organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl DL-2,3-di­benzyl-2,3-diiso­thio­cyanatosuccinate

aFaculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060, Kraków, Poland
*Correspondence e-mail: kalinows@chemia.uj.edu.pl

(Received 6 February 2012; accepted 1 March 2012; online 10 March 2012)

The title compound, C22H20N2O4S2, has approximate mol­ecular twofold symmetry. In the crystal, the presence of C—H⋯π inter­actions leads to the formation of zigzag chains along [001].

Related literature

For the synthesis and spectroscopic characterization of the title compound, see: Cież (2007[Cież, D. (2007). Tetrahedron, 63, 4510-4515.]). For the synthesis, spectroscopic characterization and crystal structure determination of similar compounds, see: Cież et al. (2008[Cież, D., Kalinowska-Tłuścik, J., Peyrat, S., Pougoue Touko, E., Trzewik, B. & Zwoliński, K. (2008). Synthesis, 40, 3261-3266.]). For diisothio­cyanates, see: Morel & Marchand (2001[Morel, G. & Marchand, E. (2001). Heteroat. Chem. 12, 617-624.]). For C—H⋯ π and C—H⋯O inter­actions, see: Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.]); Arunan et al. (2011a[Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011a). Pure Appl. Chem. 83, 1619-1636.],b[Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011b). Pure Appl. Chem. 83, 1637-1641.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O4S2

  • Mr = 440.52

  • Monoclinic, P 21 /c

  • a = 9.1658 (1) Å

  • b = 19.3999 (4) Å

  • c = 12.2762 (2) Å

  • β = 97.891 (1)°

  • V = 2162.23 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.926, Tmax = 0.952

  • 9175 measured reflections

  • 4868 independent reflections

  • 4124 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.05

  • 4868 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C32–C37 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C38—H21CCgi 0.98 2.61 3.461 (2) 145
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), MarvinSketch (Chemaxon, 2010[Chemaxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was synthesized as a part of a larger project focusing on the synthesis of 2,3-disubstituted 2,3-diaminosuccinic acid derivatives obtained from titanium (IV) enolates of 2-isothiocyanato-carboxylates via C—C bond formation in oxidative homo-coupling of titanium (IV) enolates of 2-isothiocyanato-carboxylic esters (Cież, 2007; Cież et al., 2008). The main reason for the interest in vicinal diisothiocyanates is related to their wide application in organic syntheses (Morel & Marchand, 2001). The molecule, crystal structure of which is presented here, belongs to the rare class of organic compounds.

The overall shape of the title molecule is shown in Figure 1. There is pseudo-symmetry in the molecule (2-fold axis perpendicular to C2—C3 bond and parallel to [212]). The mutual orientation of both isothiocyanate groups, same as both benzyl groups, is gauche with dihedral angels N1—C2—C3—N2 = 73.95 (13)° and C21—C2—C3—C31 = 43.41 (16)°. The ester groups are oriented in anti conformation with dihedral angle C1—C2—C3—C4 = 158.31 (11)°.

There are two chiral centres in the molecule, localized on atoms C2 and C3, both with the same absolute configuration (R,R enantiomer shown in Figure1).

The crystal structure of the title compound is stabilized by weak interactions. The strongest are C—H···π interactions (Arunan et al., 2011a; Arunan et al., 2011b; Malone et al., 1997). They are formed between molecules related via glide plane c. The distance between hydrogen atom and centroid of the aromatic ring (Cg) is 2.611Å, with angle C38—H···Cg = 145.17°. The additionally defined angle of approach of the vector HCg to the plane of the aromatic ring, θ = 77°, and horizontal distance 0.6Å, classify this C—H···π as the second common geometry for this type of interaction observed in crystal structures (type III according to Malone et al., 1997). Intermolecular C—H···π interactions between neighbouring molecules observed in this structure form a zigzag-like chain in the [001] direction (Figure 2), where only one aromatic ring of the title molecule is involved.

Additional interaction is observed between C31—H···O4i [where (i) is x, -y + 1/2, z + 1/2] with C···O = 2.985 (2)Å, H···O = 2.612Å and angle C—H···O = 102.35°. The parameter suggests that it is not a hydrogen bond (Arunan et al., 2011a; Arunan et al., 2011b), however this interaction plays a crucial role in the stabilization of the methyl group (C38), allowing for above mentioned C—H···π. What is interesting, the sulphur atoms of the thiocyanate groups are not involved in intermolecular interactions.

The second aromatic moiety of the DL-2,3-dibenzyl-2,3-diisothiocyanato-succinic acid dimethyl ester is not involved in C—H···π. It is placed in short distance to a corresponding ring of the neighbouring molecule, related via the inversion centre (C24···C24ii = 3.390 (2)Å, where (ii) is -x + 2, -y, -z + 2). However, the overlapping of the aromatic rings is not observed. This suggests a hydrophobic association.

Related literature top

For the synthesis and spectroscopic characterization of the title compound, see: Cież (2007). For the synthesis, spectroscopic characterization and crystal structure determination of similar compounds, see: Cież et al. (2008). For diisothiocyanates, see: Morel & Marchand (2001). For C—H···π and C—H···O interactions, see: Malone et al. (1997); Arunan et al. (2011a,b).

Experimental top

The title compound was obtained by oxidative homo-coupling of methyl (S)-2-isothiocyanato-3-phenyl-propionate in TiCl4/DIEA (N,N-diisopropylethylamine) system at 177 K and characterized by NMR spectroscopy (Cież, 2007). Colourless, block single crystals suitable for X-ray diffraction were obtained from ethanol solution by slow evaporation of solvent at ambient conditions.

Refinement top

All non-hydrogen atoms were refined anisotropically using weighted full-matrix least-squares on F2. All hydrogen atoms were calculated at idealized positions and refined using a riding model with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, C—H = 0.99Å and Uiso(H) = 1.2Ueq(C) for methylene groups, C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for the methyl groups refined as rotating group.

Structure description top

The title compound was synthesized as a part of a larger project focusing on the synthesis of 2,3-disubstituted 2,3-diaminosuccinic acid derivatives obtained from titanium (IV) enolates of 2-isothiocyanato-carboxylates via C—C bond formation in oxidative homo-coupling of titanium (IV) enolates of 2-isothiocyanato-carboxylic esters (Cież, 2007; Cież et al., 2008). The main reason for the interest in vicinal diisothiocyanates is related to their wide application in organic syntheses (Morel & Marchand, 2001). The molecule, crystal structure of which is presented here, belongs to the rare class of organic compounds.

The overall shape of the title molecule is shown in Figure 1. There is pseudo-symmetry in the molecule (2-fold axis perpendicular to C2—C3 bond and parallel to [212]). The mutual orientation of both isothiocyanate groups, same as both benzyl groups, is gauche with dihedral angels N1—C2—C3—N2 = 73.95 (13)° and C21—C2—C3—C31 = 43.41 (16)°. The ester groups are oriented in anti conformation with dihedral angle C1—C2—C3—C4 = 158.31 (11)°.

There are two chiral centres in the molecule, localized on atoms C2 and C3, both with the same absolute configuration (R,R enantiomer shown in Figure1).

The crystal structure of the title compound is stabilized by weak interactions. The strongest are C—H···π interactions (Arunan et al., 2011a; Arunan et al., 2011b; Malone et al., 1997). They are formed between molecules related via glide plane c. The distance between hydrogen atom and centroid of the aromatic ring (Cg) is 2.611Å, with angle C38—H···Cg = 145.17°. The additionally defined angle of approach of the vector HCg to the plane of the aromatic ring, θ = 77°, and horizontal distance 0.6Å, classify this C—H···π as the second common geometry for this type of interaction observed in crystal structures (type III according to Malone et al., 1997). Intermolecular C—H···π interactions between neighbouring molecules observed in this structure form a zigzag-like chain in the [001] direction (Figure 2), where only one aromatic ring of the title molecule is involved.

Additional interaction is observed between C31—H···O4i [where (i) is x, -y + 1/2, z + 1/2] with C···O = 2.985 (2)Å, H···O = 2.612Å and angle C—H···O = 102.35°. The parameter suggests that it is not a hydrogen bond (Arunan et al., 2011a; Arunan et al., 2011b), however this interaction plays a crucial role in the stabilization of the methyl group (C38), allowing for above mentioned C—H···π. What is interesting, the sulphur atoms of the thiocyanate groups are not involved in intermolecular interactions.

The second aromatic moiety of the DL-2,3-dibenzyl-2,3-diisothiocyanato-succinic acid dimethyl ester is not involved in C—H···π. It is placed in short distance to a corresponding ring of the neighbouring molecule, related via the inversion centre (C24···C24ii = 3.390 (2)Å, where (ii) is -x + 2, -y, -z + 2). However, the overlapping of the aromatic rings is not observed. This suggests a hydrophobic association.

For the synthesis and spectroscopic characterization of the title compound, see: Cież (2007). For the synthesis, spectroscopic characterization and crystal structure determination of similar compounds, see: Cież et al. (2008). For diisothiocyanates, see: Morel & Marchand (2001). For C—H···π and C—H···O interactions, see: Malone et al. (1997); Arunan et al. (2011a,b).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound - here R,R - enantiomer, showing the molecule conformation. Atom displacement ellipsoids drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Chain formed by C—H···π interacting molecules, propagating in the [001] direction.
Dimethyl 2,3-dibenzyl-2,3-diisothiocyanatobutanedioate top
Crystal data top
C22H20N2O4S2F(000) = 920
Mr = 440.52Dx = 1.353 Mg m3
Monoclinic, P21/cMelting point: 405(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.7107 Å
a = 9.1658 (1) ÅCell parameters from 8876 reflections
b = 19.3999 (4) Åθ = 1.0–27.5°
c = 12.2762 (2) ŵ = 0.28 mm1
β = 97.891 (1)°T = 100 K
V = 2162.23 (6) Å3Block, colourless
Z = 40.28 × 0.18 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
4868 independent reflections
Radiation source: fine-focus sealed tube4124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD scansh = 011
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 2524
Tmin = 0.926, Tmax = 0.952l = 1515
9175 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.033P)2 + 1.1739P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.35 e Å3
4868 reflectionsΔρmin = 0.52 e Å3
273 parameters
Crystal data top
C22H20N2O4S2V = 2162.23 (6) Å3
Mr = 440.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1658 (1) ŵ = 0.28 mm1
b = 19.3999 (4) ÅT = 100 K
c = 12.2762 (2) Å0.28 × 0.18 × 0.18 mm
β = 97.891 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4868 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
4124 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.952Rint = 0.021
9175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
4868 reflectionsΔρmin = 0.52 e Å3
273 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82190 (5)0.10092 (2)0.64722 (4)0.03234 (12)
S20.70194 (5)0.41656 (2)0.81742 (4)0.03349 (12)
O10.77379 (11)0.19649 (6)1.07866 (8)0.0215 (2)
O30.32504 (11)0.16901 (6)0.82274 (8)0.0220 (2)
O20.89922 (11)0.18316 (6)0.93462 (9)0.0259 (2)
O40.37916 (13)0.26642 (6)0.73636 (9)0.0296 (3)
N10.65160 (13)0.15011 (6)0.79822 (10)0.0194 (3)
N20.62380 (14)0.28759 (7)0.88116 (11)0.0255 (3)
C10.78640 (15)0.18306 (7)0.97396 (12)0.0183 (3)
C220.65775 (15)0.03661 (7)0.95391 (12)0.0186 (3)
C20.63324 (15)0.16521 (7)0.91079 (11)0.0161 (3)
C230.77233 (16)0.01718 (8)1.03430 (14)0.0259 (3)
H40.7990.04591.09650.031*
C30.53140 (15)0.23112 (7)0.90468 (12)0.0179 (3)
C290.73140 (16)0.12822 (7)0.73867 (12)0.0199 (3)
C340.29415 (19)0.42686 (8)0.98493 (14)0.0297 (4)
H160.32570.47350.9930.036*
C380.19183 (17)0.15756 (10)0.74522 (13)0.0313 (4)
H21A0.10910.18180.77080.047*
H21B0.17040.10810.74010.047*
H21C0.20650.17510.67260.047*
C310.46259 (15)0.24680 (7)1.01067 (11)0.0184 (3)
H13A0.41340.20481.03360.022*
H13B0.54170.25941.07060.022*
C350.14653 (19)0.41193 (9)0.95249 (14)0.0299 (4)
H170.07710.44820.93750.036*
C320.35185 (15)0.30495 (7)0.99304 (11)0.0178 (3)
C40.40438 (16)0.22487 (8)0.80839 (11)0.0199 (3)
C210.57050 (15)0.10158 (7)0.96548 (12)0.0170 (3)
H2A0.56990.11131.04460.02*
H2B0.46730.09410.93170.02*
C360.10069 (17)0.34392 (9)0.94210 (12)0.0252 (3)
H180.00060.33360.92110.03*
C280.90829 (16)0.21203 (9)1.15173 (13)0.0257 (3)
H10A0.9620.16921.17180.039*
H10B0.88360.23451.21830.039*
H10C0.970.24291.11440.039*
C270.62157 (19)0.00584 (8)0.86285 (14)0.0267 (3)
H80.54440.00720.80690.032*
C330.39630 (17)0.37363 (8)1.00568 (12)0.0227 (3)
H150.4970.38421.02860.027*
C250.8090 (2)0.08616 (9)0.93408 (19)0.0419 (5)
H60.85960.12840.92810.05*
C390.65003 (16)0.34293 (8)0.85183 (12)0.0202 (3)
C260.6972 (2)0.06717 (9)0.85291 (17)0.0390 (4)
H70.67180.09590.79050.047*
C370.20244 (16)0.29063 (8)0.96224 (12)0.0208 (3)
H190.17010.24410.9550.025*
C240.84797 (18)0.04410 (9)1.02404 (17)0.0371 (4)
H50.92650.0571.0790.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0265 (2)0.0405 (3)0.0326 (2)0.00216 (17)0.01345 (16)0.01572 (18)
S20.0424 (2)0.0188 (2)0.0414 (2)0.00374 (17)0.01371 (19)0.00715 (17)
O10.0172 (5)0.0254 (6)0.0216 (5)0.0007 (4)0.0019 (4)0.0027 (4)
O30.0183 (5)0.0277 (6)0.0195 (5)0.0007 (4)0.0004 (4)0.0027 (4)
O20.0178 (5)0.0301 (6)0.0311 (6)0.0020 (4)0.0084 (4)0.0050 (5)
O40.0438 (7)0.0274 (6)0.0182 (5)0.0100 (5)0.0060 (5)0.0058 (4)
N10.0202 (6)0.0190 (6)0.0200 (6)0.0020 (5)0.0058 (5)0.0003 (5)
N20.0267 (7)0.0176 (7)0.0352 (7)0.0015 (5)0.0146 (6)0.0034 (5)
C10.0192 (7)0.0136 (6)0.0227 (7)0.0003 (5)0.0048 (5)0.0003 (5)
C220.0165 (6)0.0144 (7)0.0267 (7)0.0000 (5)0.0094 (5)0.0032 (5)
C20.0170 (6)0.0147 (6)0.0175 (6)0.0011 (5)0.0058 (5)0.0001 (5)
C230.0186 (7)0.0245 (8)0.0353 (9)0.0010 (6)0.0063 (6)0.0100 (6)
C30.0184 (6)0.0147 (6)0.0219 (7)0.0008 (5)0.0076 (5)0.0022 (5)
C290.0188 (7)0.0183 (7)0.0224 (7)0.0028 (6)0.0021 (6)0.0016 (5)
C340.0368 (9)0.0180 (7)0.0361 (9)0.0048 (7)0.0119 (7)0.0001 (6)
C380.0202 (7)0.0512 (11)0.0207 (7)0.0038 (7)0.0039 (6)0.0031 (7)
C310.0192 (7)0.0186 (7)0.0183 (7)0.0030 (5)0.0058 (5)0.0003 (5)
C350.0323 (8)0.0281 (9)0.0303 (8)0.0149 (7)0.0075 (7)0.0046 (7)
C320.0205 (7)0.0181 (7)0.0156 (6)0.0035 (5)0.0053 (5)0.0005 (5)
C40.0240 (7)0.0207 (7)0.0165 (7)0.0075 (6)0.0083 (5)0.0011 (5)
C210.0151 (6)0.0139 (6)0.0227 (7)0.0004 (5)0.0052 (5)0.0018 (5)
C360.0207 (7)0.0344 (9)0.0205 (7)0.0076 (6)0.0029 (6)0.0003 (6)
C280.0173 (7)0.0307 (9)0.0279 (8)0.0013 (6)0.0017 (6)0.0068 (6)
C270.0333 (8)0.0177 (7)0.0308 (8)0.0034 (6)0.0105 (7)0.0008 (6)
C330.0237 (7)0.0200 (7)0.0254 (7)0.0007 (6)0.0071 (6)0.0034 (6)
C250.0413 (10)0.0184 (8)0.0743 (14)0.0109 (7)0.0379 (10)0.0125 (9)
C390.0210 (7)0.0205 (7)0.0195 (7)0.0025 (6)0.0048 (5)0.0001 (6)
C260.0543 (12)0.0188 (8)0.0510 (11)0.0039 (8)0.0326 (10)0.0049 (7)
C370.0214 (7)0.0227 (7)0.0187 (7)0.0012 (6)0.0050 (5)0.0025 (5)
C240.0212 (8)0.0314 (9)0.0616 (12)0.0088 (7)0.0159 (8)0.0240 (9)
Geometric parameters (Å, º) top
S1—C291.5762 (15)C38—H21B0.98
S2—C391.5813 (15)C38—H21C0.98
O1—C11.3320 (17)C31—C321.5132 (19)
O1—C281.4531 (17)C31—H13A0.99
O3—C41.3302 (18)C31—H13B0.99
O3—C381.4583 (17)C35—C361.385 (2)
O2—C11.1998 (17)C35—H170.95
O4—C41.1955 (18)C32—C331.396 (2)
N1—C291.1818 (19)C32—C371.398 (2)
N1—C21.4449 (17)C21—H2A0.99
N2—C391.168 (2)C21—H2B0.99
N2—C31.4380 (19)C36—C371.392 (2)
C1—C21.5470 (19)C36—H180.95
C22—C231.391 (2)C28—H10A0.98
C22—C271.391 (2)C28—H10B0.98
C22—C211.5099 (19)C28—H10C0.98
C2—C211.5528 (19)C27—C261.391 (2)
C2—C31.5788 (19)C27—H80.95
C23—C241.391 (2)C33—H150.95
C23—H40.95C25—C261.378 (3)
C3—C41.546 (2)C25—C241.380 (3)
C3—C311.5520 (19)C25—H60.95
C34—C351.388 (2)C26—H70.95
C34—C331.394 (2)C37—H190.95
C34—H160.95C24—H50.95
C38—H21A0.98
C1—O1—C28117.23 (11)C36—C35—H17120.1
C4—O3—C38117.49 (12)C34—C35—H17120.1
C29—N1—C2145.87 (13)C33—C32—C37118.70 (13)
C39—N2—C3156.08 (15)C33—C32—C31121.06 (13)
O2—C1—O1125.58 (13)C37—C32—C31120.23 (13)
O2—C1—C2124.86 (13)O4—C4—O3126.41 (14)
O1—C1—C2109.54 (11)O4—C4—C3124.16 (14)
C23—C22—C27118.89 (14)O3—C4—C3109.32 (11)
C23—C22—C21121.17 (14)C22—C21—C2112.99 (11)
C27—C22—C21119.92 (13)C22—C21—H2A109
N1—C2—C1107.94 (11)C2—C21—H2A109
N1—C2—C21110.55 (11)C22—C21—H2B109
C1—C2—C21109.01 (11)C2—C21—H2B109
N1—C2—C3105.34 (11)H2A—C21—H2B107.8
C1—C2—C3109.42 (11)C35—C36—C37120.26 (15)
C21—C2—C3114.38 (11)C35—C36—H18119.9
C24—C23—C22120.31 (17)C37—C36—H18119.9
C24—C23—H4119.8O1—C28—H10A109.5
C22—C23—H4119.8O1—C28—H10B109.5
N2—C3—C4107.98 (12)H10A—C28—H10B109.5
N2—C3—C31109.72 (12)O1—C28—H10C109.5
C4—C3—C31107.84 (11)H10A—C28—H10C109.5
N2—C3—C2105.42 (11)H10B—C28—H10C109.5
C4—C3—C2110.55 (11)C26—C27—C22120.68 (17)
C31—C3—C2115.12 (11)C26—C27—H8119.7
N1—C29—S1172.86 (14)C22—C27—H8119.7
C35—C34—C33120.13 (15)C34—C33—C32120.57 (15)
C35—C34—H16119.9C34—C33—H15119.7
C33—C34—H16119.9C32—C33—H15119.7
O3—C38—H21A109.5C26—C25—C24120.37 (16)
O3—C38—H21B109.5C26—C25—H6119.8
H21A—C38—H21B109.5C24—C25—H6119.8
O3—C38—H21C109.5N2—C39—S2174.30 (14)
H21A—C38—H21C109.5C25—C26—C27119.70 (18)
H21B—C38—H21C109.5C25—C26—H7120.2
C32—C31—C3111.59 (11)C27—C26—H7120.1
C32—C31—H13A109.3C36—C37—C32120.54 (14)
C3—C31—H13A109.3C36—C37—H19119.7
C32—C31—H13B109.3C32—C37—H19119.7
C3—C31—H13B109.3C25—C24—C23120.04 (17)
H13A—C31—H13B108C25—C24—H5120
C36—C35—C34119.79 (14)C23—C24—H5120
C28—O1—C1—O20.6 (2)C3—C31—C32—C3385.99 (16)
C28—O1—C1—C2177.90 (12)C3—C31—C32—C3793.19 (15)
C29—N1—C2—C130.4 (3)C38—O3—C4—O41.7 (2)
C29—N1—C2—C2188.8 (3)C38—O3—C4—C3174.64 (12)
C29—N1—C2—C3147.2 (2)N2—C3—C4—O49.50 (19)
O2—C1—C2—N10.79 (19)C31—C3—C4—O4109.00 (16)
O1—C1—C2—N1179.25 (11)C2—C3—C4—O4124.35 (15)
O2—C1—C2—C21119.32 (15)N2—C3—C4—O3174.10 (11)
O1—C1—C2—C2159.14 (14)C31—C3—C4—O367.40 (14)
O2—C1—C2—C3114.92 (15)C2—C3—C4—O359.25 (14)
O1—C1—C2—C366.61 (14)C23—C22—C21—C292.30 (16)
C27—C22—C23—C240.7 (2)C27—C22—C21—C289.27 (16)
C21—C22—C23—C24177.70 (13)N1—C2—C21—C2252.14 (15)
C39—N2—C3—C443.4 (4)C1—C2—C21—C2266.35 (15)
C39—N2—C3—C3173.9 (4)C3—C2—C21—C22170.82 (11)
C39—N2—C3—C2161.5 (3)C34—C35—C36—C371.1 (2)
N1—C2—C3—N273.95 (13)C23—C22—C27—C260.9 (2)
C1—C2—C3—N241.85 (14)C21—C22—C27—C26177.57 (14)
C21—C2—C3—N2164.46 (12)C35—C34—C33—C320.7 (2)
N1—C2—C3—C442.50 (14)C37—C32—C33—C341.8 (2)
C1—C2—C3—C4158.31 (11)C31—C32—C33—C34177.40 (14)
C21—C2—C3—C479.09 (14)C3—N2—C39—S2167.5 (12)
N1—C2—C3—C31165.00 (12)C24—C25—C26—C271.1 (3)
C1—C2—C3—C3179.20 (14)C22—C27—C26—C250.0 (2)
C21—C2—C3—C3143.41 (16)C35—C36—C37—C320.1 (2)
C2—N1—C29—S118E1 (10)C33—C32—C37—C361.5 (2)
N2—C3—C31—C3268.64 (15)C31—C32—C37—C36177.71 (13)
C4—C3—C31—C3248.75 (15)C26—C25—C24—C231.3 (3)
C2—C3—C31—C32172.68 (12)C22—C23—C24—C250.3 (2)
C33—C34—C35—C360.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
C38—H21C···Cgi0.982.613.461 (2)145
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H20N2O4S2
Mr440.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.1658 (1), 19.3999 (4), 12.2762 (2)
β (°) 97.891 (1)
V3)2162.23 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.28 × 0.18 × 0.18
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.926, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
9175, 4868, 4124
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.05
No. of reflections4868
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.52

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
C38—H21C···Cgi0.982.613.461 (2)145.2
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank Professor Barbara J. Oleksyn for constructive comments and suggestions.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011a). Pure Appl. Chem. 83, 1619–1636.  Web of Science CrossRef CAS Google Scholar
First citationArunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011b). Pure Appl. Chem. 83, 1637–1641.  Web of Science CrossRef CAS Google Scholar
First citationChemaxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationCież, D. (2007). Tetrahedron, 63, 4510–4515.  Google Scholar
First citationCież, D., Kalinowska-Tłuścik, J., Peyrat, S., Pougoue Touko, E., Trzewik, B. & Zwoliński, K. (2008). Synthesis, 40, 3261–3266.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationMorel, G. & Marchand, E. (2001). Heteroat. Chem. 12, 617–624.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds