metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Ferrocen-1-ylmeth­yl)-3-methyl­imidazol-3-ium hexa­fluorido­phosphate

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: owaga@ukzn.ac.za

(Received 20 February 2012; accepted 27 February 2012; online 3 March 2012)

The crystal structure of the title compound, [Fe(C5H5)(C10H12N2)]PF6, consists of a ferrocene-1-methyl-(3-methyl­imidazolium) cation and a hexa­fluorido­phosphate anion. The ferrocenyl rings are skewed by 6.7 (4)° from the ideal eclipsed conformation. The inter­planar angle between the plane of the substituted cyclo­penta­dienyl ring and that of the imidazole ring is 89.9 (4)°. The crystal packing is stabilized by C—H⋯F hydrogen bonds.

Related literature

For background to the chemistry of ferrocenes and their potential applications, see: Štěpnička (2008[Štěpnička, P. (2008). In Ferrocenes: Ligands, Materials and Biomolecules. Chichester: John Wiley and Sons.]), Kealy & Pauson (1951[Kealy, T. J. & Pauson, P. L. (1951). Nature (London), 168, 1039-1040.]); Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). In Ferrocenes. Weinheim: VCH.]). For related work based on ferrocenylimidazolium salts, see: Nyamori et al. (2010a[Nyamori, V. O., Bala, M. D. & Levendis, D. C. (2010a). Acta Cryst. E66, m412.]); Thomas et al. (2000[Thomas, J.-L., Howarth, J., Hanlon, K. & McGuirk, D. (2000). Tetrahedron Lett. 41, 413-416.], 2002[Thomas, J.-L., Howarth, J. & Kennedy, A. M. (2002). Molecules, 7, 861-866.]). For the synthesis, see: Nyamori et al. (2010b[Nyamori, V. O., Gumede, M. & Bala, M. D. (2010b). Organomet. Chem. 695, 1126-1132.]). For related structures, see Nyamori & Bala (2008[Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1376.]); Nyamori et al. (2010a[Nyamori, V. O., Bala, M. D. & Levendis, D. C. (2010a). Acta Cryst. E66, m412.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C10H12N2)]PF6

  • Mr = 426.13

  • Orthorhombic, P b c a

  • a = 12.4226 (2) Å

  • b = 13.4414 (2) Å

  • c = 19.2137 (3) Å

  • V = 3208.25 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 100 K

  • 0.27 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.755, Tmax = 0.888

  • 44208 measured reflections

  • 4041 independent reflections

  • 3747 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.04

  • 4041 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯F1i 0.95 2.54 3.3249 (15) 140
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The discovery of ferrocene heralded a new era in the realm of organometallic chemistry (Kealy & Pauson, 1951). The ferrocene group has unique electronic properties, such as ability to stabilize carbocations. The titled compound (I) consists of a ferrocenyl moiety linked to an imidazole group via a methylene group. The electronic system is very well conjugated and the compound exhibits resonance structures if in solution. The ferrocenyl moiety represents a quite bulky group with unique spatial requirements due to its sandwich shape, and electronically, the powerful donor capacity of ferrocene is important in the stabilization of highly reactive metal centres and other electroactive species. Some of the important properties that ferrocenyl containing imidazolium salts exhibit that makes their study significant include electronic stabilization of adjacent electron-deficient centres due to participation of the iron atom in the dispersal of the positive charge; the unique steric bulk, chemical stability and reversibility of the ferrocene/ferrocenium redox couple.

The ferrocenyl rings exhibit an eclipsed conformation with a significant staggering angle of 6.7° which is smaller than that of Nyamori & Bala (2008) however, Nyamori et al., (2010a) have also synthesized ferrocenyl moiety with a significantly small staggering angle. The interplanar angle between the plane of the substituted Cp ring and that of the imidazole ring is orthogonal (89.9 (4)°) (Fig 1). In the crystal, a weak C–H···F hydrogen bond (Table 1) connects the cations and the anions.

Related literature top

For background to the chemistry of ferrocenes and their potential applications, see: Štěpnička (2008), Kealy & Pauson (1951); Togni & Hayashi (1995). For related work based on ferrocenylimidazolium salts, see: Nyamori et al. (2010a); Thomas et al. (2000, 2002). For the synthesis, see: Nyamori et al. (2010b). For related structures, see Nyamori & Bala (2008); Nyamori et al. (2010a).

Experimental top

In a two-neck round-bottom flask was added sodium hexafluoridophosphate (0.13 g, 0.76 mmol) and 1-(ferrocenylmethyl)-3-methylimidazolium iodide (0.30 g, 0.74 mmol) in acetone (20 ml). The mixture was stirred under a nitrogen atmosphere for 24 h at room temperature. The reaction mixture was filtered through a plug of celite and the filtrate was then concentrated in vacuo to yield 0.23 g, 72% of an orange crystals identified as 1-(Ferrocenylmethyl)-3-methylimidazole hexafluoridophosphate; mp 66–68 °C; IR (ATR cm_1) 3429, 1624, 1567, 1331, 1150, 812, 619,554, 500, 480; 1H NMR (CDCl3) 9.05 (1H, s, NCH), 7.11 (1H, s, NCH), 7.0868 (1H, s, NCH), 5.22 (2H, s, CH2), 4.39 (2H, t, J 1.8, C5H4), 4.23 (7H, t, J 1.8, C5H4), 4.24 (5H, s, C5H5), 3.94 (3H, s, CH3); 13 C NMR (CDCl3) 136.06, 122.79, 121.23, 78.02, 77.23, 69.97, 69.59, 69.19, 50.18; m/z 197 (2.3%), 198.6 (100%), 199.3 (13.1%), 280.6 (M±PF6, 4.5%); Anal. Calc. for C15H17N2Fe+; [M+]-PF6, 281.07411.

Structure description top

The discovery of ferrocene heralded a new era in the realm of organometallic chemistry (Kealy & Pauson, 1951). The ferrocene group has unique electronic properties, such as ability to stabilize carbocations. The titled compound (I) consists of a ferrocenyl moiety linked to an imidazole group via a methylene group. The electronic system is very well conjugated and the compound exhibits resonance structures if in solution. The ferrocenyl moiety represents a quite bulky group with unique spatial requirements due to its sandwich shape, and electronically, the powerful donor capacity of ferrocene is important in the stabilization of highly reactive metal centres and other electroactive species. Some of the important properties that ferrocenyl containing imidazolium salts exhibit that makes their study significant include electronic stabilization of adjacent electron-deficient centres due to participation of the iron atom in the dispersal of the positive charge; the unique steric bulk, chemical stability and reversibility of the ferrocene/ferrocenium redox couple.

The ferrocenyl rings exhibit an eclipsed conformation with a significant staggering angle of 6.7° which is smaller than that of Nyamori & Bala (2008) however, Nyamori et al., (2010a) have also synthesized ferrocenyl moiety with a significantly small staggering angle. The interplanar angle between the plane of the substituted Cp ring and that of the imidazole ring is orthogonal (89.9 (4)°) (Fig 1). In the crystal, a weak C–H···F hydrogen bond (Table 1) connects the cations and the anions.

For background to the chemistry of ferrocenes and their potential applications, see: Štěpnička (2008), Kealy & Pauson (1951); Togni & Hayashi (1995). For related work based on ferrocenylimidazolium salts, see: Nyamori et al. (2010a); Thomas et al. (2000, 2002). For the synthesis, see: Nyamori et al. (2010b). For related structures, see Nyamori & Bala (2008); Nyamori et al. (2010a).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
1-(Ferrocen-1-ylmethyl)-3-methylimidazol-3-ium hexafluoridophosphate top
Crystal data top
[Fe(C5H5)(C10H12N2)]PF6F(000) = 1728
Mr = 426.13Dx = 1.764 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 47745 reflections
a = 12.4226 (2) Åθ = 2.1–28.6°
b = 13.4414 (2) ŵ = 1.11 mm1
c = 19.2137 (3) ÅT = 100 K
V = 3208.25 (9) Å3Block, yellow
Z = 80.27 × 0.17 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 28.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.755, Tmax = 0.888k = 1817
44208 measured reflectionsl = 2525
4041 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0307P)2 + 2.2775P]
where P = (Fo2 + 2Fc2)/3
4041 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Fe(C5H5)(C10H12N2)]PF6V = 3208.25 (9) Å3
Mr = 426.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.4226 (2) ŵ = 1.11 mm1
b = 13.4414 (2) ÅT = 100 K
c = 19.2137 (3) Å0.27 × 0.17 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3747 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.888Rint = 0.029
44208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
4041 reflectionsΔρmin = 0.36 e Å3
227 parameters
Special details top

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.98 Å for Me H atoms, 0.99 Å for Methylene H atoms, 0.99 for methine H atoms and 0.95 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation. The N—H H-atom was located in a difference map and freely refined with N—H = 0.88 Å (Uiso(H) = 1.2Ueq(N).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of P1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 62 PLAT960_ALERT_3_G Number of Intensities with I. LT. - 2*sig(I) ··· 4 Noted:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70208 (10)0.06956 (9)0.08674 (7)0.0187 (2)
H10.69180.06770.13830.022*
C20.63898 (10)0.01756 (9)0.03683 (7)0.0190 (2)
H20.57720.02780.04710.023*
C30.67965 (11)0.04158 (10)0.03054 (7)0.0216 (3)
H30.65150.01580.07580.026*
C40.76762 (11)0.10892 (10)0.02199 (7)0.0219 (3)
H40.81180.13870.06020.026*
C50.78092 (10)0.12621 (10)0.05054 (7)0.0203 (3)
H50.83590.17080.07230.024*
C60.50453 (10)0.22435 (9)0.03703 (7)0.0163 (2)
H60.47070.19330.0790.02*
C70.47250 (10)0.20950 (9)0.03352 (7)0.0183 (2)
H70.41270.16540.04970.022*
C80.54191 (11)0.26670 (9)0.07702 (7)0.0189 (2)
H80.53920.26970.1290.023*
C90.61633 (11)0.31834 (9)0.03367 (7)0.0168 (2)
H90.67480.3640.04980.02*
C100.59352 (10)0.29181 (9)0.03694 (6)0.0144 (2)
C110.65066 (11)0.32967 (9)0.10021 (7)0.0178 (2)
H11A0.71490.36810.08590.021*
H11B0.6750.27280.12890.021*
C120.55414 (10)0.37912 (9)0.20841 (6)0.0165 (2)
H120.58250.3280.23720.02*
C130.52134 (10)0.47496 (9)0.11803 (7)0.0174 (2)
H130.52340.5020.07240.021*
C140.46165 (10)0.50875 (9)0.17209 (7)0.0174 (2)
H140.41390.56390.17160.021*
C150.43846 (11)0.45908 (10)0.29794 (7)0.0213 (3)
H15A0.46630.52020.31910.032*
H15B0.35980.46280.2950.032*
H15C0.45910.40180.32650.032*
N10.57853 (8)0.39380 (8)0.14182 (5)0.0149 (2)
N20.48347 (9)0.44783 (8)0.22797 (5)0.0152 (2)
F10.68267 (7)0.32029 (6)0.25538 (6)0.0312 (2)
F20.83765 (8)0.29514 (8)0.31564 (5)0.0337 (2)
F30.78054 (9)0.34815 (8)0.15824 (5)0.0390 (2)
F40.93499 (7)0.32338 (7)0.21887 (5)0.0332 (2)
F50.80333 (8)0.20561 (7)0.21913 (5)0.0346 (2)
F60.81291 (7)0.43793 (6)0.25467 (5)0.0303 (2)
Fe10.629560 (14)0.167551 (12)0.019064 (9)0.01225 (6)
P10.80910 (3)0.32180 (2)0.236862 (17)0.01482 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (6)0.0167 (6)0.0193 (6)0.0016 (5)0.0043 (5)0.0048 (5)
C20.0192 (6)0.0114 (5)0.0265 (6)0.0006 (4)0.0035 (5)0.0019 (5)
C30.0267 (7)0.0166 (6)0.0216 (6)0.0081 (5)0.0035 (5)0.0036 (5)
C40.0201 (6)0.0204 (6)0.0252 (7)0.0075 (5)0.0046 (5)0.0053 (5)
C50.0140 (5)0.0189 (6)0.0280 (7)0.0006 (5)0.0047 (5)0.0047 (5)
C60.0148 (5)0.0145 (5)0.0196 (6)0.0021 (4)0.0032 (4)0.0010 (5)
C70.0153 (5)0.0164 (6)0.0233 (6)0.0028 (5)0.0022 (5)0.0026 (5)
C80.0243 (6)0.0157 (5)0.0167 (6)0.0036 (5)0.0026 (5)0.0008 (4)
C90.0211 (6)0.0120 (5)0.0172 (6)0.0009 (4)0.0013 (5)0.0012 (4)
C100.0157 (5)0.0120 (5)0.0155 (5)0.0026 (4)0.0007 (4)0.0014 (4)
C110.0171 (5)0.0189 (6)0.0174 (6)0.0043 (5)0.0003 (5)0.0053 (4)
C120.0188 (6)0.0138 (5)0.0168 (6)0.0001 (4)0.0000 (4)0.0001 (4)
C130.0209 (6)0.0155 (5)0.0159 (6)0.0027 (5)0.0016 (5)0.0002 (4)
C140.0192 (6)0.0149 (5)0.0182 (6)0.0017 (5)0.0014 (5)0.0009 (4)
C150.0263 (7)0.0217 (6)0.0158 (6)0.0013 (5)0.0058 (5)0.0009 (5)
N10.0161 (5)0.0134 (5)0.0154 (5)0.0011 (4)0.0005 (4)0.0028 (4)
N20.0165 (5)0.0140 (5)0.0152 (5)0.0012 (4)0.0017 (4)0.0010 (4)
F10.0143 (4)0.0267 (4)0.0526 (6)0.0019 (3)0.0009 (4)0.0108 (4)
F20.0334 (5)0.0497 (6)0.0180 (4)0.0015 (4)0.0067 (4)0.0080 (4)
F30.0562 (6)0.0405 (5)0.0202 (4)0.0019 (5)0.0115 (4)0.0082 (4)
F40.0205 (4)0.0331 (5)0.0459 (6)0.0019 (4)0.0112 (4)0.0017 (4)
F50.0383 (5)0.0165 (4)0.0490 (6)0.0017 (4)0.0128 (4)0.0042 (4)
F60.0241 (4)0.0188 (4)0.0481 (6)0.0028 (3)0.0019 (4)0.0082 (4)
Fe10.01293 (10)0.01083 (9)0.01299 (9)0.00042 (6)0.00162 (6)0.00074 (6)
P10.01470 (15)0.01456 (14)0.01521 (15)0.00112 (11)0.00222 (11)0.00146 (11)
Geometric parameters (Å, º) top
C1—C21.4222 (18)C9—Fe12.0527 (12)
C1—C51.4223 (18)C9—H91
C1—Fe12.0585 (12)C10—C111.4968 (17)
C1—H11C10—Fe12.0367 (12)
C2—C31.4267 (19)C11—N11.4782 (15)
C2—Fe12.0482 (13)C11—H11A0.99
C2—H21C11—H11B0.99
C3—C41.428 (2)C12—N21.3285 (16)
C3—Fe12.0403 (13)C12—N11.3296 (16)
C3—H31C12—H120.95
C4—C51.4225 (19)C13—C141.3547 (17)
C4—Fe12.0456 (13)C13—N11.3797 (16)
C4—H41C13—H130.95
C5—Fe12.0519 (13)C14—N21.3772 (16)
C5—H51C14—H140.95
C6—C71.4269 (18)C15—N21.4637 (16)
C6—C101.4299 (17)C15—H15A0.98
C6—Fe12.0389 (12)C15—H15B0.98
C6—H61C15—H15C0.98
C7—C81.4258 (19)F1—P11.6106 (9)
C7—Fe12.0498 (13)F2—P11.5954 (9)
C7—H71F3—P11.5917 (9)
C8—C91.4249 (18)F4—P11.6018 (9)
C8—Fe12.0497 (13)F5—P11.6001 (9)
C8—H81F6—P11.5988 (9)
C9—C101.4310 (17)
C2—C1—C5108.23 (12)N2—C14—H14126.6
C2—C1—Fe169.35 (7)N2—C15—H15A109.5
C5—C1—Fe169.50 (7)N2—C15—H15B109.5
C2—C1—H1125.9H15A—C15—H15B109.5
C5—C1—H1125.9N2—C15—H15C109.5
Fe1—C1—H1125.9H15A—C15—H15C109.5
C1—C2—C3107.78 (12)H15B—C15—H15C109.5
C1—C2—Fe170.13 (7)C12—N1—C13108.59 (10)
C3—C2—Fe169.28 (7)C12—N1—C11124.89 (11)
C1—C2—H2126.1C13—N1—C11126.45 (11)
C3—C2—H2126.1C12—N2—C14108.84 (10)
Fe1—C2—H2126.1C12—N2—C15125.74 (11)
C2—C3—C4108.06 (12)C14—N2—C15125.40 (11)
C2—C3—Fe169.87 (7)C10—Fe1—C641.08 (5)
C4—C3—Fe169.74 (8)C10—Fe1—C3120.05 (5)
C2—C3—H3126C6—Fe1—C3107.22 (5)
C4—C3—H3126C10—Fe1—C4107.24 (5)
Fe1—C3—H3126C6—Fe1—C4125.38 (5)
C5—C4—C3107.76 (12)C3—Fe1—C440.93 (6)
C5—C4—Fe169.92 (7)C10—Fe1—C2155.21 (5)
C3—C4—Fe169.34 (8)C6—Fe1—C2120.01 (5)
C5—C4—H4126.1C3—Fe1—C240.85 (5)
C3—C4—H4126.1C4—Fe1—C268.73 (5)
Fe1—C4—H4126.1C10—Fe1—C868.72 (5)
C1—C5—C4108.16 (12)C6—Fe1—C868.84 (5)
C1—C5—Fe170.01 (7)C3—Fe1—C8162.82 (6)
C4—C5—Fe169.45 (7)C4—Fe1—C8154.87 (6)
C1—C5—H5125.9C2—Fe1—C8125.44 (5)
C4—C5—H5125.9C10—Fe1—C768.70 (5)
Fe1—C5—H5125.9C6—Fe1—C740.85 (5)
C7—C6—C10107.64 (11)C3—Fe1—C7125.58 (6)
C7—C6—Fe169.99 (7)C4—Fe1—C7162.98 (6)
C10—C6—Fe169.38 (7)C2—Fe1—C7107.61 (5)
C7—C6—H6126.2C8—Fe1—C740.70 (5)
C10—C6—H6126.2C10—Fe1—C5125.40 (5)
Fe1—C6—H6126.2C6—Fe1—C5162.81 (5)
C8—C7—C6108.23 (11)C3—Fe1—C568.50 (6)
C8—C7—Fe169.65 (7)C4—Fe1—C540.63 (5)
C6—C7—Fe169.17 (7)C2—Fe1—C568.40 (5)
C8—C7—H7125.9C8—Fe1—C5120.18 (6)
C6—C7—H7125.9C7—Fe1—C5155.07 (6)
Fe1—C7—H7125.9C10—Fe1—C940.97 (5)
C9—C8—C7108.20 (11)C6—Fe1—C969.00 (5)
C9—C8—Fe169.79 (7)C3—Fe1—C9155.19 (6)
C7—C8—Fe169.65 (7)C4—Fe1—C9120.01 (6)
C9—C8—H8125.9C2—Fe1—C9162.50 (6)
C7—C8—H8125.9C8—Fe1—C940.65 (5)
Fe1—C8—H8125.9C7—Fe1—C968.51 (5)
C8—C9—C10107.72 (11)C5—Fe1—C9107.49 (5)
C8—C9—Fe169.57 (7)C10—Fe1—C1162.69 (5)
C10—C9—Fe168.92 (7)C6—Fe1—C1155.08 (5)
C8—C9—H9126.1C3—Fe1—C168.32 (5)
C10—C9—H9126.1C4—Fe1—C168.30 (5)
Fe1—C9—H9126.1C2—Fe1—C140.52 (5)
C6—C10—C9108.20 (11)C8—Fe1—C1107.78 (5)
C6—C10—C11125.54 (11)C7—Fe1—C1120.46 (5)
C9—C10—C11126.25 (11)C5—Fe1—C140.49 (5)
C6—C10—Fe169.54 (7)C9—Fe1—C1125.48 (5)
C9—C10—Fe170.12 (7)F3—P1—F2179.87 (7)
C11—C10—Fe1127.13 (9)F3—P1—F689.57 (6)
N1—C11—C10110.49 (10)F2—P1—F690.55 (6)
N1—C11—H11A109.6F3—P1—F590.29 (6)
C10—C11—H11A109.6F2—P1—F589.58 (6)
N1—C11—H11B109.6F6—P1—F5179.13 (5)
C10—C11—H11B109.6F3—P1—F490.57 (6)
H11A—C11—H11B108.1F2—P1—F489.46 (5)
N2—C12—N1108.65 (11)F6—P1—F490.25 (5)
N2—C12—H12125.7F5—P1—F490.62 (5)
N1—C12—H12125.7F3—P1—F189.71 (6)
C14—C13—N1107.04 (11)F2—P1—F190.25 (5)
C14—C13—H13126.5F6—P1—F189.65 (5)
N1—C13—H13126.5F5—P1—F189.49 (5)
C13—C14—N2106.90 (11)F4—P1—F1179.70 (6)
C13—C14—H14126.6
C5—C1—C2—C30.48 (14)C5—C4—Fe1—C3119.01 (11)
Fe1—C1—C2—C359.27 (9)C5—C4—Fe1—C281.21 (8)
C5—C1—C2—Fe158.79 (9)C3—C4—Fe1—C237.80 (8)
C1—C2—C3—C40.30 (15)C5—C4—Fe1—C848.21 (15)
Fe1—C2—C3—C459.51 (9)C3—C4—Fe1—C8167.22 (11)
C1—C2—C3—Fe159.80 (9)C5—C4—Fe1—C7161.85 (16)
C2—C3—C4—C50.00 (15)C3—C4—Fe1—C742.8 (2)
Fe1—C3—C4—C559.60 (9)C3—C4—Fe1—C5119.01 (11)
C2—C3—C4—Fe159.59 (9)C5—C4—Fe1—C981.93 (9)
C2—C1—C5—C40.48 (15)C3—C4—Fe1—C9159.06 (8)
Fe1—C1—C5—C459.17 (9)C5—C4—Fe1—C137.51 (8)
C2—C1—C5—Fe158.70 (9)C3—C4—Fe1—C181.50 (8)
C3—C4—C5—C10.29 (15)C1—C2—Fe1—C10166.23 (11)
Fe1—C4—C5—C159.52 (9)C3—C2—Fe1—C1047.29 (15)
C3—C4—C5—Fe159.23 (9)C1—C2—Fe1—C6159.41 (8)
C10—C6—C7—C80.54 (14)C3—C2—Fe1—C681.65 (9)
Fe1—C6—C7—C858.86 (9)C1—C2—Fe1—C3118.94 (11)
C10—C6—C7—Fe159.39 (8)C1—C2—Fe1—C481.07 (8)
C6—C7—C8—C90.78 (14)C3—C2—Fe1—C437.87 (8)
Fe1—C7—C8—C959.34 (9)C1—C2—Fe1—C875.18 (9)
C6—C7—C8—Fe158.56 (9)C3—C2—Fe1—C8165.88 (8)
C7—C8—C9—C100.73 (14)C1—C2—Fe1—C7116.57 (8)
Fe1—C8—C9—C1058.53 (8)C3—C2—Fe1—C7124.49 (8)
C7—C8—C9—Fe159.26 (9)C1—C2—Fe1—C537.27 (8)
C7—C6—C10—C90.09 (14)C3—C2—Fe1—C581.67 (8)
Fe1—C6—C10—C959.69 (8)C1—C2—Fe1—C942.3 (2)
C7—C6—C10—C11178.54 (11)C3—C2—Fe1—C9161.25 (16)
Fe1—C6—C10—C11121.69 (12)C3—C2—Fe1—C1118.94 (11)
C7—C6—C10—Fe159.77 (8)C9—C8—Fe1—C1037.78 (7)
C8—C9—C10—C60.39 (14)C7—C8—Fe1—C1081.67 (8)
Fe1—C9—C10—C659.33 (8)C9—C8—Fe1—C682.00 (8)
C8—C9—C10—C11179.01 (11)C7—C8—Fe1—C637.45 (7)
Fe1—C9—C10—C11122.06 (12)C9—C8—Fe1—C3161.81 (16)
C8—C9—C10—Fe158.94 (9)C7—C8—Fe1—C342.4 (2)
C6—C10—C11—N166.58 (15)C9—C8—Fe1—C447.57 (15)
C9—C10—C11—N1111.80 (14)C7—C8—Fe1—C4167.01 (11)
Fe1—C10—C11—N1156.70 (9)C9—C8—Fe1—C2165.49 (8)
N1—C13—C14—N20.09 (14)C7—C8—Fe1—C275.06 (9)
N2—C12—N1—C130.05 (14)C9—C8—Fe1—C7119.45 (11)
N2—C12—N1—C11176.98 (11)C9—C8—Fe1—C581.73 (9)
C14—C13—N1—C120.09 (14)C7—C8—Fe1—C5158.82 (7)
C14—C13—N1—C11176.88 (11)C7—C8—Fe1—C9119.45 (11)
C10—C11—N1—C12123.38 (13)C9—C8—Fe1—C1124.22 (8)
C10—C11—N1—C1353.11 (16)C7—C8—Fe1—C1116.34 (8)
N1—C12—N2—C140.01 (14)C8—C7—Fe1—C1081.71 (8)
N1—C12—N2—C15178.28 (11)C6—C7—Fe1—C1038.17 (7)
C13—C14—N2—C120.06 (14)C8—C7—Fe1—C6119.88 (11)
C13—C14—N2—C15178.23 (12)C8—C7—Fe1—C3165.83 (8)
C9—C10—Fe1—C6119.29 (11)C6—C7—Fe1—C374.28 (9)
C11—C10—Fe1—C6119.72 (14)C8—C7—Fe1—C4160.96 (17)
C6—C10—Fe1—C381.77 (9)C6—C7—Fe1—C441.1 (2)
C9—C10—Fe1—C3158.93 (8)C8—C7—Fe1—C2124.32 (8)
C11—C10—Fe1—C337.94 (13)C6—C7—Fe1—C2115.80 (8)
C6—C10—Fe1—C4124.51 (8)C6—C7—Fe1—C8119.88 (11)
C9—C10—Fe1—C4116.19 (8)C8—C7—Fe1—C547.80 (15)
C11—C10—Fe1—C44.80 (12)C6—C7—Fe1—C5167.69 (11)
C6—C10—Fe1—C248.05 (15)C8—C7—Fe1—C937.56 (7)
C9—C10—Fe1—C2167.34 (12)C6—C7—Fe1—C982.32 (8)
C11—C10—Fe1—C271.67 (17)C8—C7—Fe1—C181.92 (9)
C6—C10—Fe1—C881.80 (8)C6—C7—Fe1—C1158.19 (7)
C9—C10—Fe1—C837.50 (8)C1—C5—Fe1—C10166.27 (7)
C11—C10—Fe1—C8158.48 (13)C4—C5—Fe1—C1074.35 (9)
C6—C10—Fe1—C737.97 (7)C1—C5—Fe1—C6160.03 (16)
C9—C10—Fe1—C781.33 (8)C4—C5—Fe1—C640.7 (2)
C11—C10—Fe1—C7157.68 (12)C1—C5—Fe1—C381.37 (8)
C6—C10—Fe1—C5165.55 (8)C4—C5—Fe1—C338.01 (8)
C9—C10—Fe1—C575.16 (9)C1—C5—Fe1—C4119.38 (11)
C11—C10—Fe1—C545.83 (13)C1—C5—Fe1—C237.30 (8)
C6—C10—Fe1—C9119.29 (11)C4—C5—Fe1—C282.08 (9)
C11—C10—Fe1—C9120.99 (14)C1—C5—Fe1—C882.11 (9)
C6—C10—Fe1—C1163.26 (16)C4—C5—Fe1—C8158.51 (8)
C9—C10—Fe1—C144.0 (2)C1—C5—Fe1—C748.13 (16)
C11—C10—Fe1—C177.0 (2)C4—C5—Fe1—C7167.51 (11)
C7—C6—Fe1—C10118.80 (10)C1—C5—Fe1—C9124.63 (8)
C7—C6—Fe1—C3124.95 (8)C4—C5—Fe1—C9115.99 (8)
C10—C6—Fe1—C3116.25 (8)C4—C5—Fe1—C1119.38 (11)
C7—C6—Fe1—C4166.36 (8)C8—C9—Fe1—C10119.45 (11)
C10—C6—Fe1—C474.85 (9)C8—C9—Fe1—C681.59 (8)
C7—C6—Fe1—C282.31 (9)C10—C9—Fe1—C637.87 (7)
C10—C6—Fe1—C2158.90 (7)C8—C9—Fe1—C3167.31 (12)
C7—C6—Fe1—C837.32 (7)C10—C9—Fe1—C347.85 (16)
C10—C6—Fe1—C881.47 (8)C8—C9—Fe1—C4158.77 (8)
C10—C6—Fe1—C7118.80 (10)C10—C9—Fe1—C481.77 (9)
C7—C6—Fe1—C5162.29 (16)C8—C9—Fe1—C242.8 (2)
C10—C6—Fe1—C543.5 (2)C10—C9—Fe1—C2162.21 (16)
C7—C6—Fe1—C981.03 (8)C10—C9—Fe1—C8119.45 (11)
C10—C6—Fe1—C937.77 (7)C8—C9—Fe1—C737.61 (8)
C7—C6—Fe1—C149.47 (15)C10—C9—Fe1—C781.84 (8)
C10—C6—Fe1—C1168.26 (11)C8—C9—Fe1—C5116.25 (8)
C2—C3—Fe1—C10159.15 (7)C10—C9—Fe1—C5124.30 (8)
C4—C3—Fe1—C1081.69 (9)C8—C9—Fe1—C175.24 (9)
C2—C3—Fe1—C6116.24 (8)C10—C9—Fe1—C1165.30 (7)
C4—C3—Fe1—C6124.60 (8)C2—C1—Fe1—C10160.41 (16)
C2—C3—Fe1—C4119.16 (11)C5—C1—Fe1—C1040.6 (2)
C4—C3—Fe1—C2119.16 (11)C2—C1—Fe1—C646.28 (16)
C2—C3—Fe1—C842.3 (2)C5—C1—Fe1—C6166.14 (11)
C4—C3—Fe1—C8161.45 (16)C2—C1—Fe1—C338.02 (8)
C2—C3—Fe1—C775.00 (9)C5—C1—Fe1—C381.84 (9)
C4—C3—Fe1—C7165.84 (8)C2—C1—Fe1—C482.22 (9)
C2—C3—Fe1—C581.42 (8)C5—C1—Fe1—C437.64 (8)
C4—C3—Fe1—C537.74 (8)C5—C1—Fe1—C2119.86 (11)
C2—C3—Fe1—C9166.68 (11)C2—C1—Fe1—C8124.19 (8)
C4—C3—Fe1—C947.53 (16)C5—C1—Fe1—C8115.95 (8)
C2—C3—Fe1—C137.73 (8)C2—C1—Fe1—C781.50 (9)
C4—C3—Fe1—C181.43 (8)C5—C1—Fe1—C7158.64 (8)
C5—C4—Fe1—C10124.73 (8)C2—C1—Fe1—C5119.86 (11)
C3—C4—Fe1—C10116.26 (8)C2—C1—Fe1—C9165.61 (8)
C5—C4—Fe1—C6166.34 (7)C5—C1—Fe1—C974.54 (10)
C3—C4—Fe1—C674.65 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···F1i0.952.543.3249 (15)140
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C10H12N2)]PF6
Mr426.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.4226 (2), 13.4414 (2), 19.2137 (3)
V3)3208.25 (9)
Z8
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.27 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.755, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
44208, 4041, 3747
Rint0.029
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.04
No. of reflections4041
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.36

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···F1i0.952.543.3249 (15)140
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank the University of KwaZulu-Natal and the National Research Foundation (NRF) for financial support.

References

First citationBruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKealy, T. J. & Pauson, P. L. (1951). Nature (London), 168, 1039–1040.  CrossRef CAS Web of Science Google Scholar
First citationNyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNyamori, V. O., Bala, M. D. & Levendis, D. C. (2010a). Acta Cryst. E66, m412.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNyamori, V. O., Gumede, M. & Bala, M. D. (2010b). Organomet. Chem. 695, 1126–1132.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtěpnička, P. (2008). In Ferrocenes: Ligands, Materials and Biomolecules. Chichester: John Wiley and Sons.  Google Scholar
First citationThomas, J.-L., Howarth, J., Hanlon, K. & McGuirk, D. (2000). Tetrahedron Lett. 41, 413–416.  Web of Science CrossRef CAS Google Scholar
First citationThomas, J.-L., Howarth, J. & Kennedy, A. M. (2002). Molecules, 7, 861–866.  Web of Science CrossRef CAS Google Scholar
First citationTogni, A. & Hayashi, T. (1995). In Ferrocenes. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds