organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-[7-eth­­oxy-6-(4-meth­­oxy­benzene­sulfonamido)-2H-indazol-2-yl]propano­ate

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, bDepartment of Pharmaceutical Chemistry, Institute of Pharmacy, University of Hamburg, Hamburg, Germany, and cLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: najat_abbassi@hotmail.com

(Received 15 February 2012; accepted 19 February 2012; online 3 March 2012)

In the title compound, C21H25N3O6S, the dihedral angle between the meth­oxy­benzene and indazole rings is 74.96 (5)°. The crystal packing is stabilized by an N—H⋯O hydrogen bond into a two-dimensional network. In addition, C—H⋯π inter­actions and a ππ contact, with a centroid–centroid distance of 3.5333 (6) Å, are observed. The crystal packing is stabilized by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Abbassi et al. (2011a[Abbassi, N., Rakib, E. M. & Zouihri, H. (2011a). Acta Cryst. E67, o1354.],b[Abbassi, N., Rakib, E. M. & Zouihri, H. (2011b). Acta Cryst. E67, o1561.]). For the biological activity of sulfonamides, see: Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25N3O6S

  • Mr = 447.50

  • Triclinic, [P \overline 1]

  • a = 9.1163 (4) Å

  • b = 10.9161 (5) Å

  • c = 11.2959 (5) Å

  • α = 77.259 (2)°

  • β = 77.364 (2)°

  • γ = 88.562 (2)°

  • V = 1069.55 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.32 × 0.31 × 0.19 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.964

  • 21582 measured reflections

  • 4187 independent reflections

  • 3834 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.06

  • 4187 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyrazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 2.12 2.9779 (15) 164
C3—H3⋯O5ii 0.93 2.41 3.3277 (17) 168
C21—H21BCg1iii 0.93 2.98 3.6660 (18) 130
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y, z-1; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Various sulfonamides are widely used as anti-hypertensive (Soledade et al., 2006; Lee & Lee, 2002). In former papers, we reported the crystal structures of N-(7-ethoxy-1H-indazol-4-yl)-4-methylbenzenesulfonamide (Abbassi et al., 2011a) and N-[7-ethoxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4-methylbenzenesulfonamide (Abbassi et al., 2011b). In this communication, the crystal structure of N-[7-ethoxy-2-(prop-2-en-1-yl)-2H-indazol-6-yl]-4-methylbenzenesulfonamide is reported.

In the title compound, C21H25N3O6S, the dihedral angle between the methoxyphenyl and the indazole rings is: 74.96 (5)° (Fig. 1).

Two neighbouring molecules generate a hydrogen-bonded dimer about a center of inversion through a pair of intermolecular N—H···O interactions (Table 1 and Fig. 2).

The crystal packing is stabilized by intermolecular N—H···O and C—H···O H-bonds and C—H···π interactions (Fig. 3). Also, ππ contacts are observed with centroid-centroid distance of 3.5333 (6) Å.

Related literature top

For related structures, see: Abbassi et al. (2011a,b). For the biological activity of sulfonamides, see: Soledade et al. (2006); Lee & Lee (2002).

Experimental top

A mixture of ethyl 3-(6-nitro-2H-indazol-2-yl)propanoate (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 mL of absolute ethanol was heated at 60 °C for 3 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 1:9).

Refinement top

The H atoms bound to C were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.93Å for CH groups with Uiso(H) = 1.2 Ueq(C,N), and 0.97 Å for CH3 groups, and the coordinates for the H atom bonded to N were taken from a difference map, and the atom was refined using a riding model.

Structure description top

Various sulfonamides are widely used as anti-hypertensive (Soledade et al., 2006; Lee & Lee, 2002). In former papers, we reported the crystal structures of N-(7-ethoxy-1H-indazol-4-yl)-4-methylbenzenesulfonamide (Abbassi et al., 2011a) and N-[7-ethoxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4-methylbenzenesulfonamide (Abbassi et al., 2011b). In this communication, the crystal structure of N-[7-ethoxy-2-(prop-2-en-1-yl)-2H-indazol-6-yl]-4-methylbenzenesulfonamide is reported.

In the title compound, C21H25N3O6S, the dihedral angle between the methoxyphenyl and the indazole rings is: 74.96 (5)° (Fig. 1).

Two neighbouring molecules generate a hydrogen-bonded dimer about a center of inversion through a pair of intermolecular N—H···O interactions (Table 1 and Fig. 2).

The crystal packing is stabilized by intermolecular N—H···O and C—H···O H-bonds and C—H···π interactions (Fig. 3). Also, ππ contacts are observed with centroid-centroid distance of 3.5333 (6) Å.

For related structures, see: Abbassi et al. (2011a,b). For the biological activity of sulfonamides, see: Soledade et al. (2006); Lee & Lee (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the N—H···O bonded dimers of the title compound.
[Figure 3] Fig. 3. Partial packing view showing N—H···O and C—H···O hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity.
Ethyl 3-[7-ethoxy-6-(4-methoxybenzenesulfonamido)-2H-indazol-2-yl]propanoate top
Crystal data top
C21H25N3O6SZ = 2
Mr = 447.50F(000) = 472
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1163 (4) ÅCell parameters from 256 reflections
b = 10.9161 (5) Åθ = 1.7–26.3°
c = 11.2959 (5) ŵ = 0.20 mm1
α = 77.259 (2)°T = 296 K
β = 77.364 (2)°Prism, colourless
γ = 88.562 (2)°0.32 × 0.31 × 0.19 mm
V = 1069.55 (8) Å3
Data collection top
Bruker APEXII CCD detector
diffractometer
4187 independent reflections
Radiation source: fine-focus sealed tube3834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1110
Tmin = 0.940, Tmax = 0.964k = 1213
21582 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.3561P]
where P = (Fo2 + 2Fc2)/3
4187 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C21H25N3O6Sγ = 88.562 (2)°
Mr = 447.50V = 1069.55 (8) Å3
Triclinic, P1Z = 2
a = 9.1163 (4) ÅMo Kα radiation
b = 10.9161 (5) ŵ = 0.20 mm1
c = 11.2959 (5) ÅT = 296 K
α = 77.259 (2)°0.32 × 0.31 × 0.19 mm
β = 77.364 (2)°
Data collection top
Bruker APEXII CCD detector
diffractometer
4187 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3834 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.964Rint = 0.025
21582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
4187 reflectionsΔρmin = 0.41 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34987 (3)0.85372 (3)0.15120 (3)0.02632 (10)
O10.72338 (10)1.00455 (8)0.23308 (8)0.0272 (2)
O20.35314 (11)0.92233 (9)0.02682 (9)0.0362 (2)
O30.20739 (10)0.82306 (10)0.23512 (9)0.0349 (2)
O40.67582 (14)0.38348 (10)0.15066 (10)0.0478 (3)
O50.90152 (13)0.62024 (10)0.77999 (10)0.0498 (3)
O61.08922 (11)0.60258 (9)0.62130 (9)0.0351 (2)
N10.44792 (12)0.94084 (10)0.20865 (10)0.0253 (2)
H1N0.52060.97900.14740.030*
N20.79639 (11)0.92171 (9)0.48444 (9)0.0228 (2)
N30.76942 (11)0.87006 (9)0.60807 (9)0.0221 (2)
C10.79320 (19)0.36718 (17)0.04930 (16)0.0471 (4)
H1A0.75710.38690.02630.071*
H1B0.82470.28160.06380.071*
H1C0.87680.42210.04220.071*
C20.60616 (16)0.49568 (13)0.14264 (13)0.0332 (3)
C30.63898 (15)0.59621 (13)0.04064 (12)0.0325 (3)
H30.71370.59030.02850.039*
C40.55877 (15)0.70533 (13)0.04335 (12)0.0301 (3)
H40.58030.77350.02410.036*
C50.44676 (14)0.71363 (12)0.14587 (11)0.0253 (3)
C60.41431 (16)0.61296 (12)0.24768 (12)0.0325 (3)
H60.33900.61870.31640.039*
C70.49430 (18)0.50480 (13)0.24608 (13)0.0387 (3)
H70.47370.43740.31430.046*
C80.48957 (13)0.89671 (11)0.32512 (11)0.0220 (2)
C90.63068 (13)0.92982 (10)0.33424 (11)0.0214 (2)
C100.66831 (13)0.89481 (10)0.45259 (11)0.0206 (2)
C110.56294 (13)0.82540 (10)0.55620 (11)0.0213 (2)
C120.42007 (13)0.79075 (11)0.54333 (11)0.0241 (2)
H120.35170.74390.61060.029*
C130.38492 (13)0.82759 (11)0.42996 (11)0.0248 (3)
H130.29030.80720.42070.030*
C140.86846 (14)0.95273 (14)0.19168 (12)0.0322 (3)
H14A0.91090.91810.26330.039*
H14B0.93581.01950.13800.039*
C150.85789 (17)0.85207 (15)0.12261 (14)0.0389 (3)
H15A0.78940.78670.17470.058*
H15B0.95540.81780.10010.058*
H15C0.82200.88720.04880.058*
C160.63495 (13)0.81239 (11)0.65462 (11)0.0228 (2)
H160.59700.77150.73680.027*
C170.88488 (14)0.88388 (12)0.67592 (12)0.0262 (3)
H17A0.84350.85730.76450.031*
H17B0.91530.97170.65850.031*
C181.02110 (14)0.80682 (12)0.63999 (12)0.0283 (3)
H18A1.05130.82320.55000.034*
H18B1.10350.83370.67070.034*
C190.99400 (14)0.66782 (12)0.68980 (12)0.0283 (3)
C201.0816 (2)0.46675 (14)0.66528 (16)0.0480 (4)
H20A0.98140.43460.67100.058*
H20B1.10510.44360.74690.058*
C211.1945 (2)0.41394 (17)0.57294 (18)0.0606 (5)
H21A1.17290.44110.49190.091*
H21B1.18940.32390.59650.091*
H21C1.29360.44310.57130.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02522 (17)0.02943 (17)0.02551 (17)0.00073 (12)0.01169 (12)0.00246 (12)
O10.0282 (5)0.0253 (4)0.0243 (4)0.0030 (4)0.0030 (4)0.0002 (3)
O20.0405 (5)0.0384 (5)0.0310 (5)0.0014 (4)0.0197 (4)0.0021 (4)
O30.0230 (5)0.0450 (6)0.0374 (5)0.0014 (4)0.0107 (4)0.0064 (4)
O40.0668 (8)0.0344 (6)0.0392 (6)0.0135 (5)0.0037 (5)0.0113 (5)
O50.0519 (7)0.0350 (6)0.0448 (6)0.0037 (5)0.0135 (5)0.0043 (5)
O60.0349 (5)0.0255 (5)0.0402 (5)0.0050 (4)0.0016 (4)0.0043 (4)
N10.0270 (5)0.0244 (5)0.0248 (5)0.0009 (4)0.0089 (4)0.0030 (4)
N20.0229 (5)0.0218 (5)0.0236 (5)0.0011 (4)0.0054 (4)0.0043 (4)
N30.0225 (5)0.0223 (5)0.0226 (5)0.0034 (4)0.0066 (4)0.0060 (4)
C10.0470 (9)0.0505 (9)0.0501 (9)0.0125 (7)0.0107 (7)0.0253 (8)
C20.0419 (8)0.0284 (7)0.0318 (7)0.0012 (6)0.0092 (6)0.0105 (5)
C30.0330 (7)0.0383 (7)0.0253 (6)0.0042 (6)0.0017 (5)0.0095 (5)
C40.0336 (7)0.0319 (7)0.0227 (6)0.0049 (5)0.0053 (5)0.0021 (5)
C50.0278 (6)0.0260 (6)0.0237 (6)0.0035 (5)0.0088 (5)0.0053 (5)
C60.0405 (7)0.0282 (6)0.0250 (6)0.0040 (5)0.0005 (5)0.0052 (5)
C70.0571 (9)0.0256 (7)0.0275 (7)0.0014 (6)0.0006 (6)0.0021 (5)
C80.0248 (6)0.0201 (5)0.0228 (6)0.0059 (4)0.0072 (5)0.0066 (4)
C90.0237 (6)0.0172 (5)0.0225 (6)0.0022 (4)0.0033 (5)0.0043 (4)
C100.0207 (5)0.0169 (5)0.0245 (6)0.0030 (4)0.0045 (4)0.0059 (4)
C110.0217 (6)0.0188 (5)0.0232 (6)0.0035 (4)0.0030 (4)0.0060 (4)
C120.0200 (6)0.0261 (6)0.0245 (6)0.0002 (5)0.0009 (4)0.0059 (5)
C130.0191 (6)0.0280 (6)0.0283 (6)0.0010 (5)0.0045 (5)0.0091 (5)
C140.0234 (6)0.0442 (8)0.0260 (6)0.0052 (5)0.0008 (5)0.0051 (6)
C150.0371 (8)0.0470 (8)0.0340 (7)0.0094 (6)0.0083 (6)0.0120 (6)
C160.0232 (6)0.0226 (6)0.0217 (6)0.0023 (4)0.0029 (4)0.0052 (4)
C170.0253 (6)0.0272 (6)0.0295 (6)0.0028 (5)0.0109 (5)0.0087 (5)
C180.0218 (6)0.0274 (6)0.0342 (7)0.0008 (5)0.0062 (5)0.0037 (5)
C190.0244 (6)0.0292 (6)0.0302 (7)0.0038 (5)0.0073 (5)0.0030 (5)
C200.0618 (10)0.0251 (7)0.0514 (9)0.0095 (7)0.0073 (8)0.0026 (6)
C210.0853 (14)0.0385 (9)0.0568 (11)0.0231 (9)0.0111 (10)0.0145 (8)
Geometric parameters (Å, º) top
S1—O31.4286 (10)C7—H70.9300
S1—O21.4333 (9)C8—C91.3762 (17)
S1—N11.6411 (10)C8—C131.4247 (17)
S1—C51.7527 (13)C9—C101.4212 (16)
O1—C91.3734 (14)C10—C111.4213 (16)
O1—C141.4479 (16)C11—C161.3900 (17)
O4—C21.3597 (17)C11—C121.4115 (17)
O4—C11.4254 (19)C12—C131.3602 (17)
O5—C191.1964 (16)C12—H120.9300
O6—C191.3332 (16)C13—H130.9300
O6—C201.4544 (17)C14—C151.497 (2)
N1—C81.4271 (15)C14—H14A0.9700
N1—H1N0.8817C14—H14B0.9700
N2—C101.3515 (15)C15—H15A0.9600
N2—N31.3557 (14)C15—H15B0.9600
N3—C161.3365 (15)C15—H15C0.9600
N3—C171.4595 (15)C16—H160.9300
C1—H1A0.9600C17—C181.5139 (17)
C1—H1B0.9600C17—H17A0.9700
C1—H1C0.9600C17—H17B0.9700
C2—C31.3889 (19)C18—C191.5038 (18)
C2—C71.393 (2)C18—H18A0.9700
C3—C41.385 (2)C18—H18B0.9700
C3—H30.9300C20—C211.498 (2)
C4—C51.3843 (18)C20—H20A0.9700
C4—H40.9300C20—H20B0.9700
C5—C61.3884 (18)C21—H21A0.9600
C6—C71.373 (2)C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
O3—S1—O2118.61 (6)C16—C11—C10104.09 (10)
O3—S1—N1108.67 (6)C12—C11—C10120.73 (11)
O2—S1—N1105.11 (6)C13—C12—C11118.30 (11)
O3—S1—C5107.80 (6)C13—C12—H12120.8
O2—S1—C5109.22 (6)C11—C12—H12120.8
N1—S1—C5106.87 (6)C12—C13—C8121.61 (11)
C9—O1—C14115.21 (9)C12—C13—H13119.2
C2—O4—C1118.54 (12)C8—C13—H13119.2
C19—O6—C20116.37 (11)O1—C14—C15112.18 (11)
C8—N1—S1122.30 (8)O1—C14—H14A109.2
C8—N1—H1N115.2C15—C14—H14A109.2
S1—N1—H1N107.6O1—C14—H14B109.2
C10—N2—N3103.08 (9)C15—C14—H14B109.2
C16—N3—N2114.45 (10)H14A—C14—H14B107.9
C16—N3—C17127.11 (10)C14—C15—H15A109.5
N2—N3—C17118.43 (10)C14—C15—H15B109.5
O4—C1—H1A109.5H15A—C15—H15B109.5
O4—C1—H1B109.5C14—C15—H15C109.5
H1A—C1—H1B109.5H15A—C15—H15C109.5
O4—C1—H1C109.5H15B—C15—H15C109.5
H1A—C1—H1C109.5N3—C16—C11106.58 (10)
H1B—C1—H1C109.5N3—C16—H16126.7
O4—C2—C3124.55 (13)C11—C16—H16126.7
O4—C2—C7115.06 (12)N3—C17—C18111.52 (10)
C3—C2—C7120.38 (13)N3—C17—H17A109.3
C4—C3—C2119.02 (12)C18—C17—H17A109.3
C4—C3—H3120.5N3—C17—H17B109.3
C2—C3—H3120.5C18—C17—H17B109.3
C5—C4—C3120.42 (12)H17A—C17—H17B108.0
C5—C4—H4119.8C19—C18—C17113.44 (10)
C3—C4—H4119.8C19—C18—H18A108.9
C4—C5—C6120.39 (12)C17—C18—H18A108.9
C4—C5—S1120.29 (10)C19—C18—H18B108.9
C6—C5—S1119.27 (10)C17—C18—H18B108.9
C7—C6—C5119.51 (12)H18A—C18—H18B107.7
C7—C6—H6120.2O5—C19—O6123.56 (12)
C5—C6—H6120.2O5—C19—C18125.34 (12)
C6—C7—C2120.27 (13)O6—C19—C18111.09 (11)
C6—C7—H7119.9O6—C20—C21106.89 (13)
C2—C7—H7119.9O6—C20—H20A110.3
C9—C8—C13121.41 (11)C21—C20—H20A110.3
C9—C8—N1117.62 (11)O6—C20—H20B110.3
C13—C8—N1120.85 (11)C21—C20—H20B110.3
O1—C9—C8119.24 (10)H20A—C20—H20B108.6
O1—C9—C10122.63 (10)C20—C21—H21A109.5
C8—C9—C10117.85 (10)C20—C21—H21B109.5
N2—C10—C9128.11 (11)H21A—C21—H21B109.5
N2—C10—C11111.80 (10)C20—C21—H21C109.5
C9—C10—C11120.07 (11)H21A—C21—H21C109.5
C16—C11—C12135.12 (11)H21B—C21—H21C109.5
O3—S1—N1—C861.31 (11)N1—C8—C9—C10175.02 (10)
O2—S1—N1—C8170.75 (9)N3—N2—C10—C9177.71 (11)
C5—S1—N1—C854.76 (11)N3—N2—C10—C110.64 (12)
C10—N2—N3—C160.57 (13)O1—C9—C10—N23.11 (18)
C10—N2—N3—C17178.49 (10)C8—C9—C10—N2176.86 (11)
C1—O4—C2—C31.4 (2)O1—C9—C10—C11175.13 (10)
C1—O4—C2—C7179.11 (13)C8—C9—C10—C111.37 (16)
O4—C2—C3—C4179.34 (13)N2—C10—C11—C160.50 (13)
C7—C2—C3—C40.1 (2)C9—C10—C11—C16178.00 (10)
C2—C3—C4—C50.5 (2)N2—C10—C11—C12178.30 (10)
C3—C4—C5—C60.5 (2)C9—C10—C11—C120.20 (16)
C3—C4—C5—S1177.81 (10)C16—C11—C12—C13175.71 (13)
O3—S1—C5—C4156.16 (10)C10—C11—C12—C131.27 (17)
O2—S1—C5—C426.04 (12)C11—C12—C13—C81.56 (18)
N1—S1—C5—C487.18 (11)C9—C8—C13—C120.36 (18)
O3—S1—C5—C626.52 (12)N1—C8—C13—C12176.38 (11)
O2—S1—C5—C6156.64 (10)C9—O1—C14—C1575.69 (14)
N1—S1—C5—C690.14 (11)N2—N3—C16—C110.27 (13)
C4—C5—C6—C70.0 (2)C17—N3—C16—C11178.69 (10)
S1—C5—C6—C7177.28 (11)C12—C11—C16—N3177.46 (13)
C5—C6—C7—C20.6 (2)C10—C11—C16—N30.14 (12)
O4—C2—C7—C6178.83 (13)C16—N3—C17—C18111.14 (13)
C3—C2—C7—C60.6 (2)N2—N3—C17—C1869.93 (13)
S1—N1—C8—C9141.07 (10)N3—C17—C18—C1972.33 (14)
S1—N1—C8—C1342.76 (15)C20—O6—C19—O53.1 (2)
C14—O1—C9—C8123.84 (12)C20—O6—C19—C18175.71 (12)
C14—O1—C9—C1062.49 (14)C17—C18—C19—O524.91 (19)
C13—C8—C9—O1175.09 (10)C17—C18—C19—O6156.26 (11)
N1—C8—C9—O11.05 (16)C19—O6—C20—C21178.54 (14)
C13—C8—C9—C101.12 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrazole ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.882.122.9779 (15)164
C3—H3···O5ii0.932.413.3277 (17)168
C21—H21B···Cg1iii0.932.983.6660 (18)130
Symmetry codes: (i) x+1, y+2, z; (ii) x, y, z1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H25N3O6S
Mr447.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.1163 (4), 10.9161 (5), 11.2959 (5)
α, β, γ (°)77.259 (2), 77.364 (2), 88.562 (2)
V3)1069.55 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.32 × 0.31 × 0.19
Data collection
DiffractometerBruker APEXII CCD detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.940, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
21582, 4187, 3834
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.06
No. of reflections4187
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrazole ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88002.12002.9779 (15)164.00
C3—H3···O5ii0.93002.41003.3277 (17)168.00
C21—H21B···Cg1iii0.932.983.6660 (18)130
Symmetry codes: (i) x+1, y+2, z; (ii) x, y, z1; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Rakib, E. M. & Zouihri, H. (2011a). Acta Cryst. E67, o1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbbassi, N., Rakib, E. M. & Zouihri, H. (2011b). Acta Cryst. E67, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds