings linked by an amide group and adopts a near planar conformation. The dihedral angle between the two rings is 8.38 (11)°. In the crystal structure, there are intra- and inter­molecular N—H⋯O hydrogen bonds, the latter forming inversion dimers.

Related literature

For a related structure, see: Long et al. (2006[Long, S., Siegler, M. & Li, T. (2006). Acta Cryst. E62, o4278-o4279.]). For background and details of synthesis, see: Ting et al. (1990[Ting, P. C., Kaminski, J. J., Sherlock, M. H., Tom, W. C., Lee, J. F., Bryant, R. W., Watnick, A. S. & McPhailt, A. T. (1990). J. Med. Chem. 33, 2697-2706.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11BrN2O2

  • Mr = 307.15

  • Triclinic, [P \overline 1]

  • a = 7.164 (1) Å

  • b = 7.715 (1) Å

  • c = 10.446 (2) Å

  • α = 88.23 (1)°

  • β = 89.18 (1)°

  • γ = 89.68 (1)°

  • V = 577.01 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.56 mm−1

  • T = 90 K

  • 0.30 × 0.10 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.415, Tmax = 0.871

  • 5027 measured reflections

  • 2637 independent reflections

  • 2273 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.072

  • S = 1.07

  • 2637 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 1.90 2.660 (3) 144
N2—H2A⋯O2i 0.88 1.91 2.785 (3) 171
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was obtained as a by-product during an effort to make 2-(2-methyl-3-bromoanilino)nicotinic acid by reacting 2-chloronicotinic acid with 3-bromo-2-methylaniline through a modified procedure from Ting et al. (1990). Similar to the case of N-(3-chloro-2-methylphenyl)-1,2-dihydro-2-oxo-3 -pyridinecarboxamide (Long et al., 2006), the crystal structure analysis revealed it is the keto-amine (or lactam) tautomer, rather than the hydroxy-pyridine tautomer (II) (Fig. 1, Table 1). The two aromatic rings of the molecule are linked by an amide group. Due to the extended π-conjugation system throughout the whole molecule via the amide bridge, the molecule takes a near planar conformation. The dihedral angle between the two aromatic rings is 8.38 (11)°.

Centrosymmetric dimers are formed through intra- and intermolecular N—H···O hydrogen bonds (Table 2). Essentially, the title compound is isostructural with N-(3-chloro-2-methylphenyl)-1,2-dihydro-2-oxo-3-pyridinecarboxamide, since the only difference is bromine in the title compound and chlorine in the counterpart.

Related literature top

For a related structure, see: Long et al. (2006). For background and details of synthesis, see: Ting et al. (1990).

Experimental top

2-Chloronicotinic acid (1.9 g, 12.1 mmol), 3-bromo-2-methyl-aniline (2.5 g, 13.4 mmol), and pyridine (1.0 ml, 12 mmol) were added to a round-bottom flask, followed by introduction of p-toluenesulfonic acid (0.3 g, 1.8 mmol) in 10 ml of water. The resulted solution was refluxed overnight. Colorless solid precipitated out after the mixture was cooled down to room temperature, and it was characterized by NMR to be the title compound (I). Crystals were grown from MeOH solution by slow evaporation.

Refinement top

H atoms were located in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.95 (CAr—H), 0.98 (CMe—H) and 0.88 Å (N—H). Uiso(H) values were set to 1.2Ueq(C,N) or 1.5Ueq(C) for methyl group.

Structure description top

The title compound (I) was obtained as a by-product during an effort to make 2-(2-methyl-3-bromoanilino)nicotinic acid by reacting 2-chloronicotinic acid with 3-bromo-2-methylaniline through a modified procedure from Ting et al. (1990). Similar to the case of N-(3-chloro-2-methylphenyl)-1,2-dihydro-2-oxo-3 -pyridinecarboxamide (Long et al., 2006), the crystal structure analysis revealed it is the keto-amine (or lactam) tautomer, rather than the hydroxy-pyridine tautomer (II) (Fig. 1, Table 1). The two aromatic rings of the molecule are linked by an amide group. Due to the extended π-conjugation system throughout the whole molecule via the amide bridge, the molecule takes a near planar conformation. The dihedral angle between the two aromatic rings is 8.38 (11)°.

Centrosymmetric dimers are formed through intra- and intermolecular N—H···O hydrogen bonds (Table 2). Essentially, the title compound is isostructural with N-(3-chloro-2-methylphenyl)-1,2-dihydro-2-oxo-3-pyridinecarboxamide, since the only difference is bromine in the title compound and chlorine in the counterpart.

For a related structure, see: Long et al. (2006). For background and details of synthesis, see: Ting et al. (1990).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Tautomerism of the title compound.
N-(3-Bromo-2-methylphenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide top
Crystal data top
C13H11BrN2O2Z = 2
Mr = 307.15F(000) = 308
Triclinic, P1Dx = 1.768 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.164 (1) ÅCell parameters from 2552 reflections
b = 7.715 (1) Åθ = 1.0–27.5°
c = 10.446 (2) ŵ = 3.56 mm1
α = 88.23 (1)°T = 90 K
β = 89.18 (1)°Thick plate, colourless
γ = 89.68 (1)°0.30 × 0.10 × 0.04 mm
V = 577.01 (16) Å3
Data collection top
Nonius KappaCCD
diffractometer
2637 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scans at fixed χ = 55°h = 99
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1010
Tmin = 0.415, Tmax = 0.871l = 1313
5027 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0231P)2 + 0.5699P]
where P = (Fo2 + 2Fc2)/3
2637 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C13H11BrN2O2γ = 89.68 (1)°
Mr = 307.15V = 577.01 (16) Å3
Triclinic, P1Z = 2
a = 7.164 (1) ÅMo Kα radiation
b = 7.715 (1) ŵ = 3.56 mm1
c = 10.446 (2) ÅT = 90 K
α = 88.23 (1)°0.30 × 0.10 × 0.04 mm
β = 89.18 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2637 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2273 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.871Rint = 0.032
5027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.07Δρmax = 0.94 e Å3
2637 reflectionsΔρmin = 0.61 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1649 (3)0.2509 (3)0.8354 (2)0.0184 (5)
C20.1129 (3)0.0867 (3)0.7987 (3)0.0194 (5)
H20.08430.00210.86080.023*
C30.1039 (3)0.0564 (3)0.6692 (3)0.0201 (5)
H30.06770.05470.64210.024*
C40.1469 (3)0.1848 (3)0.5786 (2)0.0179 (5)
H40.14100.16140.49000.021*
C50.1990 (3)0.3492 (3)0.6174 (2)0.0170 (5)
C60.2097 (3)0.3859 (3)0.7489 (2)0.0160 (5)
C70.2664 (4)0.5641 (3)0.7890 (2)0.0193 (5)
H7A0.26620.56740.88270.029*
H7B0.17800.65050.75480.029*
H7C0.39200.59000.75550.029*
C80.2416 (3)0.4880 (3)0.3990 (2)0.0176 (5)
C90.3033 (3)0.6573 (3)0.3379 (2)0.0161 (5)
C100.2884 (3)0.6775 (3)0.2073 (2)0.0189 (5)
H100.24050.58450.16030.023*
C110.3414 (4)0.8303 (3)0.1408 (2)0.0213 (6)
H110.32990.84170.05050.026*
C120.4098 (4)0.9616 (4)0.2098 (2)0.0199 (5)
H120.44711.06680.16740.024*
C130.3763 (3)0.7979 (3)0.4092 (2)0.0160 (5)
N10.2464 (3)0.4838 (3)0.52988 (19)0.0163 (4)
H10.28500.57970.56420.020*
N20.4252 (3)0.9437 (3)0.3384 (2)0.0174 (4)
H2A0.46991.03180.37960.021*
O10.1914 (3)0.3676 (2)0.33371 (17)0.0226 (4)
O20.3985 (2)0.7976 (2)0.52859 (16)0.0190 (4)
Br10.17131 (4)0.28503 (3)1.01565 (2)0.02315 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0152 (13)0.0185 (13)0.0217 (13)0.0025 (10)0.0020 (10)0.0010 (10)
C20.0146 (13)0.0158 (12)0.0275 (13)0.0003 (10)0.0007 (10)0.0019 (10)
C30.0145 (13)0.0144 (12)0.0316 (14)0.0011 (10)0.0022 (11)0.0040 (11)
C40.0142 (12)0.0184 (12)0.0214 (13)0.0003 (10)0.0024 (10)0.0048 (10)
C50.0103 (12)0.0172 (12)0.0234 (13)0.0008 (9)0.0019 (10)0.0012 (10)
C60.0099 (12)0.0162 (12)0.0220 (12)0.0017 (9)0.0008 (10)0.0035 (10)
C70.0238 (14)0.0165 (12)0.0178 (12)0.0005 (10)0.0017 (10)0.0026 (10)
C80.0120 (12)0.0189 (12)0.0223 (13)0.0025 (10)0.0013 (10)0.0046 (10)
C90.0113 (12)0.0186 (12)0.0185 (12)0.0018 (9)0.0005 (9)0.0021 (10)
C100.0149 (13)0.0224 (13)0.0198 (12)0.0006 (10)0.0025 (10)0.0055 (10)
C110.0186 (13)0.0275 (14)0.0177 (12)0.0031 (11)0.0024 (10)0.0001 (11)
C120.0159 (13)0.0248 (14)0.0187 (12)0.0001 (10)0.0004 (10)0.0037 (10)
C130.0120 (12)0.0174 (12)0.0186 (12)0.0026 (9)0.0008 (9)0.0025 (10)
N10.0179 (11)0.0150 (10)0.0163 (10)0.0017 (8)0.0014 (8)0.0038 (8)
N20.0165 (11)0.0171 (10)0.0187 (10)0.0014 (8)0.0011 (8)0.0024 (8)
O10.0279 (10)0.0191 (9)0.0212 (9)0.0042 (8)0.0045 (8)0.0050 (7)
O20.0217 (9)0.0193 (9)0.0163 (9)0.0035 (7)0.0004 (7)0.0026 (7)
Br10.02871 (16)0.02031 (14)0.02034 (14)0.00082 (10)0.00016 (10)0.00063 (10)
Geometric parameters (Å, º) top
C1—C21.389 (4)C8—O11.228 (3)
C1—C61.394 (4)C8—N11.368 (3)
C1—Br11.911 (3)C8—C91.502 (3)
C2—C31.382 (4)C9—C101.375 (3)
C2—H20.9500C9—C131.439 (3)
C3—C41.382 (4)C10—C111.401 (4)
C3—H30.9500C10—H100.9500
C4—C51.398 (3)C11—C121.359 (4)
C4—H40.9500C11—H110.9500
C5—N11.403 (3)C12—N21.353 (3)
C5—C61.414 (3)C12—H120.9500
C6—C71.509 (3)C13—O21.259 (3)
C7—H7A0.9800C13—N21.371 (3)
C7—H7B0.9800N1—H10.8800
C7—H7C0.9800N2—H2A0.8800
C2—C1—C6123.6 (2)O1—C8—N1124.9 (2)
C2—C1—Br1115.94 (19)O1—C8—C9121.1 (2)
C6—C1—Br1120.48 (19)N1—C8—C9114.0 (2)
C3—C2—C1118.1 (2)C10—C9—C13118.9 (2)
C3—C2—H2121.0C10—C9—C8117.7 (2)
C1—C2—H2121.0C13—C9—C8123.4 (2)
C4—C3—C2121.1 (2)C9—C10—C11122.3 (2)
C4—C3—H3119.4C9—C10—H10118.8
C2—C3—H3119.4C11—C10—H10118.8
C3—C4—C5119.9 (2)C12—C11—C10117.9 (2)
C3—C4—H4120.0C12—C11—H11121.1
C5—C4—H4120.0C10—C11—H11121.1
C4—C5—N1122.4 (2)N2—C12—C11120.5 (2)
C4—C5—C6120.8 (2)N2—C12—H12119.8
N1—C5—C6116.7 (2)C11—C12—H12119.8
C1—C6—C5116.5 (2)O2—C13—N2118.3 (2)
C1—C6—C7123.5 (2)O2—C13—C9125.9 (2)
C5—C6—C7120.1 (2)N2—C13—C9115.8 (2)
C6—C7—H7A109.5C8—N1—C5129.5 (2)
C6—C7—H7B109.5C8—N1—H1115.2
H7A—C7—H7B109.5C5—N1—H1115.2
C6—C7—H7C109.5C12—N2—C13124.7 (2)
H7A—C7—H7C109.5C12—N2—H2A117.7
H7B—C7—H7C109.5C13—N2—H2A117.7
C6—C1—C2—C30.5 (4)N1—C8—C9—C135.0 (3)
Br1—C1—C2—C3179.22 (18)C13—C9—C10—C110.1 (4)
C1—C2—C3—C40.5 (4)C8—C9—C10—C11179.8 (2)
C2—C3—C4—C50.5 (4)C9—C10—C11—C120.1 (4)
C3—C4—C5—N1179.1 (2)C10—C11—C12—N20.1 (4)
C3—C4—C5—C60.4 (4)C10—C9—C13—O2179.7 (2)
C2—C1—C6—C50.4 (4)C8—C9—C13—O20.4 (4)
Br1—C1—C6—C5179.30 (17)C10—C9—C13—N20.2 (3)
C2—C1—C6—C7179.9 (2)C8—C9—C13—N2179.7 (2)
Br1—C1—C6—C70.4 (3)O1—C8—N1—C50.3 (4)
C4—C5—C6—C10.4 (3)C9—C8—N1—C5179.9 (2)
N1—C5—C6—C1179.1 (2)C4—C5—N1—C84.3 (4)
C4—C5—C6—C7179.9 (2)C6—C5—N1—C8177.0 (2)
N1—C5—C6—C71.1 (3)C11—C12—N2—C130.2 (4)
O1—C8—C9—C104.8 (4)O2—C13—N2—C12179.7 (2)
N1—C8—C9—C10174.9 (2)C9—C13—N2—C120.2 (3)
O1—C8—C9—C13175.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.902.660 (3)144
N2—H2A···O2i0.881.912.785 (3)171
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC13H11BrN2O2
Mr307.15
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)7.164 (1), 7.715 (1), 10.446 (2)
α, β, γ (°)88.23 (1), 89.18 (1), 89.68 (1)
V3)577.01 (16)
Z2
Radiation typeMo Kα
µ (mm1)3.56
Crystal size (mm)0.30 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.415, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
5027, 2637, 2273
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.07
No. of reflections2637
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.61

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.902.660 (3)144.3
N2—H2A···O2i0.881.912.785 (3)171.1
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

SL thanks Drs Tonglei Li and Sean Parkin for support and laboratory facilities.

References

First citationLong, S., Siegler, M. & Li, T. (2006). Acta Cryst. E62, o4278–o4279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTing, P. C., Kaminski, J. J., Sherlock, M. H., Tom, W. C., Lee, J. F., Bryant, R. W., Watnick, A. S. & McPhailt, A. T. (1990). J. Med. Chem. 33, 2697–2706.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds