organic compounds
Dimethyl DL-2,3-dibenzyl-2,3-diisothiocyanatosuccinate
aFaculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060, Kraków, Poland
*Correspondence e-mail: kalinows@chemia.uj.edu.pl
The title compound, C22H20N2O4S2, has approximate molecular twofold symmetry. In the crystal, the presence of C—H⋯π interactions leads to the formation of zigzag chains along [001].
Related literature
For the synthesis and spectroscopic characterization of the title compound, see: Cież (2007). For the synthesis, spectroscopic characterization and determination of similar compounds, see: Cież et al. (2008). For diisothiocyanates, see: Morel & Marchand (2001). For C—H⋯ π and C—H⋯O interactions, see: Malone et al. (1997); Arunan et al. (2011a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812009294/fj2516sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009294/fj2516Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812009294/fj2516Isup3.mol
Supporting information file. DOI: 10.1107/S1600536812009294/fj2516Isup4.cml
The title compound was obtained by oxidative homo-coupling of methyl (S)-2-isothiocyanato-3-phenyl-propionate in TiCl4/DIEA (N,N-diisopropylethylamine) system at 177 K and characterized by NMR spectroscopy (Cież, 2007). Colourless, block single crystals suitable for X-ray diffraction were obtained from ethanol solution by slow evaporation of solvent at ambient conditions.
All non-hydrogen atoms were refined anisotropically using weighted full-matrix least-squares on F2. All hydrogen atoms were calculated at idealized positions and refined using a riding model with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, C—H = 0.99Å and Uiso(H) = 1.2Ueq(C) for methylene groups, C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for the methyl groups refined as rotating group.
The title compound was synthesized as a part of a larger project focusing on the synthesis of 2,3-disubstituted 2,3-diaminosuccinic acid derivatives obtained from titanium (IV)
of 2-isothiocyanato-carboxylates via C—C bond formation in oxidative homo-coupling of titanium (IV) of 2-isothiocyanato-carboxylic (Cież, 2007; Cież et al., 2008). The main reason for the interest in vicinal diisothiocyanates is related to their wide application in organic syntheses (Morel & Marchand, 2001). The molecule, of which is presented here, belongs to the rare class of organic compounds.The overall shape of the title molecule is shown in Figure 1. There is pseudo-symmetry in the molecule (2-fold axis perpendicular to C2—C3 bond and parallel to [212]). The mutual orientation of both isothiocyanate groups, same as both benzyl groups, is gauche with dihedral angels N1—C2—C3—N2 = 73.95 (13)° and C21—C2—C3—C31 = 43.41 (16)°. The ester groups are oriented in anti conformation with dihedral angle C1—C2—C3—C4 = 158.31 (11)°.
There are two chiral centres in the molecule, localized on atoms C2 and C3, both with the same
(R,R shown in Figure1).The π interactions (Arunan et al., 2011a; Arunan et al., 2011b; Malone et al., 1997). They are formed between molecules related via glide plane c. The distance between hydrogen atom and centroid of the aromatic ring (Cg) is 2.611Å, with angle C38—H···Cg = 145.17°. The additionally defined angle of approach of the vector HCg to the plane of the aromatic ring, θ = 77°, and horizontal distance 0.6Å, classify this C—H···π as the second common geometry for this type of interaction observed in crystal structures (type III according to Malone et al., 1997). Intermolecular C—H···π interactions between neighbouring molecules observed in this structure form a zigzag-like chain in the [001] direction (Figure 2), where only one aromatic ring of the title molecule is involved.
of the title compound is stabilized by weak interactions. The strongest are C—H···Additional interaction is observed between C31—H···O4i [where (i) is x, -y + 1/2, z + 1/2] with C···O = 2.985 (2)Å, H···O = 2.612Å and angle C—H···O = 102.35°. The parameter suggests that it is not a hydrogen bond (Arunan et al., 2011a; Arunan et al., 2011b), however this interaction plays a crucial role in the stabilization of the methyl group (C38), allowing for above mentioned C—H···π. What is interesting, the sulphur atoms of the thiocyanate groups are not involved in intermolecular interactions.
The second aromatic moiety of the DL-2,3-dibenzyl-2,3-diisothiocyanato-succinic acid dimethyl ester is not involved in C—H···π. It is placed in short distance to a corresponding ring of the neighbouring molecule, related via the inversion centre (C24···C24ii = 3.390 (2)Å, where (ii) is -x + 2, -y, -z + 2). However, the overlapping of the aromatic rings is not observed. This suggests a hydrophobic association.
For the synthesis and spectroscopic characterization of the title compound, see: Cież (2007). For the synthesis, spectroscopic characterization and π and C—H···O interactions, see: Malone et al. (1997); Arunan et al. (2011a,b).
determination of similar compounds, see: Cież et al. (2008). For diisothiocyanates, see: Morel & Marchand (2001). For C—H···Data collection: COLLECT (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).C22H20N2O4S2 | F(000) = 920 |
Mr = 440.52 | Dx = 1.353 Mg m−3 |
Monoclinic, P21/c | Melting point: 405(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.7107 Å |
a = 9.1658 (1) Å | Cell parameters from 8876 reflections |
b = 19.3999 (4) Å | θ = 1.0–27.5° |
c = 12.2762 (2) Å | µ = 0.28 mm−1 |
β = 97.891 (1)° | T = 100 K |
V = 2162.23 (6) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.18 × 0.18 mm |
Nonius KappaCCD diffractometer | 4868 independent reflections |
Radiation source: fine-focus sealed tube | 4124 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
CCD scans | h = 0→11 |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | k = −25→24 |
Tmin = 0.926, Tmax = 0.952 | l = −15→15 |
9175 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.033P)2 + 1.1739P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.35 e Å−3 |
4868 reflections | Δρmin = −0.52 e Å−3 |
273 parameters |
C22H20N2O4S2 | V = 2162.23 (6) Å3 |
Mr = 440.52 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.1658 (1) Å | µ = 0.28 mm−1 |
b = 19.3999 (4) Å | T = 100 K |
c = 12.2762 (2) Å | 0.28 × 0.18 × 0.18 mm |
β = 97.891 (1)° |
Nonius KappaCCD diffractometer | 4868 independent reflections |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | 4124 reflections with I > 2σ(I) |
Tmin = 0.926, Tmax = 0.952 | Rint = 0.021 |
9175 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.35 e Å−3 |
4868 reflections | Δρmin = −0.52 e Å−3 |
273 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.82190 (5) | 0.10092 (2) | 0.64722 (4) | 0.03234 (12) | |
S2 | 0.70194 (5) | 0.41656 (2) | 0.81742 (4) | 0.03349 (12) | |
O1 | 0.77379 (11) | 0.19649 (6) | 1.07866 (8) | 0.0215 (2) | |
O3 | 0.32504 (11) | 0.16901 (6) | 0.82274 (8) | 0.0220 (2) | |
O2 | 0.89922 (11) | 0.18316 (6) | 0.93462 (9) | 0.0259 (2) | |
O4 | 0.37916 (13) | 0.26642 (6) | 0.73636 (9) | 0.0296 (3) | |
N1 | 0.65160 (13) | 0.15011 (6) | 0.79822 (10) | 0.0194 (3) | |
N2 | 0.62380 (14) | 0.28759 (7) | 0.88116 (11) | 0.0255 (3) | |
C1 | 0.78640 (15) | 0.18306 (7) | 0.97396 (12) | 0.0183 (3) | |
C22 | 0.65775 (15) | 0.03661 (7) | 0.95391 (12) | 0.0186 (3) | |
C2 | 0.63324 (15) | 0.16521 (7) | 0.91079 (11) | 0.0161 (3) | |
C23 | 0.77233 (16) | 0.01718 (8) | 1.03430 (14) | 0.0259 (3) | |
H4 | 0.799 | 0.0459 | 1.0965 | 0.031* | |
C3 | 0.53140 (15) | 0.23112 (7) | 0.90468 (12) | 0.0179 (3) | |
C29 | 0.73140 (16) | 0.12822 (7) | 0.73867 (12) | 0.0199 (3) | |
C34 | 0.29415 (19) | 0.42686 (8) | 0.98493 (14) | 0.0297 (4) | |
H16 | 0.3257 | 0.4735 | 0.993 | 0.036* | |
C38 | 0.19183 (17) | 0.15756 (10) | 0.74522 (13) | 0.0313 (4) | |
H21A | 0.1091 | 0.1818 | 0.7708 | 0.047* | |
H21B | 0.1704 | 0.1081 | 0.7401 | 0.047* | |
H21C | 0.2065 | 0.1751 | 0.6726 | 0.047* | |
C31 | 0.46259 (15) | 0.24680 (7) | 1.01067 (11) | 0.0184 (3) | |
H13A | 0.4134 | 0.2048 | 1.0336 | 0.022* | |
H13B | 0.5417 | 0.2594 | 1.0706 | 0.022* | |
C35 | 0.14653 (19) | 0.41193 (9) | 0.95249 (14) | 0.0299 (4) | |
H17 | 0.0771 | 0.4482 | 0.9375 | 0.036* | |
C32 | 0.35185 (15) | 0.30495 (7) | 0.99304 (11) | 0.0178 (3) | |
C4 | 0.40438 (16) | 0.22487 (8) | 0.80839 (11) | 0.0199 (3) | |
C21 | 0.57050 (15) | 0.10158 (7) | 0.96548 (12) | 0.0170 (3) | |
H2A | 0.5699 | 0.1113 | 1.0446 | 0.02* | |
H2B | 0.4673 | 0.0941 | 0.9317 | 0.02* | |
C36 | 0.10069 (17) | 0.34392 (9) | 0.94210 (12) | 0.0252 (3) | |
H18 | −0.0006 | 0.3336 | 0.9211 | 0.03* | |
C28 | 0.90829 (16) | 0.21203 (9) | 1.15173 (13) | 0.0257 (3) | |
H10A | 0.962 | 0.1692 | 1.1718 | 0.039* | |
H10B | 0.8836 | 0.2345 | 1.2183 | 0.039* | |
H10C | 0.97 | 0.2429 | 1.1144 | 0.039* | |
C27 | 0.62157 (19) | −0.00584 (8) | 0.86285 (14) | 0.0267 (3) | |
H8 | 0.5444 | 0.0072 | 0.8069 | 0.032* | |
C33 | 0.39630 (17) | 0.37363 (8) | 1.00568 (12) | 0.0227 (3) | |
H15 | 0.497 | 0.3842 | 1.0286 | 0.027* | |
C25 | 0.8090 (2) | −0.08616 (9) | 0.93408 (19) | 0.0419 (5) | |
H6 | 0.8596 | −0.1284 | 0.9281 | 0.05* | |
C39 | 0.65003 (16) | 0.34293 (8) | 0.85183 (12) | 0.0202 (3) | |
C26 | 0.6972 (2) | −0.06717 (9) | 0.85291 (17) | 0.0390 (4) | |
H7 | 0.6718 | −0.0959 | 0.7905 | 0.047* | |
C37 | 0.20244 (16) | 0.29063 (8) | 0.96224 (12) | 0.0208 (3) | |
H19 | 0.1701 | 0.2441 | 0.955 | 0.025* | |
C24 | 0.84797 (18) | −0.04410 (9) | 1.02404 (17) | 0.0371 (4) | |
H5 | 0.9265 | −0.057 | 1.079 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0265 (2) | 0.0405 (3) | 0.0326 (2) | −0.00216 (17) | 0.01345 (16) | −0.01572 (18) |
S2 | 0.0424 (2) | 0.0188 (2) | 0.0414 (2) | −0.00374 (17) | 0.01371 (19) | 0.00715 (17) |
O1 | 0.0172 (5) | 0.0254 (6) | 0.0216 (5) | −0.0007 (4) | 0.0019 (4) | −0.0027 (4) |
O3 | 0.0183 (5) | 0.0277 (6) | 0.0195 (5) | 0.0007 (4) | 0.0004 (4) | 0.0027 (4) |
O2 | 0.0178 (5) | 0.0301 (6) | 0.0311 (6) | −0.0020 (4) | 0.0084 (4) | −0.0050 (5) |
O4 | 0.0438 (7) | 0.0274 (6) | 0.0182 (5) | 0.0100 (5) | 0.0060 (5) | 0.0058 (4) |
N1 | 0.0202 (6) | 0.0190 (6) | 0.0200 (6) | 0.0020 (5) | 0.0058 (5) | 0.0003 (5) |
N2 | 0.0267 (7) | 0.0176 (7) | 0.0352 (7) | 0.0015 (5) | 0.0146 (6) | 0.0034 (5) |
C1 | 0.0192 (7) | 0.0136 (6) | 0.0227 (7) | 0.0003 (5) | 0.0048 (5) | −0.0003 (5) |
C22 | 0.0165 (6) | 0.0144 (7) | 0.0267 (7) | 0.0000 (5) | 0.0094 (5) | 0.0032 (5) |
C2 | 0.0170 (6) | 0.0147 (6) | 0.0175 (6) | 0.0011 (5) | 0.0058 (5) | −0.0001 (5) |
C23 | 0.0186 (7) | 0.0245 (8) | 0.0353 (9) | 0.0010 (6) | 0.0063 (6) | 0.0100 (6) |
C3 | 0.0184 (6) | 0.0147 (6) | 0.0219 (7) | 0.0008 (5) | 0.0076 (5) | 0.0022 (5) |
C29 | 0.0188 (7) | 0.0183 (7) | 0.0224 (7) | −0.0028 (6) | 0.0021 (6) | −0.0016 (5) |
C34 | 0.0368 (9) | 0.0180 (7) | 0.0361 (9) | 0.0048 (7) | 0.0119 (7) | 0.0001 (6) |
C38 | 0.0202 (7) | 0.0512 (11) | 0.0207 (7) | 0.0038 (7) | −0.0039 (6) | 0.0031 (7) |
C31 | 0.0192 (7) | 0.0186 (7) | 0.0183 (7) | 0.0030 (5) | 0.0058 (5) | −0.0003 (5) |
C35 | 0.0323 (8) | 0.0281 (9) | 0.0303 (8) | 0.0149 (7) | 0.0075 (7) | 0.0046 (7) |
C32 | 0.0205 (7) | 0.0181 (7) | 0.0156 (6) | 0.0035 (5) | 0.0053 (5) | −0.0005 (5) |
C4 | 0.0240 (7) | 0.0207 (7) | 0.0165 (7) | 0.0075 (6) | 0.0083 (5) | 0.0011 (5) |
C21 | 0.0151 (6) | 0.0139 (6) | 0.0227 (7) | −0.0004 (5) | 0.0052 (5) | 0.0018 (5) |
C36 | 0.0207 (7) | 0.0344 (9) | 0.0205 (7) | 0.0076 (6) | 0.0029 (6) | −0.0003 (6) |
C28 | 0.0173 (7) | 0.0307 (9) | 0.0279 (8) | −0.0013 (6) | −0.0017 (6) | −0.0068 (6) |
C27 | 0.0333 (8) | 0.0177 (7) | 0.0308 (8) | −0.0034 (6) | 0.0105 (7) | −0.0008 (6) |
C33 | 0.0237 (7) | 0.0200 (7) | 0.0254 (7) | 0.0007 (6) | 0.0071 (6) | −0.0034 (6) |
C25 | 0.0413 (10) | 0.0184 (8) | 0.0743 (14) | 0.0109 (7) | 0.0379 (10) | 0.0125 (9) |
C39 | 0.0210 (7) | 0.0205 (7) | 0.0195 (7) | 0.0025 (6) | 0.0048 (5) | 0.0001 (6) |
C26 | 0.0543 (12) | 0.0188 (8) | 0.0510 (11) | −0.0039 (8) | 0.0326 (10) | −0.0049 (7) |
C37 | 0.0214 (7) | 0.0227 (7) | 0.0187 (7) | 0.0012 (6) | 0.0050 (5) | −0.0025 (5) |
C24 | 0.0212 (8) | 0.0314 (9) | 0.0616 (12) | 0.0088 (7) | 0.0159 (8) | 0.0240 (9) |
S1—C29 | 1.5762 (15) | C38—H21B | 0.98 |
S2—C39 | 1.5813 (15) | C38—H21C | 0.98 |
O1—C1 | 1.3320 (17) | C31—C32 | 1.5132 (19) |
O1—C28 | 1.4531 (17) | C31—H13A | 0.99 |
O3—C4 | 1.3302 (18) | C31—H13B | 0.99 |
O3—C38 | 1.4583 (17) | C35—C36 | 1.385 (2) |
O2—C1 | 1.1998 (17) | C35—H17 | 0.95 |
O4—C4 | 1.1955 (18) | C32—C33 | 1.396 (2) |
N1—C29 | 1.1818 (19) | C32—C37 | 1.398 (2) |
N1—C2 | 1.4449 (17) | C21—H2A | 0.99 |
N2—C39 | 1.168 (2) | C21—H2B | 0.99 |
N2—C3 | 1.4380 (19) | C36—C37 | 1.392 (2) |
C1—C2 | 1.5470 (19) | C36—H18 | 0.95 |
C22—C23 | 1.391 (2) | C28—H10A | 0.98 |
C22—C27 | 1.391 (2) | C28—H10B | 0.98 |
C22—C21 | 1.5099 (19) | C28—H10C | 0.98 |
C2—C21 | 1.5528 (19) | C27—C26 | 1.391 (2) |
C2—C3 | 1.5788 (19) | C27—H8 | 0.95 |
C23—C24 | 1.391 (2) | C33—H15 | 0.95 |
C23—H4 | 0.95 | C25—C26 | 1.378 (3) |
C3—C4 | 1.546 (2) | C25—C24 | 1.380 (3) |
C3—C31 | 1.5520 (19) | C25—H6 | 0.95 |
C34—C35 | 1.388 (2) | C26—H7 | 0.95 |
C34—C33 | 1.394 (2) | C37—H19 | 0.95 |
C34—H16 | 0.95 | C24—H5 | 0.95 |
C38—H21A | 0.98 | ||
C1—O1—C28 | 117.23 (11) | C36—C35—H17 | 120.1 |
C4—O3—C38 | 117.49 (12) | C34—C35—H17 | 120.1 |
C29—N1—C2 | 145.87 (13) | C33—C32—C37 | 118.70 (13) |
C39—N2—C3 | 156.08 (15) | C33—C32—C31 | 121.06 (13) |
O2—C1—O1 | 125.58 (13) | C37—C32—C31 | 120.23 (13) |
O2—C1—C2 | 124.86 (13) | O4—C4—O3 | 126.41 (14) |
O1—C1—C2 | 109.54 (11) | O4—C4—C3 | 124.16 (14) |
C23—C22—C27 | 118.89 (14) | O3—C4—C3 | 109.32 (11) |
C23—C22—C21 | 121.17 (14) | C22—C21—C2 | 112.99 (11) |
C27—C22—C21 | 119.92 (13) | C22—C21—H2A | 109 |
N1—C2—C1 | 107.94 (11) | C2—C21—H2A | 109 |
N1—C2—C21 | 110.55 (11) | C22—C21—H2B | 109 |
C1—C2—C21 | 109.01 (11) | C2—C21—H2B | 109 |
N1—C2—C3 | 105.34 (11) | H2A—C21—H2B | 107.8 |
C1—C2—C3 | 109.42 (11) | C35—C36—C37 | 120.26 (15) |
C21—C2—C3 | 114.38 (11) | C35—C36—H18 | 119.9 |
C24—C23—C22 | 120.31 (17) | C37—C36—H18 | 119.9 |
C24—C23—H4 | 119.8 | O1—C28—H10A | 109.5 |
C22—C23—H4 | 119.8 | O1—C28—H10B | 109.5 |
N2—C3—C4 | 107.98 (12) | H10A—C28—H10B | 109.5 |
N2—C3—C31 | 109.72 (12) | O1—C28—H10C | 109.5 |
C4—C3—C31 | 107.84 (11) | H10A—C28—H10C | 109.5 |
N2—C3—C2 | 105.42 (11) | H10B—C28—H10C | 109.5 |
C4—C3—C2 | 110.55 (11) | C26—C27—C22 | 120.68 (17) |
C31—C3—C2 | 115.12 (11) | C26—C27—H8 | 119.7 |
N1—C29—S1 | 172.86 (14) | C22—C27—H8 | 119.7 |
C35—C34—C33 | 120.13 (15) | C34—C33—C32 | 120.57 (15) |
C35—C34—H16 | 119.9 | C34—C33—H15 | 119.7 |
C33—C34—H16 | 119.9 | C32—C33—H15 | 119.7 |
O3—C38—H21A | 109.5 | C26—C25—C24 | 120.37 (16) |
O3—C38—H21B | 109.5 | C26—C25—H6 | 119.8 |
H21A—C38—H21B | 109.5 | C24—C25—H6 | 119.8 |
O3—C38—H21C | 109.5 | N2—C39—S2 | 174.30 (14) |
H21A—C38—H21C | 109.5 | C25—C26—C27 | 119.70 (18) |
H21B—C38—H21C | 109.5 | C25—C26—H7 | 120.2 |
C32—C31—C3 | 111.59 (11) | C27—C26—H7 | 120.1 |
C32—C31—H13A | 109.3 | C36—C37—C32 | 120.54 (14) |
C3—C31—H13A | 109.3 | C36—C37—H19 | 119.7 |
C32—C31—H13B | 109.3 | C32—C37—H19 | 119.7 |
C3—C31—H13B | 109.3 | C25—C24—C23 | 120.04 (17) |
H13A—C31—H13B | 108 | C25—C24—H5 | 120 |
C36—C35—C34 | 119.79 (14) | C23—C24—H5 | 120 |
C28—O1—C1—O2 | −0.6 (2) | C3—C31—C32—C33 | −85.99 (16) |
C28—O1—C1—C2 | 177.90 (12) | C3—C31—C32—C37 | 93.19 (15) |
C29—N1—C2—C1 | 30.4 (3) | C38—O3—C4—O4 | −1.7 (2) |
C29—N1—C2—C21 | −88.8 (3) | C38—O3—C4—C3 | 174.64 (12) |
C29—N1—C2—C3 | 147.2 (2) | N2—C3—C4—O4 | −9.50 (19) |
O2—C1—C2—N1 | −0.79 (19) | C31—C3—C4—O4 | 109.00 (16) |
O1—C1—C2—N1 | −179.25 (11) | C2—C3—C4—O4 | −124.35 (15) |
O2—C1—C2—C21 | 119.32 (15) | N2—C3—C4—O3 | 174.10 (11) |
O1—C1—C2—C21 | −59.14 (14) | C31—C3—C4—O3 | −67.40 (14) |
O2—C1—C2—C3 | −114.92 (15) | C2—C3—C4—O3 | 59.25 (14) |
O1—C1—C2—C3 | 66.61 (14) | C23—C22—C21—C2 | 92.30 (16) |
C27—C22—C23—C24 | −0.7 (2) | C27—C22—C21—C2 | −89.27 (16) |
C21—C22—C23—C24 | 177.70 (13) | N1—C2—C21—C22 | 52.14 (15) |
C39—N2—C3—C4 | 43.4 (4) | C1—C2—C21—C22 | −66.35 (15) |
C39—N2—C3—C31 | −73.9 (4) | C3—C2—C21—C22 | 170.82 (11) |
C39—N2—C3—C2 | 161.5 (3) | C34—C35—C36—C37 | −1.1 (2) |
N1—C2—C3—N2 | −73.95 (13) | C23—C22—C27—C26 | 0.9 (2) |
C1—C2—C3—N2 | 41.85 (14) | C21—C22—C27—C26 | −177.57 (14) |
C21—C2—C3—N2 | 164.46 (12) | C35—C34—C33—C32 | 0.7 (2) |
N1—C2—C3—C4 | 42.50 (14) | C37—C32—C33—C34 | −1.8 (2) |
C1—C2—C3—C4 | 158.31 (11) | C31—C32—C33—C34 | 177.40 (14) |
C21—C2—C3—C4 | −79.09 (14) | C3—N2—C39—S2 | 167.5 (12) |
N1—C2—C3—C31 | 165.00 (12) | C24—C25—C26—C27 | −1.1 (3) |
C1—C2—C3—C31 | −79.20 (14) | C22—C27—C26—C25 | 0.0 (2) |
C21—C2—C3—C31 | 43.41 (16) | C35—C36—C37—C32 | −0.1 (2) |
C2—N1—C29—S1 | 18E1 (10) | C33—C32—C37—C36 | 1.5 (2) |
N2—C3—C31—C32 | 68.64 (15) | C31—C32—C37—C36 | −177.71 (13) |
C4—C3—C31—C32 | −48.75 (15) | C26—C25—C24—C23 | 1.3 (3) |
C2—C3—C31—C32 | −172.68 (12) | C22—C23—C24—C25 | −0.3 (2) |
C33—C34—C35—C36 | 0.8 (2) |
Cg is the centroid of the C32–C37 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C38—H21C···Cgi | 0.98 | 2.61 | 3.461 (2) | 145 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C22H20N2O4S2 |
Mr | 440.52 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.1658 (1), 19.3999 (4), 12.2762 (2) |
β (°) | 97.891 (1) |
V (Å3) | 2162.23 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.28 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.926, 0.952 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9175, 4868, 4124 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.090, 1.05 |
No. of reflections | 4868 |
No. of parameters | 273 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.52 |
Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).
Cg is the centroid of the C32–C37 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C38—H21C···Cgi | 0.98 | 2.61 | 3.461 (2) | 145.2 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
The authors would like to thank Professor Barbara J. Oleksyn for constructive comments and suggestions.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011a). Pure Appl. Chem. 83, 1619–1636. Web of Science CrossRef CAS Google Scholar
Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011b). Pure Appl. Chem. 83, 1637–1641. Web of Science CrossRef CAS Google Scholar
Chemaxon (2010). Marvinsketch. http://www.chemaxon.com. Google Scholar
Cież, D. (2007). Tetrahedron, 63, 4510–4515. Google Scholar
Cież, D., Kalinowska-Tłuścik, J., Peyrat, S., Pougoue Touko, E., Trzewik, B. & Zwoliński, K. (2008). Synthesis, 40, 3261–3266. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436. CrossRef CAS Web of Science Google Scholar
Morel, G. & Marchand, E. (2001). Heteroat. Chem. 12, 617–624. Web of Science CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was synthesized as a part of a larger project focusing on the synthesis of 2,3-disubstituted 2,3-diaminosuccinic acid derivatives obtained from titanium (IV) enolates of 2-isothiocyanato-carboxylates via C—C bond formation in oxidative homo-coupling of titanium (IV) enolates of 2-isothiocyanato-carboxylic esters (Cież, 2007; Cież et al., 2008). The main reason for the interest in vicinal diisothiocyanates is related to their wide application in organic syntheses (Morel & Marchand, 2001). The molecule, crystal structure of which is presented here, belongs to the rare class of organic compounds.
The overall shape of the title molecule is shown in Figure 1. There is pseudo-symmetry in the molecule (2-fold axis perpendicular to C2—C3 bond and parallel to [212]). The mutual orientation of both isothiocyanate groups, same as both benzyl groups, is gauche with dihedral angels N1—C2—C3—N2 = 73.95 (13)° and C21—C2—C3—C31 = 43.41 (16)°. The ester groups are oriented in anti conformation with dihedral angle C1—C2—C3—C4 = 158.31 (11)°.
There are two chiral centres in the molecule, localized on atoms C2 and C3, both with the same absolute configuration (R,R enantiomer shown in Figure1).
The crystal structure of the title compound is stabilized by weak interactions. The strongest are C—H···π interactions (Arunan et al., 2011a; Arunan et al., 2011b; Malone et al., 1997). They are formed between molecules related via glide plane c. The distance between hydrogen atom and centroid of the aromatic ring (Cg) is 2.611Å, with angle C38—H···Cg = 145.17°. The additionally defined angle of approach of the vector HCg to the plane of the aromatic ring, θ = 77°, and horizontal distance 0.6Å, classify this C—H···π as the second common geometry for this type of interaction observed in crystal structures (type III according to Malone et al., 1997). Intermolecular C—H···π interactions between neighbouring molecules observed in this structure form a zigzag-like chain in the [001] direction (Figure 2), where only one aromatic ring of the title molecule is involved.
Additional interaction is observed between C31—H···O4i [where (i) is x, -y + 1/2, z + 1/2] with C···O = 2.985 (2)Å, H···O = 2.612Å and angle C—H···O = 102.35°. The parameter suggests that it is not a hydrogen bond (Arunan et al., 2011a; Arunan et al., 2011b), however this interaction plays a crucial role in the stabilization of the methyl group (C38), allowing for above mentioned C—H···π. What is interesting, the sulphur atoms of the thiocyanate groups are not involved in intermolecular interactions.
The second aromatic moiety of the DL-2,3-dibenzyl-2,3-diisothiocyanato-succinic acid dimethyl ester is not involved in C—H···π. It is placed in short distance to a corresponding ring of the neighbouring molecule, related via the inversion centre (C24···C24ii = 3.390 (2)Å, where (ii) is -x + 2, -y, -z + 2). However, the overlapping of the aromatic rings is not observed. This suggests a hydrophobic association.