metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(pyridine-κN)[2-(pyridinium-1-yl)acetato-κO]zinc(II)

aThe Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China, and bSchool of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
*Correspondence e-mail: zhangqun123456@126.com

(Received 13 March 2012; accepted 19 March 2012; online 28 March 2012)

In the title complex, [ZnCl2(C5H5N)(C7H7NO2)], the ZnII atom adopts a distorted tetra­hedral coordination geometry [the smallest angle being 105.22 (15)° and the widest angle being 115.60 (16)°] that is formed from one monodentate carboxyl­ate ligand, one pyridine ligand and two Cl atoms.

Related literature

For background to metalloenzymes, see: Holm & Solomon (2004[Holm, R. H. & Solomon, E. I. (2004). Chem. Rev. 104, 347-1200.]), Karambelkar et al. (2002[Karambelkar, V. V., Krishnamurthy, D., Stern, C. L., Zakharov, L. N., Rheingold, A. L. & Goldberg, D. P. (2002). Chem. Commun. pp. 2772-2773.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C5H5N)(C7H7NO2)]

  • Mr = 352.51

  • Monoclinic, P 21 /c

  • a = 9.979 (2) Å

  • b = 13.462 (3) Å

  • c = 13.900 (5) Å

  • β = 128.781 (19)°

  • V = 1455.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 291 K

  • 0.48 × 0.36 × 0.32 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.439, Tmax = 0.560

  • 14915 measured reflections

  • 3330 independent reflections

  • 2758 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.233

  • S = 1.05

  • 3330 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 1.96 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.986 (5)
Zn1—N2 2.054 (5)
Zn1—Cl1 2.2884 (18)
Zn1—Cl2 2.2908 (15)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The study of synthetic active site analogues has made vast contribution to the understanding of the structure function relationship of many metalloenzymes (Holm et al., 2004). Since the coordination environment of many metalloenzyme active sites is made up of different donor groups, the interest of synthetic chemists has shifted toward the design of mixed ligands (Karambelkar et al., 2002). The title complex (I), has been prepared with the aim to mimic the structures and functions of the active sites of zinc metalloenzymes by using carboxylate ligand and pyridine ligand.

Complex (I) crystallizes in the monoclinic space group P21/c and the asymmetric unit contains one [C12H12Cl2N2O2Zn] molecule (Figure 1). In the complex (I), the Zn atom is coordinated one monodentate carboxylate ligand, one pyridine group and two Cl atoms, hence forming a distorted tetrahedral geometry.

Related literature top

For background to metalloenzymes, see: Holm & Solomon (2004), Karambelkar et al. (2002).

Experimental top

The title complex was synthesized by reaction of N-(carboxymethyl)pyridinium bromide (1.09 g, 5 mmol) and ZnCl2 (0.68 g, 5 mmol) in pyridine (10 ml). The solution was stirred for 2 h to afford white precipitates. The precipitates were collected by filtration, re-dissolved in H2O (5 ml) then allowed to stand for several days to produce white crystals (I). Yield: 1.53 g (87%). The crystal used for the crystal structure determination was obtained directly from the above preparation. Analysis, found: C, 40.32; H, 3.31; N, 7.62%. calculated. for C12H12Cl2N2O2Zn: C, 40.76; H, 3.71; N, 7.92%.

Refinement top

Carbon-bond H atoms were positioned geometrically (C—H = 0.93 Å for phenyl group), and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

The study of synthetic active site analogues has made vast contribution to the understanding of the structure function relationship of many metalloenzymes (Holm et al., 2004). Since the coordination environment of many metalloenzyme active sites is made up of different donor groups, the interest of synthetic chemists has shifted toward the design of mixed ligands (Karambelkar et al., 2002). The title complex (I), has been prepared with the aim to mimic the structures and functions of the active sites of zinc metalloenzymes by using carboxylate ligand and pyridine ligand.

Complex (I) crystallizes in the monoclinic space group P21/c and the asymmetric unit contains one [C12H12Cl2N2O2Zn] molecule (Figure 1). In the complex (I), the Zn atom is coordinated one monodentate carboxylate ligand, one pyridine group and two Cl atoms, hence forming a distorted tetrahedral geometry.

For background to metalloenzymes, see: Holm & Solomon (2004), Karambelkar et al. (2002).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of complex (I) at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
Dichlorido(pyridine-κN)[2-(pyridinium-1-yl)acetato-κO]zinc(II) top
Crystal data top
[ZnCl2(C5H5N)(C7H7NO2)]F(000) = 712
Mr = 352.51Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15259 reflections
a = 9.979 (2) Åθ = 3.0–27.5°
b = 13.462 (3) ŵ = 2.05 mm1
c = 13.900 (5) ÅT = 291 K
β = 128.781 (19)°Prism, colourless
V = 1455.6 (7) Å30.48 × 0.36 × 0.32 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3330 independent reflections
Radiation source: fine-focus sealed tube2758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1212
Tmin = 0.439, Tmax = 0.560k = 1717
14915 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.233H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1207P)2 + 8.0068P]
where P = (Fo2 + 2Fc2)/3
3330 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 1.96 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[ZnCl2(C5H5N)(C7H7NO2)]V = 1455.6 (7) Å3
Mr = 352.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.979 (2) ŵ = 2.05 mm1
b = 13.462 (3) ÅT = 291 K
c = 13.900 (5) Å0.48 × 0.36 × 0.32 mm
β = 128.781 (19)°
Data collection top
Rigaku SCXmini
diffractometer
3330 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2758 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.560Rint = 0.041
14915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.233H-atom parameters constrained
S = 1.05Δρmax = 1.96 e Å3
3330 reflectionsΔρmin = 1.22 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.42997 (9)0.41457 (6)0.23620 (7)0.0417 (3)
Cl10.59745 (17)0.39808 (11)0.44591 (12)0.0375 (4)
Cl20.27820 (17)0.56039 (10)0.16703 (15)0.0397 (4)
O10.5887 (6)0.3946 (4)0.1974 (4)0.0487 (11)
O20.3636 (6)0.3927 (4)0.0052 (5)0.0609 (14)
N10.8205 (7)0.3545 (4)0.1608 (5)0.0430 (12)
N20.2623 (6)0.2967 (4)0.1606 (5)0.0418 (12)
C10.5189 (8)0.3845 (5)0.0830 (6)0.0420 (14)
C20.6349 (8)0.3582 (5)0.0525 (6)0.0465 (15)
H2A0.60070.29380.01220.056*
H2B0.61850.40650.00580.056*
C30.9172 (11)0.4374 (6)0.1957 (8)0.0593 (19)
H3A0.86740.49550.15020.071*
C41.0839 (12)0.4372 (9)0.2949 (10)0.079 (3)
H4A1.14770.49540.31970.095*
C51.1604 (11)0.3512 (10)0.3600 (8)0.083 (3)
H5A1.27680.34960.42750.100*
C61.0591 (13)0.2657 (9)0.3225 (8)0.077 (3)
H6A1.10760.20610.36480.092*
C70.8907 (11)0.2704 (6)0.2246 (7)0.0570 (18)
H7A0.82240.21420.20100.068*
C80.3213 (9)0.2025 (6)0.2002 (7)0.0558 (18)
H80.43880.19230.26010.067*
C90.2123 (11)0.1218 (6)0.1544 (9)0.064 (2)
H9A0.25610.05810.18250.077*
C100.0402 (10)0.1364 (6)0.0676 (8)0.0573 (18)
H10A0.03530.08300.03730.069*
C110.0216 (9)0.2317 (5)0.0247 (7)0.0493 (16)
H11A0.13860.24310.03610.059*
C120.0944 (8)0.3094 (5)0.0742 (6)0.0426 (14)
H12A0.05280.37340.04560.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0310 (4)0.0442 (5)0.0454 (5)0.0012 (3)0.0217 (4)0.0033 (3)
Cl10.0289 (7)0.0449 (8)0.0263 (6)0.0031 (5)0.0112 (5)0.0024 (5)
Cl20.0297 (7)0.0281 (7)0.0543 (9)0.0099 (5)0.0229 (6)0.0156 (6)
O10.035 (2)0.066 (3)0.048 (3)0.003 (2)0.027 (2)0.006 (2)
O20.036 (3)0.069 (3)0.055 (3)0.002 (2)0.018 (2)0.003 (3)
N10.043 (3)0.049 (3)0.042 (3)0.006 (2)0.029 (2)0.001 (2)
N20.034 (3)0.042 (3)0.046 (3)0.001 (2)0.023 (2)0.001 (2)
C10.038 (3)0.035 (3)0.048 (4)0.003 (2)0.024 (3)0.000 (3)
C20.042 (3)0.047 (4)0.041 (3)0.003 (3)0.021 (3)0.003 (3)
C30.056 (4)0.060 (5)0.065 (5)0.009 (4)0.039 (4)0.003 (4)
C40.055 (5)0.099 (8)0.083 (7)0.012 (5)0.043 (5)0.010 (6)
C50.037 (4)0.156 (11)0.053 (5)0.008 (6)0.026 (4)0.006 (6)
C60.077 (6)0.105 (8)0.058 (5)0.047 (6)0.047 (5)0.031 (5)
C70.066 (5)0.059 (5)0.055 (4)0.015 (4)0.043 (4)0.010 (3)
C80.041 (3)0.051 (4)0.064 (4)0.015 (3)0.027 (3)0.013 (3)
C90.068 (5)0.039 (4)0.084 (6)0.009 (4)0.047 (5)0.010 (4)
C100.058 (4)0.044 (4)0.076 (5)0.008 (3)0.045 (4)0.005 (4)
C110.041 (3)0.053 (4)0.056 (4)0.006 (3)0.030 (3)0.004 (3)
C120.035 (3)0.044 (3)0.043 (3)0.004 (3)0.022 (3)0.006 (3)
Geometric parameters (Å, º) top
Zn1—O11.986 (5)C4—C51.370 (16)
Zn1—N22.054 (5)C4—H4A0.9300
Zn1—Cl12.2884 (18)C5—C61.399 (16)
Zn1—Cl22.2908 (15)C5—H5A0.9300
O1—C11.283 (8)C6—C71.347 (12)
O2—C11.240 (8)C6—H6A0.9300
N1—C31.352 (10)C7—H7A0.9300
N1—C71.334 (9)C8—C91.379 (12)
N1—C21.485 (8)C8—H80.9300
N2—C121.327 (8)C9—C101.359 (12)
N2—C81.360 (9)C9—H9A0.9300
C1—C21.502 (9)C10—C111.386 (11)
C2—H2A0.9700C10—H10A0.9300
C2—H2B0.9700C11—C121.381 (9)
C3—C41.339 (12)C11—H11A0.9300
C3—H3A0.9300C12—H12A0.9300
O1—Zn1—N2106.8 (2)C5—C4—H4A120.0
O1—Zn1—Cl1105.22 (15)C3—C4—H4A120.0
N2—Zn1—Cl1106.73 (16)C4—C5—C6118.4 (8)
O1—Zn1—Cl2115.60 (16)C4—C5—H5A120.8
N2—Zn1—Cl2109.57 (15)C6—C5—H5A120.8
Cl1—Zn1—Cl2112.40 (7)C7—C6—C5119.4 (9)
C1—O1—Zn1116.4 (4)C7—C6—H6A120.3
C3—N1—C7120.2 (7)C5—C6—H6A120.3
C3—N1—C2119.6 (6)N1—C7—C6121.0 (9)
C7—N1—C2120.3 (7)N1—C7—H7A119.5
C12—N2—C8117.9 (6)C6—C7—H7A119.5
C12—N2—Zn1121.7 (5)N2—C8—C9122.1 (7)
C8—N2—Zn1120.4 (5)N2—C8—H8118.9
O2—C1—O1126.0 (6)C9—C8—H8118.9
O2—C1—C2116.7 (6)C8—C9—C10119.2 (7)
O1—C1—C2117.3 (6)C8—C9—H9A120.4
N1—C2—C1114.5 (5)C10—C9—H9A120.4
N1—C2—H2A108.6C11—C10—C9119.4 (7)
C1—C2—H2A108.6C11—C10—H10A120.3
N1—C2—H2B108.6C9—C10—H10A120.3
C1—C2—H2B108.6C10—C11—C12118.6 (7)
H2A—C2—H2B107.6C10—C11—H11A120.7
N1—C3—C4121.0 (9)C12—C11—H11A120.7
N1—C3—H3A119.5N2—C12—C11122.9 (6)
C4—C3—H3A119.5N2—C12—H12A118.6
C5—C4—C3120.1 (10)C11—C12—H12A118.6
N2—Zn1—O1—C155.9 (5)C2—N1—C3—C4178.2 (8)
Cl1—Zn1—O1—C1169.1 (4)N1—C3—C4—C52.5 (14)
Cl2—Zn1—O1—C166.3 (5)C3—C4—C5—C62.0 (14)
O1—Zn1—N2—C12118.6 (5)C4—C5—C6—C70.2 (13)
Cl1—Zn1—N2—C12129.2 (5)C3—N1—C7—C61.6 (11)
Cl2—Zn1—N2—C127.2 (6)C2—N1—C7—C6179.6 (7)
O1—Zn1—N2—C862.7 (6)C5—C6—C7—N12.0 (12)
Cl1—Zn1—N2—C849.4 (6)C12—N2—C8—C90.7 (11)
Cl2—Zn1—N2—C8171.4 (5)Zn1—N2—C8—C9178.0 (7)
Zn1—O1—C1—O25.2 (9)N2—C8—C9—C100.6 (14)
Zn1—O1—C1—C2173.4 (4)C8—C9—C10—C111.7 (13)
C3—N1—C2—C190.2 (8)C9—C10—C11—C121.6 (12)
C7—N1—C2—C188.6 (8)C8—N2—C12—C110.8 (10)
O2—C1—C2—N1176.9 (6)Zn1—N2—C12—C11177.8 (5)
O1—C1—C2—N14.3 (9)C10—C11—C12—N20.3 (11)
C7—N1—C3—C40.6 (12)

Experimental details

Crystal data
Chemical formula[ZnCl2(C5H5N)(C7H7NO2)]
Mr352.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.979 (2), 13.462 (3), 13.900 (5)
β (°) 128.781 (19)
V3)1455.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.48 × 0.36 × 0.32
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.439, 0.560
No. of measured, independent and
observed [I > 2σ(I)] reflections
14915, 3330, 2758
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.233, 1.05
No. of reflections3330
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.96, 1.22

Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O11.986 (5)Zn1—Cl12.2884 (18)
Zn1—N22.054 (5)Zn1—Cl22.2908 (15)
 

Acknowledgements

This work was supported by the Dean's Fund of the Third Affiliated Hospital of Southern Medical University (No. B2011007).

References

First citationHolm, R. H. & Solomon, E. I. (2004). Chem. Rev. 104, 347–1200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKarambelkar, V. V., Krishnamurthy, D., Stern, C. L., Zakharov, L. N., Rheingold, A. L. & Goldberg, D. P. (2002). Chem. Commun. pp. 2772–2773.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds